
Color-wise Attention Network for Low-light Image Enhancement

Yousef Atoum

Yarmouk University

Mao Ye

BOSCH Research North America

Liu Ren

BOSCH Research North America

Ying Tai

Tencent YouTu

Xiaoming Liu

Michigan State University

Abstract

Absence of nearby light sources while capturing an im-

age will degrade the visibility and quality of the captured

image, making computer vision tasks difficult. In this pa-

per, a color-wise attention network (CWAN) is proposed for

low-light image enhancement based on convolutional neu-

ral networks. Motivated by the human visual system when

looking at dark images, CWAN learns an end-to-end map-

ping between low-light and enhanced images while search-

ing for any useful color cues in the low-light image to aid

in the color enhancement process. Once these regions are

identified, CWAN attention will be mainly focused to syn-

thesize these local regions, as well as the global image.

Both quantitative and qualitative experiments on challeng-

ing datasets demonstrate the advantages of our method in

comparison with state-of-the-art methods.

1. Introduction

High-quality images carry rich information of the cap-

tured scene, enabling high-level computer vision tasks, such

as object detection, object recognition, and scene under-

standing. However, challenges are often introduced in real-

world environments making RGB-based perception difficult

for both computers and humans. Among these challenges

is the low-light condition in images captured in dark envi-

ronments, such as night time or dark room images. They

suffer from degraded brightness and contrast, added noise

artifacts, and have a very narrow range of colors, such that

understanding the original colors in the scene is a tedious

task. E.g., in the low-light image of Fig. 1, many details

such as the color of the building and trees are degraded and

lost with the dark background.

Various methods have been proposed for the low-light

image enhancement (LLIE), where researchers normally

adopt a decomposition strategy for the sole purpose of sim-
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Figure 1. Our proposed CWAN method is illustrated in the top

figure, where CWANL enhances the lightness component and

CWANAB enhances the color components using an attention

mechanism. We compare our result with (a) the low-light input,

(b) LightenNet [19], and (c) ground truth.

plifying the problem. The decomposition strategy can be

categorized into algorithm decomposition and image de-

composition. Algorithm decomposition includes breaking

the LLIE process into separate stages. For example, ap-

plying a denoising method prior to a lighting enhancement

model [32], or vice-versa [13, 29]. Many Retinex-based

methods attempt to estimate the illumination component

first, and then the reflectance [22]. In [2], the enhancement

is decomposed into three stages: luminance enhancement,

detail enhancement, and a final enhancement stage. On the

other hand, image decomposition includes breaking the im-

age into multiple images where each holds a unique feature.

For example, in [41, 1] the original low-light image along

with the decomposed inverted image are used in a dehaz-

ing algorithm. In [35], they attempt to synthesize multi-

exposure images to be used in a fusion algorithm.

In this paper, we propose to decompose the image into

lightness and color components using the CIE LAB space,

where each component is enhanced independently as seen

in Fig. 1. Therefore, we use both algorithm and image de-

composition strategies. Our main motivation is to simplify
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the LLIE problem, by breaking it into two smaller prob-

lems. One is responsible for estimating the optimal lighting

condition along with denoising given the dark image, while

the other is required to revive the color information into its

original state. Another motivation is the need to pay more

attention to the color components. E.g., the estimated im-

ages from prior LLIE methods usually have degraded colors

as in Fig. 1 (b).

The attention mechanism has been studied in a wide va-

riety of computer vision problems, including object detec-

tion [37], tracking [16], segmentation [5], and action recog-

nition [28]. These methods mimic the human visual sys-

tem in making substantial use of contextual information in

understanding RGB images. This involves discarding un-

wanted regions in the image, while focusing on more impor-

tant parts containing rich features of our vision task. In this

paper, we propose a novel color-wise attention CNN model,

driven by key color features embedded in the low-light im-

age. We hypothesize that these key colors can provide use-

ful cues for image enhancement. These cues will be used as

prior information in guiding and spanning the network’s at-

tention to faithfully recover the color of the original image.

After decomposing a low-light image into lightness and

color components, each component is enhanced indepen-

dently via two CNN models named CWANL and CWANAB

as in Fig. 1. Our CWANAB computes color frequencies [17]

in the dark image, and selects the colors with desired fre-

quencies as the target. We experimentally show that, by ig-

noring high and low frequencies, we select colors belonging

to regions of interest in an image, referred to as foreground

colors in the scene. As humans, these foreground colors

are what catches our eyes when first looking at dark images

compared to background colors which has high frequency

count. We learn CWANAB to focus its attention in enhanc-

ing points belonging to these foreground colors. Note that

the attention mechanism does not apply to CWANL, which

performs lightness enhancement and denoising indepen-

dently using a memory network structure [31]. We demon-

strate state-of-the-art (SOTA) performance on real [3, 9] and

synthetic [11] low-light datasets.

