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Abstract

This paper reviews the second challenge on spectral re-

construction from RGB images, i.e., the recovery of whole-

scene hyperspectral (HS) information from a 3-channel

RGB image. As in the previous challenge, two tracks were

provided: (i) a “Clean” track where HS images are esti-

mated from noise-free RGBs, the RGB images are them-

selves calculated numerically using the ground-truth HS

images and supplied spectral sensitivity functions (ii) a

“Real World” track, simulating capture by an uncalibrated

and unknown camera, where the HS images are recov-

ered from noisy JPEG-compressed RGB images. A new,

larger-than-ever, natural hyperspectral image data set is

presented, containing a total of 510 HS images. The Clean

and Real World tracks had 103 and 78 registered partici-

pants respectively, with 14 teams competing in the final test-

ing phase. A description of the proposed methods, along-

side their challenge scores and an extensive evaluation of

top performing methods is also provided. They gauge the

state-of-the-art in spectral reconstruction from an RGB im-

age.

1. Introduction

While conventional color cameras record scene spec-

tral radiance integrated three spectral bands (red, green,

and blue), hyperspectral imaging systems (HISs) can record
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the actual scene spectra over a large set of narrow spec-

tral bands [14]. However, the rich, spectral, information

provided by HISs comes with significant additional cap-

ture complexity: most common HISs rely on either spa-

tial or spectral scanning (e.g. push-broom or variable-filter

systems) and hence are unsuitable for real-time operation.

Moreover, hyperspectral capture often requires a longer

capture time and this means it is difficult to measure in-

formation from scenes with moving content. Although, re-

cent advances in “Snapshot” HISs have continued to bridge

the gap towards real-time spectral image acquisition - e.g.

Mosaic [54, 21, 23] and light-field [11] based snapshot

HISs can capture images at video-rates - these technolo-

gies record images with reduced spatial and spectral reso-

lution. To date, both scanning and snapshot HISs remain

prohibitively expensive for consumer grade use (“low-cost”

HISs are often in the $10K-$100K range).

Due to these drawbacks of HISs, there has been a lot of

research and industrial interest in developing methods for

recovering spectra from the images of low cost and ubiq-

uitous RGB cameras. Early work on RGB spectral recov-

ery images leveraged sparse coding methods to recover HS

data [6, 46, 2, 55]. In recent years, neural-net based methods

have become more common [19, 13, 29, 7, 51, 50, 31, 49],

with leading methods from the NTIRE 2018 spectral recov-

ery challenge [7, 49] as well as more recent works [65, 37,

29, 16] adopting this approach. This transition to neural-net

based methods highlights the need for larger data sets - both

to facilitate improved training as well as improved evalua-

tion. The latter consideration is crucial as neural-nets are

prone to “overfitting” on small data sets and thus their test

scores may not generalize well to real-world applications.

The inherent difficulty in evaluation neural-net based

solutions was recently highlighted by Yi-Tun and Fin-
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layson [33] which evaluated top performing solutions from

the NTIRE 2018 challenge under variable illumination con-

ditions. Surprisingly, simply varying the brightness of input

images (simulating longer/shorter camera exposures of the

same scene) degraded the performance of neural net based

methods to the point that they were outperformed by sparse-

coding based methods (because the evaluated sparse-coding

based methods were exposure invariant). Concomitantly, in

Section 3 we present an extended evaluation of top perform-

ing methods - which includes the variable exposure test - to

more thoroughly review the algorithms’ performance.

Following NTIRE 2018, two potential experimental

evaluation issues were identified and thus addressed here.

First, the top performing methods in the NTIRE 2018 chal-

lenge obtained a percentage recovery error of about 1%

mean relative absolute error (MRAE; c.f . Section 2.2 and

Eq. 1), indicating that evaluation data may need better “dy-

namic range” beyond the one currently provided by the

BGU HS Dataset [6] or that evaluation should extend be-

yond the spectral quantization levels of 31 bands currently

in use. Second, it was found that the ranking of the algo-

rithms in the previous challenge did not differ significantly

between the clean and real world tracks, possibly indicating

that the simulated “real world” camera did not add suffi-

cient complexity relative to the clean track. To this end, the

2020 challenge presents a larger-than-ever data set nearly

twice as large as the BGU HS data set (c.f . Section 2.1) as

well as an improved real world track where camera noise is

incorporated as well(c.f . Section 2.2).

2. NTIRE 2020 Challenge

The RGB to spectra recovery challenge [9] is one of the

NTIRE 2020 challenges. The other challenges are: deblur-

ring [40], nonhomogeneous dehazing [5], perceptual ex-

treme super-resolution [63], video quality mapping [18],

real image denoising [1], real-world super-resolution [35]

and demoireing [60].

As in the NTIRE 2018 Spectral Recovery Challenge [7],

the objectives of the NTIRE 2020 Challenge on Spectral

Reconstruction are: (i) gauging and improving the state-of-

the art in HS reconstruction from RGB images; (ii) compar-

ing the different spectral recovery approaches; (iii) further

expanding the amount of natural HS images available to the

research community. Importantly, the 2020 challenge in-

troduces not only a new and improved data set, but also an

extended evaluation which attempts to gauge the expected

performance of proposed methods beyond the scope of the

challenge’s test images.

2.1. ARAD HS Dataset

The NTIRE 2020 spectral reconstruction challenge pro-

vided a new, larger-than-ever, natural hyperspectral image

data set. The data set included a total of 510 images: 450

Figure 1: Sample images from the ARAD HS data set, note

the variety of scene types (color and brightness have been

manually adjusted for display purposes).

training images, 30 validation images, and 30 test images.

The training and test images were released during the chal-

lenge, while test images remain confidential to facilitate

blind evaluation of future works. Figure 1 includes a set

of sample images from the data set.

The ARAD data set was collected with a Specim IQ

mobile hyperspectral camera. The Specim IQ camera is

a stand-alone, battery-powered, push-broom spectral imag-

ing system, the size of a conventional SLR camera (207 ×
91 × 74 mm) which can operate independently without the

need for an external power source or computer controller.

The use of such a compact, mobile system facilitated col-

lection of an extremely diverse data set with a large variety

of scenes and subjects.

In addition to the ARAD data set, participants were in-

vited to use the previously published BGU HS data set [6, 7]

as well to obtain a total of 706 training images.