In summary, our main contributions are the following:

⋄ Propose a novel color-wise attention network (CWAN)

for LLIE. CWAN enhances the lightness image separately

from enhancing the color component. By doing so we sim-

plify the LLIE problem and achieve the state of the art.

⋄ Propose a supervised attention mechanism utilizing

color frequency maps in training CWANAB . With the color

frequencies in an image, we select key local color points

in the dark image which we desire CWAN to emphasize the

enhancement on. Learning these selected colors is by nature

a good starting point to spark the network’s attention.

⋄ Achieve SOTA performance on several databases in-

cluding both real and synthetic low-light images.

(a) (b) (c) (d)

Figure 2. Decomposing an image into lightness and color compo-

nents. (a) Input low-light image. (b) Lightness enhancement only

using CWANL. (c) Color enhancement only using CWANAB . (d)

The enhanced image from the proposed CWAN model.

2. Related Work

Generic Low-light enhancement methods Low-light im-

age enhancement has been addressed over the past decades

with various handcrafted techniques. A classical approach

is to apply histogram equalization (HE), gamma correction,

and their variations [23, 15]. Other researchers attempt

more complex and global processing pipelines, e.g., esti-

mating an illumination map via a Retinex-based method.

LIME [13] and JED [26] both propose Retinex-based ap-

proaches for simultaneous LLIE and noise removal. Li et

al. [20] additionally estimate a noise map in the Retinex

pipeline. AMSR [18] proposes an adaptive multi-scale

Retinex such that it assigns a weight to each single-scale

Retinex output based on the image content.

Researchers adopt techniques from other low-level im-

age enhancing disciplines. For example, Ying et al. [36]

use the response characteristics of cameras for LLIE.

BIMEF [35] and LECARM [27] both use the camera re-

sponse model to synthesize multi-exposure images for fu-

sion. By observing that the inverted low-light images intu-

itively look like haze images, the methods of [8, 41] apply

image dehazing on the inverted image to enhance the im-

age. All generic methods are based on handcrafted features

and certain statistical models with many hyper-parameters.

Thus, it is difficult for these methods to work in diverse real-

world scenes.

Low-light enhancement via CNNs Deep neural network

has witnessed success in low-level vision problems, e.g.,

super-resolution [6, 30], denoising [4], colorization [39,

38], dehazing [1, 25], multi-exposure fusion [24], and tone

mapping [10]. CNNs have also been developed for low-

light enhancement. LLNet [21] proposes a stacked sparse

auto-encoder, for joint LLIE and denoising, which uses

gray-scale images only without considering colors. Tao

et al. [32] also propose a joint enhancement and denoising

framework based on atmosphere scattering models. Cai et

al. [2] utilize multi-exposure fusion (MEF) datasets to learn

a joint luminance and detail enhancement CNNs. Similarly,

MBLLEN [12] uses multiple subnets and produces the en-

hanced image via multi-branch fusion. Wang et al. [34] first

estimates an image-to-illumination mapping for modeling

varying-lighting conditions and then takes this map to en-

hance underexposed images. SID [3] converts raw short-
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Figure 3. Network structure of the proposed CWAN method. Here, k3n64 indicates a kernel size of 3× 3, and a feature map number of 64.

The stride is always equal to one in all layers. Red, green and blue arrows mean short, long and global skip connection representing local

short-term memory, long-term memory, and residual learning respectively. The yellow arrow represents supervision in training CWAN.

exposure sensor images to RGB via a U-net-based denois-

ing method followed by histogram stretching. Many re-

cent methods utilize the Retinex theory to design the CNN

model. E.g., LightenNet [19] and MSR-net [29] are based

on the single and multi-scale Retinex models respectively,

to estimate the illumination map via CNNs.

To the best of our knowledge, none of the prior CNN

methods leverage color features in dark images for LLIE.

Most CNN methods can enhance the image lightness to a

great extent, however enhancing lightness alone is insuffi-

cient to generate high-quality RGB images with natural col-

ors. Our proposed method introduces color attention maps

from low-light images to be used as prior information for

recovering natural high-quality images.

3. Proposed Method

Our color-wise attention model decomposes the low-

light RGB image, into lightness and color components via

the LAB color space. The motivation is to simplify the chal-

lenging LLIE process, and allow the color information drive

the attention of CWANAB , while CWANL focuses on en-

hancing image lightness and denoising simultaneously. As

in Fig. 2, both the lightness and color components can be

enhanced separately, and their fusion results in the final en-

hanced image. Enhancing both of these components sepa-

rately is, conceptually, easier compared to performing both

tasks at the same time.

3.1. Problem formulation

Given a low-light image, its lightness image XL ∈
RH×W is fed to CWANL, and its color component images

XAB ∈ RH×W×2 are fed to CWANAB . CWANL outputs

the enhanced lightness image X̂L ∈ RH×W . CWANAB

outputs the enhanced color images X̂AB∈RH×W×2, along

with two intermediate outputs, the color attention maps

M̂ ∈RH×W×2 and sparse attention points P̂ ∈RH×W×2.

We aim to train CWANL, denoted by FL(XL; θL), to map

from low-light gray-scale image to an enhanced lightness

image with reduced noise. Similarly, we train CWANAB ,

FAB(XAB ; θAB), to map from dark colors in low-light im-

ages to enhanced colors, under the constraint of color-wise

attention. Thus, we formulate the LLIE problem as:

θ∗L = argmin
θL

EXL,YL,DL
[LL(FL),YL] (1)

θ∗AB = argmin
θAB

EXAB ,YAB ,P,DAB
[LAB(FAB),YAB ,P],

(2)

where D denotes the training dataset, L denotes the loss

function, YL ∈ RH×W and YAB ∈ RH×W×2 are the

ground truth lightness and color components respectively,

and P ∈ RH×W×2 is a sparse set of ground truth atten-

tion points that are used to guide CWANAB . As seen

from Fig. 3, CWANAB firstly estimates attention maps M̂

with the attention map generator FM (XAB ; θM ) to help

the learning of P̂. Before optimizing Eqn. 2, we pretrain

FM (XAB ; θM ) to generate M̂, which is formulated as:

θ∗M = argmin
θM

EXAB ,M,DAB
[LM (FM ),M], (3)

where M ∈ RH×W×2 is the ground truth attention map.

As described in Sec. 3.3, the attention maps and attention

points serve different purposes. The former helps to identify

local regions associated with foreground colors, while the

latter specifies sparse points within the local region.

3.2. Network architecture

CWAN utilizes two fully convolutional networks (FCN),

such that both FCNs are composed of a feature extraction

conv layer (fext), several convolutional blocks in the mid-

dle, and a final feature reconstruction conv layer (frec). The



detailed structure is in Fig. 3. We learn the residual using

a global skip connection, rather than the direct mapping, to

ease the training difficulty. All blocks have the same num-

ber of conv and ReLU layers. Here, we define two types

of blocks, memory blocks used in CWANL, and forward

blocks used in CWANAB , as explained below.

3.2.1 CWANL structure

CWANL is composed of a series of memory blocks. These

blocks are adopted from the image restoration work in [31],

which was successfully used for image denoising, super-

resolution and JPEG deblocking. We refer readers to [31],

for a more detailed explanation on memory blocks. Gen-

erally, memory blocks utilize local short skip connections

within the block to represent short-term memory, as well

as long skip connections sourcing from previous blocks to

represent long-term memory as in Fig. 3. The short- and

long-term memory help CWANL to realize minor and major

lightness enhancements within and across memory blocks.

3.2.2 CWANAB structure

In CWANL, all conv layers have the same number and size

of filters, making long and short skip connection possible.

In contrast, CWANAB does not utilize short and long skip

connections. Instead, in each block, the middle conv layer

is a nonlinear activation with 1 × 1 filters. This technique

was successfully used in super-resolution [7].

The CWANAB network is composed of two parts. The

first part FM (XAB ; θM ) takes XAB as input to generate an

attention map M̂; the second part takes both XAB and M̂

forming a four-channel input to enhance colors. The goal

of the first part is to internally estimate M̂ with high acti-

vations at points of interest in an image, such that it guides

the local regions during the enhancement of the second part.

Since XAB has two color channels, the estimated M̂ is also

a two-channel attention map, so that attention is for each

channel at each spatial coordinate. To supervise the learning

of FM , we propose to use color frequency images to gen-

erate ground truth attention maps M, described in Sec. 3.3.

Therefore, the second part of CWANAB learns the mapping

from the stacked XAB and M̂, to an enhanced X̂AB along

with sparse attention color points P̂. The ground truth at-

tention points P are generated by selecting a set of non-zero

foreground color points from M. Both M and P play major

roles in our color-wise attention mechanism.