2.1.1 Radiometric Calibration

The Specim IQ camera provides RAW 512× 512px images

with 204 spectral bands in the 400-1000nm range. For the

purpose of this challenge, manufacturer-supplied radiomet-

ric calibration has been applied to the RAW images, and

the images have been resampled to 31 spectral bands in the

visual range (400-700nm). Both RAW and radiometrically

calibrated images have been made available to researchers.

The radiometric calibration corrects for measurement bi-

ases introduced by the camera systems CMOS sensor, con-



verting the recorded RAW per channel intensity data to ac-

curate spectral measurements. “Lines” (image columns)

with excessive interference are also removed by this pro-

cess, resulting in a 482 × 512px image, resampled to 31

bands from 400nm to 700nm with a 10nm step.

2.2. Tracks

As in the previous iteration of this challenge [7], the

NTIRE 2020 Spectral Recovery Challenge had two tracks, a

“clean” and a “real world” track. While the clean track was

similar to that of the previous challenge (NITRE 2018), the

real world track was substantially updated to provide a more

accurate simulation of physical camera systems.

Track 1: “Real World” simulates the recovery of spectral

information from an unknown, uncalibrated camera. Partic-

ipants were provided with 8-bit color images in compressed

JPEG format created by applying the following procedure

to spectral images:

1. Applying a real-world camera response function to a

spectral image.

2. Subsampling the resulting 3 channel image to produce

an RGGB Bayer mosaic image.

3. Adding simulated camera noise (Poisson shot noise

and normally distributed dark noise) to the mosaic im-

age.

4. Applying a demosaicing algorithm from the

OpenCV [12] library to produce a three-channel

RGB image.

5. Storing the image in compressed JPEG format.

The camera response and noise parameters used in the

above procedure were kept confidential from challenge par-

ticipants and shall remain confidential to facilitate equal

ground comparisons of future works to the challenge results

below.

Challenge participants were provided with code [8]

(publicly available on the GitHub platform) used to gen-

erate both clean and real world track images.

Competitions competitions were hosted on the CodaLab

platform 1, with a separate competition for each track. Af-

ter registration, participants were able to access data and

submit results for automatic evaluation on the competition

test server. Due to constraints of the CodaLab platform, the

validation and test set have been reduced to 10 images each

track (for a total of 10 validation images and 20 test images).

Challenge phases The challenge had two phases:

1. Development: participants were provided with

ground truth training hyperspectral/RGB image pairs

1https://codalab.org/

for both tracks (450 image pairs for each track) as well

as 10 RGB images for validation. A test server was

made available to participant, allowing them to upload

their results and receive an online evaluation score.

2. Testing: ground truth spectral validation images were

released, along with final test images for each track.

Participants were invited to upload their final solutions

to the test server, and results were kept confidential un-

til the challenge concluded.

Evaluation protocol . As in the 2018 competition [7],

Mean Relative Absolute Error (MRAE) computed between

the submitted reconstruction results and the ground truth

images was selected as the quantitative measure for the

competition. Root Mean Square Error (RMSE) was re-

ported as well, but not used to rank results. MRAE and

RMSE are computed as follows:

MRAE =

∑

i,c

|Pgtic
−Precic

|

Pgtic

|Pgt|
, (1)

RMSE =

√

√

√

√

∑

i,c

(

Pgtic
− Precic

)2

|Pgt|
, (2)

where Pgtic
and Precic

denote the value of the c spectral

channel of the i-th pixel in the ground truth and the re-

constructed image, respectively, and |Pgt| is the size of the

ground truth image (pixel count × number of spectral chan-

nels).

3. Challenge Results

Submissions provided by challenge participants were

evaluated against confidential ground-truth HS test-set im-

ages using the metrics described in Section 2.2 (c.f . Eq.

(1), (2)). The results of the evaluations are shown in Ta-

ble 1. Self-reported computational requirements and ad-

ditional implementation details for submitted methods are

reported in Table 2. The top performing method in the

clean track (IPIC SSR) achieved a MRAE of 0.0301 and

a RMSE of 0.0129. The top performing method in the

real world track (OrangeCat) achieved a MRAE of 0.0620

and a RMSE of 0.0192. For additional gains in accuracy

top methods employed model ensemble and self-ensemble

strategies [56]. All submitted solutions relied on recent-

generation (and often state-of-the-art) GPUs for computa-

tion. Despite the use of powerful hardware, most solutions

required at least 0.5 seconds to process a ∼ 0.25 mega-

pixel (mp) image. The best placed solution that could re-

cover the HSI in less than 0.5 seconds per-image (LFB)

was ranked 8th in the clean track and 5th in the real world

track. To achieve recovery in less than 0.1 seconds per-

image (StaffsCVL) we needed to go down the ranked list



Figure 2: Sample “out-of-scope“ images used to evalu-

ate the proposed methods’ generalization capabilities. Stu-

dio images (left, right) were recorded under halogen il-

lumination. All images were images manually adjusted

(color/brightness) for display.

respectively to 10th and 8th position for the clean and real

world tracks.

In addition to the primary evaluation metrics, five addi-

tional auxiliary metrics were used to explore the stability

and extrapolability of solutions proposed by participants.

These metrics are described in the following sub-sections

and were applied to the top-performing submissions. First,

”out-of-scope” images which differ significantly from the

training data were considered. Second, ”shuffled” images

where large-scale spatial features are broken down to ran-

domly ordered 4 × 4 patches were used gauge the robust-

ness of methods to unseen conditions and/or spatial fea-

tures. Then, third, test image brightness is varied to assess

methods’ stability under varying illumination intensity. In a

fourth test, weighted scoring is applied to accurately repre-

sent performance over spectral signatures which have lower

abundance in the test data. Finally, recovered HS images

are projected back to RGB space to examine the physical

consistency of results - do the recovered HS images pro-

duce RGB projections which are similar to the query im-

ages? This last test is interesting because if a method does

not meet this criterion, regardless of the MRAE, it must be

recovering incorrect spectra.

3.1. Performance on “Out­of­Scope” Images

To study the generalizability of the proposed models, the

top 3 models of each track are tested with 5 additionally im-

ages that were taken under drastically different settings, e.g.

objects in a studio, halogen lighting, scenes with rare view-

ing perspective, etc. Example images are given in Figure 2.

The MRAE results of this study are given in the “Out-

of-Scope” columns of Table 3. Perhaps unsurprisingly, the

average MRAE error calculated for the out-of-scope images

is more than doubled the MRAE score of all top perform-

ers, but perhaps more interestingly - solution ranking for top

performers is varied significantly from their ranking on the

challenge test set. Indicating, perhaps, that a slightly lower

performance on data similar to the training set might be ac-

ceptable if the method is to generalise to spectral images

that are quite different.