3.3. Attention maps and points

A frequency image characterizes the spatial distribution

along with the frequency information [17]. Given an image

X ∈RH×W×3, we can compute its color frequency image

F ∈RH×W×1, where F(x, y) equals to the number of oc-

currences of the RGB color X(x, y) in image X. Examples

of color frequency images are in Fig. 4.

(a) (b) (c) (d)

Figure 4. (a) input image, (b) color frequency image F, (c) atten-

tion map M, and (d) attention points P. For M and P, we show

the first channel only.

We propose to utilize the color frequency image in

CWANAB as follows. First, we apply a threshold τ on F

to eliminate specific undesired frequencies. E.g., the white

background in the top image of Fig. 4 has very high fre-

quency in F. Whereas some parts of X have very low fre-

quencies in F, e.g., noisy pixels or the eyes of the toy. By

segmenting F via τl < F < τu, we emphasize our attention

to foreground colors and eliminate both dominating color

frequencies, and minor noisy regions. This results in a bi-

nary mask of desired color frequencies, denoted by F̄:

F̄(x, y) =

{

1, if τl < F(x, y) < τu

0, otherwise.
(4)

After computing F̄, we generate the ground truth color at-

tention map M(:, :, i) = XAB(:, :, i) ⊙ F̄, where ⊙ is a

Hadamard product, and i ∈ [1, 2]. We apply linear normal-

ization on M such that it is in the range of [0, 1]. Usually

M contains foreground colors as seen in Fig. 4.

In [40], authors learn a deep network for gray-scale im-

age colorization, where the user can interact and guide the

colorization process via manually selecting colors of spe-

cific pixels. Differs to the manual selection, CWANAB

randomly selects a finite set of non-zero foreground color

points β from M to guide the color-wise attention model.

We define a binary mask BP assigned with 1’s at the co-

ordinates of all β points, such that
∑∑

BP = β. Then,

we compute the ground truth attention points P to represent

a sparse subset of foreground color points, via P(:, :, i) =
M(:, :, i)⊙BP , where i ∈ [1, 2].

In our attention mechanism, M supervised the learn-

ing of M̂, which inputs to the subsequent network and

guides CWANAB to focus on enhancing foreground col-

ors at coarse local regions. On the other hand, P guides

the color enhancement at a pixel level, identifying key fore-

ground colors. Since M has much more duplicated fore-

ground colors than P, supervising by P can cover majority

of colors, yet using minimal, not duplicated, constraints.

3.4. Objective function

To train CWANL, we use the L1 loss function to treat

synthesizing the enhanced lightness X̂L as a regression



problem. On the other hand, training CWANAB takes place

in two stages. The first stage trains the color-wise attention

map generator to predict M̂ only, via the L1 loss:

LM (FM (XAB ; θM ),M) = ||M̂−M||1. (5)

The second stage learns CWANAB end-to-end, includ-

ing fine tuning the pretrained attention map generator. We

propose to use the following loss function:

LAB(FAB(XAB ; θAB),YAB) = LH + αLMSE . (6)

Here α is the weight, LH is the Huber loss applied to

X̂AB . The Huber loss has witnessed great success in the im-

age colorization field [38, 40], due to the relative high color

saturation effect, making it suitable for enhancing low-light

images. Further, we choose the Huber loss also because it

is a robust estimator, and can help to avoid the averaging

problem. The LMSE is the mean square error loss applied

to the estimated attention points P̂, as follows:

LH =

{

1

2
(X̂AB −YAB)

2, if |X̂AB −YAB | ≤ δ

δ|X̂AB −YAB | −
1

2
δ2, otherwise

(7)

LMSE =
1

β
||(P̂−P)⊙BP ||

2

2
, (8)

where δ is the parameter of the Huber loss. While

CWANAB outputs colors at all locations in P̂, LMSE loss

is computed only using reconstructed colors at randomly

sampled color locations in BP .

4. Experiments

This section provides ablation, quantitative and quali-

tative results, on both real-world and synthetic low-light

images. We use metrics including Structural Similarity

(SSIM), Peak Signal-to-Noise Ratio (PSNR), Lightness-

Order-Error (LOE), Colorfulness (C), and a case study.