3.2. Dependence on Spatial Features

While most of the challenge participants exploit high-

level information (i.e. image content) by mapping large

image patches, many pixel-based spectral reconstruction

methods in the prior art have already shown efficacy to a

certain extent, e.g. [42, 6, 33, 2]. The purpose of this study

is to examine: to what degree the proposed models can re-

tain their efficacy if spatial information of the test images

is, by construction, much more limited.

Models are tested with the “spatially shuffled” test im-

ages: each 4 × 4 patch in the original test images is ran-

domly relocated. The MRAE results are given in the “Spa-

tial” columns of Table 3. In the clean track, a significant

degradation in performance can be seen and again - solu-

tion ranking for top performers is varied from their ranking

on the challenge test set. In the real world track, degradation

is dramatic, to the point where recovered data is unlikely to

be usable (MRAEs of 0.22-0.45). It can be surmised that all

top-performing solutions rely heavily on spatial information

to overcome camera noise and compression artifacts in the

real world track. In the noiseless clean track, dependence

on spatial features remains significant, but much reduced

relative to the real world track.

3.3. Dependence on Image Brightness

The RGB images can be brighter or dimmer depending

on the exposure setting of the camera (e.g. shutter speed

and aperture size) and/or the varying illumination intensity

of the scene, which corresponds to linearly scaled ground-

truth spectra. This means a linearly scaled hyperspectral

image and its RGB counterpart is also a physically valid

ground-truth pair. However, the best models in the 2018

competition [7] appear to perform poorly when the scene

brightness changes [33].

In this year’s challenge, the tests with two brightness

modulations are included: half (HS images scaled down by

a factor of 0.5) and double (scaled up by a factor of 2).

The corresponding clean-track and real-world-track RGB

images are simulated following the original methodology.

The results are shown respectively in the “Brightness×0.5”

and “Brightness×2” columns of Table 3. While varied ex-

posure caused performance degradation in this years’ top

performers as well, the scale of this degradation is signif-

icantly reduced relative to the previous competition’s top

performers (MRAE degraded by 32% at most vs. 1245% at

most for the 2018 top performer [33]).

3.4. Physical Consistency of Results

The hyperspectral and RGB images are physically re-

lated. Indeed, following a specified pipeline, RGB images

can be accurately simulated from hyperspectral images (re-

fer to section 2.2). The so-called physical consistency asks

the question: if the reconstructed hyperspectral images are



Track 1: Clean Track 2: Real World

Team Username MRAE RMSE MRAE RMSE

IPIC SSR [32] Deep-imagelab 0.03010 (1) 0.01293 0.06216 (3) 0.01991

MDISL-lab ppplang 0.03075 (2) 0.01268 0.06212 (2) 0.01946

OrangeCat [68] zyz987 0.03231 (3) 0.01389 0.06200 (1) 0.01923

AIDAR PARASITE - - 0.06514 (4) 0.02065

VIPLab1 ZHU zy 0.03475 (4) 0.01475 - -

TIC-RC sunnyvick 0.03516 (5) 0.01567 0.07032 (7) 0.02191

VIPLab2 ninaqian 0.03518 (6) 0.01511 - -

GD322 Hpeng 0.03601 (7) 0.01695 0.06780 (6) 0.02071

LFB Tasti 0.03633 (8) 0.01690 0.06732 (5) 0.02124

CI Lab honeygupta 0.03769 (9) 0.01677 0.07581 (9) 0.02253

StaffsCVL [17] fubarabjs 0.04401(10) 0.01978 0.07141 (8) 0.02173

Pixxel AI akashpalrecha 0.04441 (11) 0.01645 0.09322 (10) 0.02255

Image Lab sabarinathan 0.04577 (12) 0.01595 - -

disqualified Achiever11 0.17382 (13) 0.04573 0.16459 (11) 0.04743

Table 1: NTIRE 2020 Spectral Reconstruction Challenge results and final rankings on the ARAD HS test data.

Reported runtime per image (sec)

Team Clean Real World Platform CPU GPU Training Time Notes Ensemble/Fusion

IPIC SSR [32] 0.56 0.56 Pytorch E5-2678 2x NVIDIA 2080Ti 11G 36 hours Self-ensemble used only for ”Real World” track. self-ensemble, model-ensemble

MDISL-lab 16 16 PyTorch NVIDIA 1080 Ti 12G 48 hours 10 model ensemble

OrangeCat [68] 3.74 3.74 PyTorch 2x NVIDIA Titan Xp 12G 7 days 8-setting ensemble strategy for both tracks self-ensemble, model-ensemble

AIDAR - 30 PyTorch NVIDIA Titan Xp 12G 16 hours self-ensemble, model-ensemble

VIPLab1 ˜1 - PyTorch 4x UNKNOWN 12 hours

TIC-RC 0.7 0.7 PyTorch Intel(R) Xeon(R) CPU Tesla K80 12GB 13.9 hours

VIPLab1 ˜1 - PyTorch 4x UNKNOWN 12 hours

GD322 1.35 1.35 PyTorch E5-2680 NVIDIA Titan Xp 13 hours

LFB 0.31 0.30 PyTorch Intel Xeon W-2133 NVIDIA GTX 2080Ti 8 hrs

CI Lab 0.4 0.4 TensorFlow Intel i9-9900X NVIDIA GTX 2080Ti 36 hours

StaffsCVL [17] 0.034 0.034 PyTorch Intel Core i5 NVIDIA RTX 2080Ti 2.7 hours

Pixxel AI 0.154 0.154 FastAI Intel(R) Xeon(R) NVIDIA V100 8.6 hours

Image Lab 0.69 - Keras Intel Core i7 NVIDIA GTX 1080

disqualified 3.75 3.75 Keras Intel Core i7 NVIDIA GTX 1080 33 hours

Table 2: Self-reported runtimes per image on the ARAD HS test data and additional implementation details.

Track 1: Clean (MRAE) Track 2: Real World (MRAE)

Team Out-of-Scope Spatial Brightness×0.5 Brightness×2 Physical Weighted Out-of-Scope Spatial Brightness×0.5 Brightness×2 Physical Weighted

IPIC SSR [32] 0.08511 0.09580 0.03273 0.03969 0.00117 0.03746 0.12556 0.45796 0.08000 0.06598 0.03290 0.07944

MDISL-lab 0.08076 0.07948 0.03562 0.03390 0.00053 0.03901 0.14005 0.21058 0.08203 0.06832 0.03563 0.07981

OrangeCat [68] 0.09233 0.07670 0.04052 0.04419 0.00103 0.04169 0.13019 0.22689 0.08097 0.06784 0.03346 0.07945

Table 3: Auxiliary test results of the top 3 models in each track. Out-of-scope: performance on images which differ

significantly from the training data. Spatial: performance on images which were broken down to randomly ordered 4 × 4
patches. Brightness (×0.5, ×2): performance over images where intensity was decreased/increased by ×0.5/×2. Physical:

correlation between RGB projection of recovered spectra and input RGB images. Weighted: accuracy over representative

spectra samples without accounting for their abundance.

applied with the original pipeline and re-generate the RGB

images, how far off are these re-generated RGB images

from the original ones?

The results are presented as the MRAE between the

ground-truth and re-generated RGB images in the “Phys-

ical” columns of Table 3. Top performers presented rela-

tively high consistency with images in the clean track, and

slightly reduced consistency with images in the real world

track. Reduced consistency in the latter is likely attributable

to simulated camera noise and compression artifacts. How-

ever, although the RGB MRAE numbers are small we make

two additional comments. First, assuming (approximately

the following assumption holds) that a 1% MRAE error cor-

relates roughly with Just Noticeable Differences (1 JND is a

concept from psychophysics where an observer can just see

the difference between stimuli) an MRAE of 3% correlates

with a color difference of 3 which in turn correlates with

perceived colors in images than can be seen to be differ-

ent. Second, the MRAE hides the fact that the, for example,

95% quantile error can be large (> 10). This kind of error

means that the recovered spectrum, when projected back to

the RGB, results in a color which is instantly noticeable as

different.

Curiously, because the recovered spectra do not reproject



to the same RGB, these spectra cannot be the correct answer

(irrespective of any MRAE).

3.5. Weighted Accuracy

The spectral properties of the pixels representing the

same material are expected to be similar. However, the

abundance of one material in the scene does not indicate

its importance. This study aims to provide a fair assess-

ment across different materials in each scene. First, simi-

lar spectra are grouped into 1000 clusters. Then, the mean

MRAE of each groups are calculated individually. Finally,

the weighted MRAE is the mean of the groups’ perfor-

mances.

The results are provided in the “Weighted” columns of

Table 3.

4. Conclusions

The NTIRE 2020 Challenge on Spectral Reconstruction

from an RGB Image provides the most extensive evalua-

tion to date of methods for spectral recovery from RGB im-

ages in terms of both participation and evaluation scope.

Participants were provided with a larger-than-ever natural

hyperspectral image data set and presented a wide vari-

ety of neural net based solutions to the task of spectral

recovery from RGB images. Analysis of the proposed

solutions revealed several intriguing areas for future ex-

ploration, namely: high-performance spectral recovery for

video and/or edge devices, reducing dependence on spatial

features, and increased robustness to unseen scenes.

Top performing methods required at least 0.5 seconds

to process a ∼ 0.25mp image on two state-of-the-art GPUs,

the fastest method required ∼ 34ms on a single state-of-the-

art GPU. While the latter could claim processing at “video

rates” (30fps), this would only hold true for 0.25mp video

on a GPU based platform. Extrapolating from this informa-

tion, processing a single frame of 4K video (8.5mp) would

require approximately 34 and 1.15 seconds on a single GPU

for the most accurate and fastest method respectively. Pro-

cessing on an edge device (e.g. cellular phone) without a

discrete GPU can be expected to take an order-of-magnitude

longer. Future challenges may include an “edge device”

track where solutions are scored on their computation re-

quirements as well as their recovery performance.

All top performers were found to have a nontrivial de-

pendency on spatial features when recovering spectral in-

formation from RGB images. The impact of this depen-

dence becomes clear when one considers possible uses of

recovered spectral information, for example: differentiating

between similar objects based on their spectral reflectance

(e.g. real fruit vs. fake plastic fruit). For this reason fu-

ture challenges may emphasize dependence on spatial fea-

tures when scoring proposed methods and possibly include

an application-based test metric as well.

Figure 3: Network architecture of the IPIC SSR adaptive

weighted attention network (AWAN).

Figure 4: Diagram of adaptive weighted channel attention

(AWCA) module. ⊙ denotes element-wise multiplication.

The tests on image brightness and physical consistency

are interesting. For the same scene, exposure - how well the

same physical object is lit - varies across the scene. But, de-

spite this we would expect to recover the spectrum (up to a

scaling factor) and this was found not to be the case for ex-

isting methods. The physical consistency test is interesting

and surprising. All challenge methods do not find spectra

consistent with the original RGB. Even though their MRAE

may be small, these methods must recover the wrong an-

swer.

Finally, “out-of-scoope” image tests reveal that none of

the top performers were able to robustly extrapolate to new

settings. This indicates that while the training data set pro-

vided to participants is the largest of its kind, it can be fur-

ther extended to cover additional settings. Namely indoor

scenes and scenes under a larger variety of illumination con-

ditions should be added to future data sets. The constantly

increasing portability and ease-of-use of modern HISs is ex-

pected to facilitate the collection of larger and more varied

data sets.

5. Challenge Methods and Teams

5.1. IPIC SSR ­ Adaptive Weighted Attention
Network with Camera Spectral Sensitivity
Prior for Spectral Reconstruction from RGB
Images[32]

As shown in Figure 3, a novel deep adaptive weighted

attention network (AWAN) is presented for spectral recon-

struction from RGB images. Specifically, the backbone ar-

chitecture of the AWAN network is constituted of 8 dual

residual attention blocks (DRAB). Each DRAB consists of



Figure 5: Diagram of patch-level second-order non-local

(PSNL) module. ⊗ denotes matrix multiplication.

a traditional residual module and additional paired convo-

lutional operations with a large (5 × 5) and small size (3

× 3) kernels, where the long and short skip connections

to form the dual residual learning in the block. Typically,

the output channel of each convolutional layer is set to 200.

The adaptive weighted channel attention (AWCA) mod-

ule (see in Figure 4) embedded in the DRAB adaptively

integrates channel-wise interdependencies. At the tail of

the AWAN network, a patch-level second-order non-local

(PSNL) module is employed to capture long-range spatial

contextual information via second-order non-local opera-

tions. The diagram of the PSNL module is illustrated in

Figure 5).