Datasets We use the See-In-the-Dark (SID) database [3] to

learn CWAN, containing 5, 094 raw low-light images, and

424 RGB ground truth images, such that multiple low-light

images correspond to the same ground truth image. The

data is divided into two distinct subsets, one captured with

a Sony camera (SIDSony), and another with a Fuji cam-

era (SIDFuji). We follow the same protocol in [3] to di-

vide data into training, validating and testing sets. Since

most low-light literature uses RGB as input, we convert

the low-light images from raw to RGB using a COTS con-

verter (easy2convert.com) which supports raw images of

both Sony and Fuji cameras. The generated RGB images

contain less noise than the original SID dataset, however,

the low-light condition remains severe.

We further generate a synthetic low-light dataset from

PASCAL VOC [11], which contains realistic scenes of ob-

jects. With randomly selected 1, 000 images, we synthesize

Test image HE LLNet [21] CWANL

Bird-D 11.28 / 0.62 18.43 / 0.60 28.76 / 0.91
Bird-D+GN 9.25 / 0.09 19.73 / 0.56 24.21 / 0.79

Girl-D 18.27 / 0.80 22.45 / 0.80 24.90/ 0.83
Girl-D+GN 16.07 / 0.26 20.04 / 0.60 21.96/ 0.77

House-D 12.03 / 0.65 21.10 / 0.64 21.55 / 0.70
House-D+GN 10.55 / 0.33 20.25 / 0.56 19.98 / 0.62

Pepper-D 18.45 / 0.85 21.33 / 0.78 25.48 / 0.83
Pepper-D+GN 14.69 / 0.21 22.33 / 0.78 24.25 / 0.80

Town-D 17.55 / 0.79 22.47 / 0.81 26.62 / 0.87
Town-D+GN 14.85 / 0.25 20.00 / 0.60 23.11 / 0.79

Table 1. Comparing lightness estimation in PSNR/SSIM. Here, D

refers to a dark image generated using [21], and GN refers to Gaus-

sian noise with σ = 18.

low-light images following a Retinex-based approach [19],

with a 85% decrease in the pixel intensity. We refer to this

as PASCAL1000 dataset. Finally, we evaluate CWAN using

low-light images collected by [9] named HDRDB, which

does not have groundtruth. With 96 low-light images of

natural scenes, HDRDB has low-exposure, Gaussian noise,

5% of pixels are saturated and contain no information, with

an additional 60% decrease on the pixel intensity using [19].

Experimental parameters For CWANL, we use three

memory blocks, i.e., total of 11 conv layers, with the weight

decay of 0.05 and batch size of 16. The large weight de-

cay as in [7], helps to improve generalization on unseen

low-light images. The number of patches from SIDSony

is 37, 300 and from SIDFuji is 33, 100, of size 64×64, i.e.,

50 patches per training image. For CWANAB , we use one

forward block in the attention map generator, i.e., total of 5
conv layers, and two forward blocks for the color enhance-

ment part, i.e., total of 8 conv layers, with the weight decay

of 0.05 and batch size of 32. The number of patches in train-

ing CWANAB from SIDSony is 186, 500 and from SIDFuji

is 165, 500, of size 32×32, i.e., 100 patches per training im-

age. The patch sizes (32 or 64) were experimentally deter-

mined. We use τl = 0.05N and τu = 0.5N during training

on small patches, where N is the number of pixels in the

image. Other parameters in CWANAB are β = 20, α = 1
and δ = 0.5. The learning rate for all CNNs is 10−4, and

trained for 200 epochs. We implement CWAN on NVIDIA

GTX1080Ti GPU, with Matconvnet toolbox [33].

4.1. Ablation Study

Analysis of CWANL We compare the performance of

CWANL with LLNet [21] which uses a stacked auto-

encoder for joint low-light enhancement and denoising,

trained using gray-scale images 1, i.e., lightness enhance-

ment only. We fine-tune CWANL using the same train set,

on only 1, 600 patches of size 64×64 for two epochs. We

follow the same low-light test set generation as in [21],

which only consists of 5 images. The results are shown

in Tab. 1, and visual results are in the supplementary file.

CWANL on average is able to outperform HE and LLNet

1Dataset URL: http://decsai.ugr.es/cvg/dbimagenes/



α 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

PSNR 26.46 27.88 28.56 28.35 27.98 27.48 27.32 26.31

Table 2. Loss function weight analysis on CWANAB .

on all five images, demonstrating the effectiveness of light-

ness enhancement and denoising in CWAN. Nevertheless,

the huge PSNR/SSIM margin in Tab. 1 is mainly due to dif-

ferences in the network structures and training datasets.