Since the “Clean” track aims to recover hyperspectral

images (HSIs) from the noise-free RGB images created by

applying a known spectral response function to ground truth

hyperspectral information, the camera spectral sensitivity

(i.e. spectral response function) prior is introduced to im-

prove the quality of spectral reconstruction. Considering

the fact that the reconstructed RGB can be calculated natu-

rally through the super-resolved HSI, the final loss is a lin-

ear combination of the discrepancies of RGB images and

the differences of HSIs

l = lh + τ lr (3)

where τ denotes the tradeoff parameter and is set to 10

empirically. Given the ground truth IHSI and the spectral

super-resolved HSI ISSR, the two loss functions are specif-

ically defined as

lh =
1

N

N
∑

n=1

(|I
(n)
HSI − I

(n)
SSR|/I

(n)
HSI) (4)

lr =
1

N

N
∑

n=1

(|Φ(I
(n)
HSI)−Φ(I

(n)
SSR)|) (5)

where I
(n)
HSI and I

(n)
SSR denote the n-th pixel value and Φ is

camera spectral sensitivity function. N is the total number

of pixels. However, the camera spectral sensitivity is un-

known in the “Real World” track, thus the AWAN network

is optimized by stochastic gradient descent algorithm with

individual constraint lh.

5.1.1 Global Method Description

Training During the training, 64× 64 RGB and HSI sam-

ple pairs are cropped with a stride of 32 from the original

dataset. The batch size of our model is 32 and the parame-

ter optimization algorithm chooses Adam modification with

β1 = 0.9, β2 = 0.99 and ǫ = 10−8. The reduction ratio t
value of the AWCA module is 16. The learning rate is ini-

tialized as 0.0001 the polynomial function is set as the decay

policy with power = 1.5. The network training is stopped

at 100 epochs. The proposed AWAN network has been im-

plemented on the Pytorch framework and approximately 36

hours are required for training a network with 8 DRABs and

output channel = 200 on 2 NVIDIA 2080Ti GPUs .

Testing In our experiments, different spectral recovery

ways are tried and compared with their scores in the val-

idation sets of the two tracks. One way is to split the in-

put images into small overlapping patches, then average and

stitch their outputs together on the GPU. The other is to feed

the entire image to the AWAN network for inference on the

CPU. Finally, the whole image is inputted into the network

to fulfill the spectral recovery on the “Clean” track and at

least 64G CPU is required for inference. The inference-

time per image (CPU time) is 57.05s for both validation and

test data. For the “Real World” track, the entire image is

split into 128× 128 overlapping patches with a stride of 64

and perform spectral reconstruction on an NVIDIA 2080Ti

GPU with 11G memory. The AWAN network takes 0.56s

per image (GPU time) for both validation and test data. By

the way, in the “Clean” track, we can also achieve fast spec-

tral reconstruction in the same way as the “Real World”

track on the GPU, but the results will be slightly worse.

5.1.2 Ensembles and fusion strategies

For the “Clean” track, four models are trained for model-

ensemble strategy, including two models with 8 DRABs

and 200 channels and two models with 20 DRABs and

128 channels. Different from the “Clean” track, for the

“Real World” track, the self-ensemble method [56] is firstly

adopted for single AWAN network. Concretely, the RGB

input is flipped up/down to acquire a mirrored output. Then

the mirrored output and the original output are averaged into

the target result. Also, three models with 8 DRABs and 200

channels and one model with 10 DRABs and 180 channels

are trained for model-ensemble of AWAN network. Please

refer to [32] for specific details.

5.2. MDISL­lab ­ Improved Pixel­aware Deep
Function­Mixture Network

One fact is that the spectral of different pixels in a image

vary widely. However, most existing Deep Convolutional

Neural Networks (DCNNs) based Spectral Reconstruction

(SR) methods treat all pixels in Hyper-Spectral Images



Figure 6: Architecture of the MDISL-lab function-mixture

block.

equally and learn a universal mapping function, as shown in

Figure. Based on the observation, we present a pixel-aware

deep function-mixture network for SR, which is flexible

to pixel-wisely determine the receptive field size and the

mapping function.

One fact is that the spectral of different pixels in a image

vary widely. However, most existing Deep Convolutional

Neural Networks (DCNNs) based Spectral Reconstruction

(SR) methods treat all pixels in Hyper-Spectral Images

equally and learn a universal mapping function, as shown

in Figure. Based on the observation and inspired by [64],

a pixel-aware deep function-mixture network is presented

for SR, which is flexible to pixel-wisely determine the

receptive field size and the mapping function.

It is worth noting that, in order to reduce the computa-

tional complexity, different receptive fields of different sizes

are achieved by stacking multiple 3x3 convolution layers.

To further improve the learning ability of the network, a SE

module [26] is placed after each branch and at the end of

each module.

Specifically, a new module, termed the function-mixture

(FM) block, is firstly developed. Each FM block consists

of some parallel DCNN based subnets, among which one

is termed the mixing function and the remaining are termed

basis functions. The basis functions take different-sized re-

ceptive fields and learn distinct mapping schemes; while the

mixture function generates pixel-wise weights to linearly

mix the outputs of the basis functions, as shown in Figure 6.

In this way, the pixel-wise weights can determine a specific

information flow for each pixel and consequently benefit the

network to choose appropriate RGB context as well as the

mapping function for spectrum recovery. Then, several such

FM blocks are stacked to further improve the flexibility of

the network in learning the pixel-wise mapping. Further-

more, to encourage feature reuse, the intermediate features

generated by the FM blocks are fused in late stage. The

overall architecture of proposed network is shown in fig-

ure 7.

Training The paired spectral and RGB patches with a spa-

tial size of 64x64 are cropped from the original images with

a stride of 64. For data augmentation, horizontal flip and 90

degree rotation were randomly performed. Teh model was

trained by ADAM optimizer and the mini-batch size is set

to 64. The initial learning rate was set to 3e-4 and halved at

every 60,000 iterations for three times. The model was im-

plemented through PyTorch framework and trained on a NI-

VIDIA 1080 Ti GPU and Intel(R) Xeon(R) CPU E5-2640.

5.3. OrangeCat ­ Hierarchical Regression Network
for Spectral Reconstruction from RGB Im­
ages [68]

Generally, we propose a 4-level hierarchical regression

network (HRNet) [68] architecture for high-quality spec-

tral reconstruction from RGB images, as shown in Figure

8. The PixelShuffle layers [48] are utilized to downsample

the input to each level without adding parameters. Thus,

the number of pixels of input is fixed while the spatial res-

olution decreases. Since PixelShuffle only reshapes feature

maps and does not introduces interpolation operation, it al-

lows HRNet to learn upsampling operation.