Loss function weights of CWANAB To understand the

benefit of the attention model, we ablate the weights in the

CWANAB loss function in Eqn. 6. We first train CWANAB

with equal weights, α = 1. Starting with this model, we

fine-tune the network for 5 epochs independently with dif-

ferent α between 1.4 down to 0. This experiment is con-

ducted on the train/test sets of SIDSony . As in Tab. 2, our

model heavily relies on the attention mechanism in low-

light image enhancement. When the weights of both terms

are equal, we reach a top PSNR of 28.56. When α > 1, i.e.,

the attention points have more impact than the Huber loss

in training CWANAB , the PSNR drops significantly. On the

other hand, when α = 0, i.e., CWANAB is trained without

the attention mechanism, the PSNR drops to 26.31.

Memory vs. forward blocks We adopt the memory and

forward block concepts from low-level vision literature

[31, 7], and incorporate them in CWANL and CWANAB

respectively. We ablate all possible combinations of using

two types of blocks in our model, and the PSNRs are as fol-

lows given the order of (CWANL/CWANAB): 27.23 with

(forward/forward), 27.75 with (forward/memory), 28.56
with (memory/forward) and 28.17 with (memory/memory).

Both types of blocks perform well in our CWAN, with the

(memory/forward) configuration of (CWANL/CWANAB)

being the best. Our method makes it possible to incorpo-

rate future novel block designs into our network.

Analysis on decomposing image into L and AB The intu-

itive alternative to our decomposition technique, is to learn

a direct mapping from the input low-light color image to an

enhanced RGB image. We train two baseline FCN mod-

els, using RGB and LAB input data named FCNRGB and

FCNLAB respectively. Note that FCNLAB estimates a LAB

image, which is then converted to RGB. Both networks have

the exact same structure as CWANL, with the same hyper-

parameters. Using the test set of SIDSony , FCNRGB and

FCNLAB achieve a PSNR of 25.71 and 22.58 respectively,

whereas CWAN can reach a PSNR of 28.56. This shows

how effective our decomposition technique over the tradi-

tional feed-forward FCN approach.

Alternatives of CWANAB We introduce alternative meth-

ods of CWANAB for comparison using the SIDSony

dataset. (1) CWANC
AB removes the attention map generator,

and only inputs XAB to CWANAB . (2) CWANM
AB inputs

the attention map M, computed by the color frequency im-

age F without the attention map generator, along with XAB

Architectures CWANC
AB CWANM

AB CWANP
AB CWANAB

Input of CNN XAB XAB & M XAB & P XAB

Estimates M̂ ✗ ✗ ✗ X

Estimates P̂ ✗ X X X

Loss function Eqn. 7 Eqn. 6 Eqn. 6 Eqn. 6

PSNR 25.86 27.93 27.39 28.56

SSIM 0.859 0.890 0.887 0.909

Table 3. Compare CWANAB with alternative architectures.

(a)

(b)

(c)

(d)

M M XX

Figure 5. M vs. M̂: (a) a toy example, (b-d) low light images.

The four middle columns are normalized in the range of [0, 1], and

represent the two channels of both M and M̂ respectively. the

highest 30 responses in M̂ are overlaid in X̂ in the right column.

to CWANAB . (3) CWANP
AB inputs the attention points

P along with XAB . All three architectures are trained

on SIDSony , while using the same CWANL for lightness

enhancement. As in Tab. 3, CWANC
AB performs poorly

without the attention map, but achieves higher PSNR than

FCNLAB which proves the usefulness of image decompo-

sition. CWANM
AB achieves the closest result to CWANAB

with a significant margin of 0.63 in PSNR. This shows that

when training CWANAB end-to-end, the attention map gen-

erator is able to learn a more effective M̂ than M. Thus, de-

spite we could directly compute M from XAB , it is better

to let the attention map generator produce a better map M̂

for subsequent enhancement. CWANP
AB proves that hav-

ing a finite set of points guiding the network attention can

achieve high PSNR, but not higher than feeding M.

Attention map analysis The attention map generator aims

to select pixels with desired color frequencies. As in Fig. 5,

our attention map generator is trained with M to generate

M̂ highlighting foreground colors. On the other hand, after

training CWANAB end-to-end, the conv layers of the at-

tention map generator were fine-tuned to estimates M̂ with

high responses at colors of interest in the scene; it also tends

to produce higher responses near object edges where gradi-

ents exist, as in (a). Note M̂ has no high responses in the

background, as it occupies a large percentage of image, e.g.,

the street in (c). On the other hand, image (b) has various

colors in the scene and M̂ produces high responses through-

out the map, but tends to give the ball higher attention.

Attention point analysis P is constructed by selecting β
random points from M. We study the impact of randomness



P
S
N
R

Figure 6. Color attention mechanism through the selected β points

from P in guiding the neighboring pixels.

in point selection, by independently fine-tuning CWANAB

three times, where each time we regenerate the β points and

train for five epochs. By testing the three models on the test

set, the standard deviation of the PSNR is merely 0.002.

This desired low impact is due to the controlled random-

ness, where we only select points from M, but not XAB .

How does the color attention mechanism work? The

random points selected in P, while training CWANAB via

the loss in Eqn. 8, has a major impact in reconstructing the

colors in X̂AB . To demonstrate the effectiveness of this

attention mechanism, we study the effect of enhancing the

colors at the β points compared to the local region surround-

ing those points. While training CWANAB end-to-end for

various epochs, we compute the PSNR of only the β se-

lected points as in Fig. 6, i.e., excluding all other pixels in

the image. We compare the result with the PSNR of the 8-

connected neighboring pixels surrounding the β points, i.e.,

3×3 local regions excluding the center β points. Fig. 6 il-

lustrates how CWANAB learns to enhance the colors at β
points promptly, and gradually pulls the neighboring pixels

for color enhancement.

One potential concern resides in the possibility of ignor-

ing some colors in an image given the small value of β. To

study how CWANAB selects a diverse set of colors, we first

divide the colorful AB space into 40 clusters each with a

unique color. Then we select a set of 2, 000 training patches

XAB along with their ground truth YAB . For every YAB ,

we assign all pixels to the corresponding cluster via near-

est neighboring, forming a color map C. For every XAB ,

we allow CWANAB to select β = 20 points at locations

defined by BP . Based on the selected points, we evaluate

the color clusters that have been selected from the non-zero

elements of C ⊙ BP , and compare them with all available

colors in C. By applying cross validation on three separate

sets, the average percentage of selecting all possible col-

ors is 88.3% ± 1.3%. This means that ∼ 90% colors are

selected by CWANAB , and the low standard deviation re-

sembles consistency among the different sets. This study

shows one strength of our color attention mechanism. That

is, despite using a very small number of constraints, i.e.,

β = 20 points in LMSE , our optimization has an impact

on the majority (90%) of to-be-recovered colors.

4.2. Quantitative results

We evaluate our method quantitatively on SIDSony ,

SIDFuji, PASCAL1000, and HDRDB, comparing with 12
methods, including both generic and CNN-based LLIE

methods. For comparison, we use the published codes for

the first 11 methods, where SID is reimplemented by train-

ing a U-net structure with RGB data from SIDSony via a L1

loss. Tab. 4 summarizes the results.

The PSNR and SSIM are commonly used in LLIE lit-

erature to test image similarity with ground truth. Our

method achieves the best result on all datasets except for

the SSIM of PASCAL1000, where LIME has the highest

value. The LOE metric is commonly used for real low-

light images [35, 36, 13]. Smaller LOE value means bet-

ter lightness order is preserved, i.e., the intensity order of

each pixel with all other pixels is similar between low-light

and enhanced images. In Tab. 4, CWAN has the smallest

LOE among all methods, demonstrating how well CWAN

enhances low-light images while preserving the lightness

order. We further utilize the colorfulness metric [14], which

estimates the quality of colors in an image. Here, colorful-

ness represents the intensity and assortment of colors in the

image, defined as
√

σ2

C1
+ σ2

C2
+0.37

√

µ2

C1
+ µ2

C2
, where

µ and σ are the mean and standard deviation of C1 = R−G
and C2 = 0.5(R + G) − B. Tab. 4 concludes that CWAN

can synthesize more colorful images than all other methods.

This proves how effective the proposed color-wise attention

technique in faithfully restoring the color of the scene.

Finally, we conduct a user study on 20 low-light im-

ages in HDRDB which includes several indoor and out-

door scenes. We enhance the images with 12 baselines and

CWAN resulting in a total of 13 images per low-light image.

10 people were asked to rank the images from the best (rank

1) to the worst image (rank 13). We summarize the scores in

Tab. 4. The user study results demonstrate that CWAN has

the best average rank of 2.32, and that it can generate visu-

ally appealing images, with great color attributes. CWAN

also has a small standard deviation indicating the high con-

sensus among 10 people.