For each level, the process is decomposed to inter-level

integration, artifacts reduction, and global feature extrac-

tion. The top level uses the most blocks to effectively inte-

grate features and reduce artifacts thus produce high-quality

spectral images. For inter-level learning, the output features

of subordinate level are pixel shuffled, then concatenated to

superior level, which uses an additional convolutional layer

to unify the channels. In order to effectively reduce arti-

facts, we adopt a series of dense connection blocks [27, 24],

containing 5 convolutional layers and a residual. The resid-

ual global block [26, 24] with short-cut connection of input

is used to extract different scales of features. In this block,

each remote pixel is connected with other pixels to model

the global attention due to MLP layers. The illustration of

these blocks are in Figure 2.

Since the features are most compact in bottom level,

there is a 1 × 1 convolutional layer attached to the last of

bottom level in order to enhance tone mapping by weighting

all channels. The two mid levels process features at differ-

ent scales. Moreover, the top level uses the most blocks to

effectively integrate features and reduce artifacts thus pro-

duce high-quality spectral images. The illustration of these

blocks are in Figure 9.

Training OnlyL1 loss is used duriung the training process,

which is a PSNR-oriented optimization for the system. The

L1 loss is defined as:

L1 = E[||G(x)− y||1], (6)

where x and y are input and output, respectively. The G(∗)
is the proposed HRNet.



Figure 7: Architecture of the MDISL-lab pixel-aware deep function-mixture network. UpConv denotes a 3x3 convolution

layer, which is used to increase the channels of input RGB image to the same as the output. FMB denotes the function-mixture

block.

Figure 8: Illustration of the HRNet architecture.

Figure 9: Illustration of the residual dense block (RDB) and

residual global block (RGB) architectures.

The input RGB image and output spectral images were

randomly cropped to a 256×256 region, then rescaled to [0,

1]. The parameters of network are Xavier initialized [22].

The whole system was trained for 10000 epochs in total.

The initial learning rate was 1×10−4 and halved every 3000

epochs. For optimization, the Adam optimizer was used

with β1 = 0.5 , β2 = 0.999 and a batch size of 8. Reflection

padding was used in the system to avoid border artifacts.

The LeakyReLU activation [36] function was attached to

each convolution layer. No normalization were used in the

proposed architecture. All the experiments were performed

on 2 NVIDIA Titan Xp GPUs.

Figure 10: Overall framework of the AIDAR cross-scale

aggregation network (CSAN).

5.4. AIDAR ­ Cross­scale Aggregation Network for
Spectral Reconstruction

A cross-scale aggregation network (CSAN) is proposed

with a novel feature fusion mechanism across multiple res-

olution branches. In CSAN, the scale-wise residual dense

groups (SRDGs) exploit hierarchical feature information

over different spatial resolutions in parallel. The SRDG is

a series of residual dense blocks to fully achieve all the hi-

erarchical representation capability. Here, a novel multi-

scale feature fusion module is designed, which are named

as cross-scale aggregation module (CSA), for compound-

ing and aggregating the multi-resolution feature informa-

tion from the prior SRDGs. It generates refined features at

each resolution-level by fusing useful information across all

the scale-levels. Such a function combines complementary

characteristics from dynamic cross-scale representations in

a stage-by-stage fashion. Also, the hierarchical levels are

extended to explore strong contextual information from the

low-resolution representations. It further has inner shortcut

connections at each spatial level to improve gradient flow

throughout the network. In addition, a global skip connec-

tion routes data between two ends of the network, improv-

ing further the ability of the network to accurately recover

fine details. Finally, the reconstruction block select use-

ful set of features from each branch representations with

step-wise refinement. The CSAN can generate high-quality

spectral images without noticeable artifacts, as will be con-

firmed by our results.



Figure 11: Cross-scale aggregation (CSA).

5.4.1 Global Method Description

Total method complexity: a pre-processing conv-block, 10

SRDGs(4 stages), a reconstruction block.

Training training a CSAN roughly takes 16 hours with a

single NVIDIA Titan XP GPU for 1000 epochs. Training

input was Self-ensemble and model-ensemble, learning rate

was 3e-5, batch size was 8, and the Adam optimizer was

used.

Testing testing a CSAN roughly takes about 30 seconds

with a single Titan XP GPU.

5.4.2 Ensembles and fusion strategies

Self-ensemble and model-ensemble were used. Quantita-

tively, MRAE of baseline model with the ensemble is about

0.015 higher than that without the ensemble. Moreover, it

shows qualitative improvement with some great recovery of

words in the hyperspectral images.

The baseline model is described in Figure 10. For

model ensemble, the model is modified by applying differ-

ent width(the number of channels) and height(the number of

stages) of the model, maintaining the volume of the models.

5.5. VIPLab

We separately learn the mean and corresponding resid-

ual of each image using DNNs for the res learning net we

normalize output feature to zero-mean.

5.5.1 Ensembles and fusion strategies

we train 3 network one uses RELU activation the other uses

swish activation finally a network trained with fine-tune re-

sult.

5.6. TIC­RC ­ Hyperspectral Spectral Super­
resolution via an Improved HSCNN+

In the NTIRE2018 Spectral Reconstruction Chal-

lenge [7], the HSCNN+ [49] has achieved the best per-

formance with a ResNet-based and a DenseNet-based ap-

proaches. Therefore, the ResNet-based HSCNN+ has been

utilized as the baseline , which has also shown a good per-

formance on this challenge. However, there are two prob-

lems for the baseline method. The first one is the huge

computational burden for us, one training epoch costs about

150s with our computational resource (Google Colab with

K40 GPU), which is not acceptable. The second one is the

reconstruction performance can be improved. According

to that, an efficient framework with less ResNet blocks is

desired whilst improving or maintaining the reconstruction

performance.

In the image dehazing field [45], multiple input RGB im-

ages after pre-processing have proved to be useful for re-

covering more information. Therefore, more RGB inputs

are generated from the provided RGB images, including

the white balanced (WB) image and the gamma correction

(gamma) image. An example is shown in Figure 12. Fig-

ure 13 depicts the suggested architecture.

(a) (b) (c) (d) (e) (f)

Figure 12: Comparison between original RGB images, gen-

erated WB images, and gamma images: (a) Clean image

(b) WB of clean image (c) gamma of clean image, (d) real

world image (e) WB of real world image, (f) gamma of real

world image.