4.3. Qualitative results

We qualitatively compare CWAN with the same base-

lines in Fig. 7 and 8, zooming into colorful regions where

most baselines struggle in recovering the natural color. All

of the methods tend to improve the lightness and colors of

the low-light images at different performance levels. HE

usually produces over or under-enhanced regions in the im-

age due to the increase in global contrast. Dong, BIMEF,

LECARM and Li tend to always have a grayish shade over-

laid on the image. JED and AMSR perform well on de-

noising, but struggle with enhancing low-light. LightenNet

enhances the brightness and contrast very well, but tends to

generate white shadows very frequently, producing an un-



Method (training set)
PSNR / SSIM LOE Colorfulness AVG rank

LLIE type
SIDSony SIDFuji PASCAL1000 HDRDB

HE 21.68/0.712 20.25/0.726 26.28/0.885 46.53 14.87 5.49± 4.19 Generic

Dong [8] 20.56/0.824 22.40/0.841 20.79/0.907 78.88 28.16 9.60± 3.55 Generic

BIMEF [35] 15.55/0.697 16.52/0.708 14.13/0.732 38.78 28.23 9.94± 1.79 Generic

Ying [36] 18.61/0.746 20.12/0.751 18.24/0.810 36.25 13.06 9.58± 1.98 Generic

JED [26] 15.05/0.712 15.96/0.716 13.49/0.685 53.37 13.75 8.21± 1.95 Generic

AMSR [18] 12.86/0.567 12.31/0.414 12.38/0.626 318.83 16.29 10.21± 2.12 Generic

LIME [13] 19.10/0.802 21.39/0.830 20.72/0.935 105.23 32.02 7.28± 4.12 Generic

Li [20] 15.17/0.714 15.96/0.711 13.49/0.690 51.95 19.46 9.60± 2.38 Generic

LECARM [27] 17.99/0.831 18.39/0.829 16.86/0.884 32.83 19.17 5.16± 1.84 Generic

LightenNet [19] 19.21/0.817 17.87/0.812 17.82/0.858 257.04 28.76 3.07± 2.05 CNN

MBLLEN [12] 14.99/0.687 13.53/0.621 17.36/0.778 39.03 16.80 7.18± 2.18 CNN

SID [3] (SIDSony) 27.42/0.877 26.71/0.880 24.91/0.872 35.40 26.56 3.37± 1.43 CNN

CWAN (SIDSony) 28.56/0.909 28.11/0.911 29.08/0.924 30.53 40.38 2.32± 1.73 CNN

CWAN (SIDFuji) 27.28/0.902 26.77/0.911 28.68/0.923 — — — CNN

Table 4. Quantitative results on four datasets. Red/blue fonts indicate the best/second best results.

Low-light image            HE                      Dong                  BIMEF LECRAM                  LIME                 LightenNet MBLLEN SID                      CWAN     GT

(PSNR/SSIM) (20.50/0.772)   (21.58/0.805) (23.59/0.806)   (20.93/0.795)  (20.48/0.811)    (16.73/0.783) (13.28/0.601)   (21.62/0.821) (31.43/0.913)

(PSNR/SSIM) (17.39/0.731) (23.51/0.875) (15.72/0.796)   (18.05/0.781)  (22.69/0.827)   (21.55/0.806)    (16.92/0.785)   (24.26/0.853) (26.93/0.907)

(PSNR/SSIM) (22.81/0.836) (19.51/0.915) (12.19/0.650)  (18.73/0.831)   (16.76/0.935)  (14.22/0.870)   (18.54/0.795)   (17.46/0.759) (30.81/0.962)

Figure 7. Qualitative results of various methods compared to CWAN on SIDSony (top), SIDFuji (middle) and PASCAL1000 (bottom).

Low-light image              HE                 Dong                      BIMEF                 LightenNet LECRAM                   LIME                     MBLLEN SID CWAN

Figure 8. Qualitative results of various methods compared to CWAN on HDRDB.

pleasant visualization. LIME and MBLLEN method pro-

duces over-enhanced results especially in regions with orig-

inal bright colors. SID recovers from dark images remark-

able well, but CWAN surpasses U-net in enhancing more

vibrant colors closer to ground truth.

5. Conclusions

This paper proposes a color-wise attention model for

low-light image enhancement. The method attempts to

mimic the human visual system by first finding key colors in

the dark image, and then spanning their attention spatially

to generate a well enhanced image. The selected colors in

the dark image are obtained by utilizing the color frequency

map, and are by nature a good starting point to span the net-

work’s attention. The experimental results reveal the advan-

tages of our method compared to SOTA low-light enhance-

ment methods. Our method can produce visually pleasing

and more realistic colors similar to the ground truth images.
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