Methods MRAE Time(per epoch)

ResNet-based HSCNN+ 0.0718251689 152s

Ours with raw input 0.0714754468 49s

Ours 0.0687300712 50s

Table 4: Track 2 reconstruction performance for baseline

HSCNN+ and the proposed Improved HSCNN+ network.

5.7. GD322 ­ Residual pixel attention network for
spectral reconstruction from RGB Images[44]

A residual pixel attention network (RPAN) is designed

for spectral reconstruction from RGB images as shown in

Figure 14.The RPAN we proposed was inspired by the

RCAN[66], so it should be noted that the proposed RPAN

and RCAN have some similarities in composition.

The proposed network adopts a global residual architec-

ture, then the main architecture of the RPAN network is

constituted of 4 residual attention group blocks (RAG) with

64 filters. The RAGs also are stacked to form a Concat layer

followed by 1 × 1 convolutions layer. By skip connection,

they add 64 feature maps from the first 3 × 3 convolution

layer by global skip connection. Then output 31 channel



(a)

(b)

Figure 13: (a) Improved HSCNN+ network framework (b)

SE-ResBlock.

Figure 14: RPAN (up) and a RAG block (down).

spectral image is through the last 3 × 3 convolution layer.

Each RAG is composed of 8 RPABs (residual pixel atten-

tion block) with 64 filters, and the RPAB is composed of

residual blocks and a novel module is called pixel attention

(PA) inside the residual block.

The features of different positions and different channels

should not be the same in importance, some positions and

channels are more helpful for the spectral reconstruction.

In order to better treat the features of different channels and

different positions, the PA is firstly developed in our RPAN

network, which can rescale the pixel-wise features in each

channel adaptively to improve the quality of hyperspectral

image reconstruction from RGB images, as shown in Figure

14.

Training During the training, the input RGB image and hy-

perspectral images are cropped into small pieces of 64× 64
from the training dataset and the batchsize is set to 16. In

the “Clean” track, all biases are removed from each con-

volution layer, because the “Clean” track image contains

no noise. In the “Real World” track, biases in all convolu-

tional layers are reserved to compensate for the noise and

JPG compression.

Adam optimizer is used for optimizing the proposed

RPAN network with β1 = 0.9, β2 = 0.999, ǫ = 10−8

and the weight decay was set to 10−6. The initial learning

rate is set to 8× 10−5, the learning rate decays by 0.8 after

every 5 epochs, the network is ended the optimization at the

50-th epoch. MRAE loss function is used for training the

RPAN network, zero-padding is used in all 3 × 3 convolu-

tional layers to keep the feature map size unchanged. The

proposed RPAN is trained by Pytorch platform on a single

NVIDIA Titan Xp GPU. It takes about 13 hours to train the

RPAN network for each track.

Testing Instead of cropping image into small blocks, the

complete RGB image is used to get a complete spectral im-

age on an NVIDIA Titan Xp. The RPAN network takes

1.35s(including inference time and spectral image recon-

struction time) per image.

5.8. LFB ­ Linear Spectral Estimate Refinement for
Spectral Reconstruction from RGB

The basic idea of the method used is that signal inter-

polation is more convenient when the underlying Laplacian

signal energy is low. To reduce the Laplacian signal energy,

a linear estimation of the spectral stimulus is considered.

The proposed method can thus be described as two process-

ing steps:

• a direct linear estimation on the spectral stimulus based

on known camera response functions and an appropri-

ate spectral basis.

• a refinement of the initial estimate through a convolu-

tional neural network.

The concept of refining an estimate on spectral signals is

not new. The major difference of our approach is that the

algorithm for obtaining the spectral estimate is handcrafted,

explicitly dependant on the camera response and not subject

to parameter optimization during network training. The hy-

brid approach is therefore limited to the “clean” track.

Based on the spectral estimate, the neural network is tasked

with signal refinement. Since the architecture of the con-

volutional neural network was not the focus of this work,

a ResNet-18 was utilized. All the weights were initialized

using fixed-update initialization [61]. The precise network

architecture is summarized in Fig. 15c.

Only the new NTIRE2020 data was used for training and

evaluation. The network was trained using Adam optimiza-

tion with an initial learning rate of 10−4 and both a patch

size and batch size of 50. The training itself was executed

on a NVIDIA 2080TI graphics card. Pytorch was utilized

as a framework.

It was found that the proposed hybrid approach outperforms

the stand-alone ResNet and it was concluded that the hybrid

approach is superior to the stand-alone ResNet. Figure 15

illustrates the suggested architecture and relative basis func-

tions.
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Figure 15: Visualization of the LFB hybrid approach for

spectral signal recovery from RGB.

5.9. CI Lab ­ HSCNND++: Dense­connection based
CNN network for Hyperspectral reconstruc­
tion

The backbone of this network is the DenseNet based

model proposed in HSCNN+ [49] that has shown supe-

rior performance for hyperspectral reconstruction during

the NTIRE2018 Spectral Reconstruction Challenge.

The backbone CNN model contains 2 parallel branches,

each containing 30 dense-blocks with 4 convolutional lay-

ers and a fusion block, which also has 30 dense-blocks

and merges the features from the two-parallel blocks and

provids the predicted hyperspectral image. It was observed

that the original HSCNN-D based model often got stuck in

a local minima when trained with the mean relative abso-

lute error(MRAE) or mean squared error(MSE), hence a

compound loss function was proposed that achieved better

convergence on the modified version of HSCNN-D model.

This modified HSCNN-D model with the compound loss

function is termed as HSCNND++.

The compound loss function consists of three com-

ponents: an absolute difference or L1 loss, a structural

loss and a gradient loss. The L1 loss is defined as

L1 = ||G(xRGB) − yHS ||1, which is a global loss that

aims to reduce pixel-wise difference between the output,

G(xRGB), and the ground-truth, yHS , images. To en-

force further constraints, the structural and gradients losses

were used. The structural loss is defined as LSSIM =
1 − SSIM(G(xRGB), yHS) and the gradient loss is de-

fined as L∇ = ||∇(G(xRGB))−∇(yHS)||1, where ∇ is the

Laplacian operator. The weights for the individual losses

were 10, 1, 1 for L1, LSSIM and L∇, respectively.

Training The “Clean” model was trained for 20k epochs

and the “Real” model for 10k epochs with a varying learn-

ing rate. The dataset was augmented by taking random

crops of size 48× 48. Random flips and rotation were also

performed on the images at each iteration. Adam optimizer

was used with β1 = 0.9, β2 = 0.99 for training the models.

Testing guy While testing, the model takes around 40ms
to reconstruct the hyperspectral image from an input RGB

image of dimensions 482×512, on a single NVIDIA 2080Ti

GPU.

5.10. StaffsCVL ­ RGB to Spectral Reconstruc­
tion via Learned Basis Functions and
Weights [17]

.

Instead of predicting a 31-channel spectral image, the

model predicts weights for a set of basis functions which

are learned at the same time as the weights. In classi-

cal spectral reconstruction literature, the spectrum was re-

covered by weighted combination of basis functions[3] or

sparse coding[43]. This method combines the simplicity of

weighted basis functions and the performance and robust-

ness of deep learning. The network predicts 10 weights for

each pixel as well as learns a set of 10 basis functions which

is then combined to form the final spectral image cube.

A modified UNet[47] network is used with skip connections

to allow lower level features to flow to deeper layers. The

2x2 pooling layers are replaced with linear downsampling

layers and four contracting steps are done. The cropping

step before concatenation in the expansive path is replaced

with a direct concatenation as cropping might dispose of

edge information which could be useful for robust predic-

tion, especially around the edges of the image. The same

network architecture and training policy is used for both the

clean and real world tracks. The proposed method is de-

picted in figure 16.

Figure 16: Architecture of the StaffsCVL method for spec-

tral recovery.

The models from both tracks were trained on only the

NTIRE 2020 challenge dataset without the use of any pre-

trained models. They were trained on patches from the RGB

image and spectral cubes. The RGB image and spectral

cubes were resized to 512×512, and 64×64 patches were

extracted deterministically, which were used for training.

The training batch size was 128, learning rate was 1e-4 and



the Adam optimiser [30] was used during training. Random

horizontal and vertical flips were used for data augmenta-

tion, with a weight decay of 1e-5. The use of weight decay

proved helpful to avoid overfitting. The basis functions are

learned as a 10×31 matrix variable during training with-

out going through any neural network layer. During infer-

ence, the saved trained matrix is simply loaded into mem-

ory and used. At test time, the full RGB image is passed

through the CNN. The spectral cube is then generated as a

weighted combination of the basis functions, using the pre-

dicted weights. The proposed method is advantageous be-

cause it is able to reconstruct the spectral cube using fewer

parameters than would normally be required (i.e. predict-

ing 10 weights per pixel instead of 31, a 67.74% reduction

in predicted output). This becomes even more significant

when predicting 301 spectral bands (96.68% reduction in

this case). More detailed information on the method can be

found in [17].

5.11. Pixxel AI ­ MXR­U­Nets for Real Time Hy­
perspectral Reconstruction [10]

The approach combines some of the very recent ad-

vancements in image classification, segmentation and Gen-

erative Adversarial Networks. At a high level, a model

based on the U-Net [47] architecture with self-attention [62]

to project RGB images to their Hyperspectral counterparts

was used. The loss function for the model is a slightly mod-

ified version of perceptual losses (See section 3.2 in [10])

[28] [20].

The encoder backbone is an XResnet [25] with Mish

[39] activation function (Replacing ReLU). The XResnet

encoder, as proposed by He et al. (referred to as Resnet-D

in [25]), improves upon the original Resnet [24] in classi-

fication performance. The solution combines both of these

improvements and the model will be referred to as mxresnet.

mxresnet implementation used in the implementation: [58].

Sub-pixel convolution layers [48] layers are used as upsam-

pling layers in decoder blocks with ICNR [4] initialization

scheme and weight normalization [59]. The sub-pixel con-

volution layers serve to conserve information during the up-

sampling part of a decoder. To reduce the checkerboard arti-

facts introduced by the sub-pixel convolution layers, ICNR

initialization with weight normalization is used. Each sub-

pixel convolution layer is followed by a blur [53] layer con-

sisting of an average pooling layer with a 2 × 2 filter and

a stride of 1. This improvement adds to the previous solu-

tion for dealing with checkerboard artifacts in the outputs of

pixel shuffle layers. The decoder has a Self Attention block

as proposed by Zhang et al. in [62] to help the network fo-

cus more on the relevant parts of the image. Figure 17 and

Figure 18 depict the proposed architecture and U-Net block

respectively.

Figure 17: Architecture of the proposed mxresnet50 model.

Figure 18: U-Net block inside the proposed mxresnet50

model.

Training An mxresnet50 encoder based model is trained for

200 epochs with the AdamW [34] optimizer with a weight

decay of 1e − 3. The learning rate follows the OneCy-

cle schedule [52]. Under this schedule, the learning rate

is started at 1e-5 and increased to 1e−3 over 60 epochs fol-

lowing a half cosine curve. After the learning rate peaks,

it is reduced to 1e − 9 over another 140 epochs follow-

ing a similar half cosine curve. The model was trained us-

ing mixed-precision training [38] to lower training time and

memory requirements. A single V100 GPU was used for all

training runs.

5.12. Image Lab ­ Light Weight Residual Dense At­
tention Net for Spectral Reconstruction

An ensemble of convolution layer with Residual Dense

Attention block (RDAB) connected at multi-scale level

are used for spectral reconstruction. Specifically, in each

block, certain significant features are given more impor-

tance spatially and spectrally by its dedicated attention

mechanism [57], henceforth multi-scale hierarchical fea-

tures are extracted at multi-level to widen the forward paths

for higher capacity. The proposed network [41] for Spectral

Reconstruction is shown in Figure 19.

In this Network, the RGB image serves as an input, the

coordinal features are extracted to improve its spatial in-



Figure 19: Architecture of the Light Weight Residual Dense

Attention Net for Spectral Reconstruction.

Figure 20: Residual Dense Attention Block.

formation [15]. The weights from the Coordinate convolu-

tion block are shared by two independent feature extraction

mechanisms, one by dense feature extraction and the other

by the multiscale hierarchical feature extraction. The Dense

features are extracted by a dedicated dense block [67] con-

nection whereas the multiscale hierarchical features are ex-

tracted by the Residual Dense Attention Block. The block

diagram of Residual Dense Attention Block is shown in Fig-

ure 20. The Residual Dense Block (RDB) generates the

local hierarchical feature. RDAB blocks are connected at

multi-scale level in a U-net fashion, where the encoding

phase consists of Maxpooling layer in between the RDAB

blocks meanwhile the decoding phase consists of Transpose

Convolution between them. This Transpose Convolution

helps to reconstruct the image to the same spatial resolu-

tion as that of the input. Finally, the features from both the

feature extraction mechanisms are globally fused to produce

the 31 spectral bands.

LossFunction = L2 + (1− SSIM)
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