
 

 

 

Abstract 

 

Benefiting from the recent real image dataset, learning-

based approaches have achieved good performance for 

real-image denoising. To further improve the performance 

for Bayer raw data denoising, this paper introduces two 

new networks, which are multi-scale residual dense 

network (MRDN) and multi-scale residual dense cascaded 

U-Net with block-connection (MCU-Net). Both networks 

are built upon a newly designed multi-scale residual dense 

block (MRDB), and MCU-Net uses MRDB to connect the 

encoder and decoder of the U-Net. To better exploit the 

multi-scale feature of the images, the MRDB adds another 

branch of atrous spatial pyramid pooling (ASPP) based on 

residual dense block (RDB). Compared to the skip 

connection, the block-connection using MRDB can 

adaptively transform the features of the encoder and 

transfer them to the decoder of the U-Net. In addition, a 

novel noise permutation algorithm is introduced to avoid 

model overfitting. The superior performance of these new 

networks in removing noise within Bayer images has been 

demonstrated by comparison results on the SIDD 

benchmark, and the top ranking of SSIM in the NTIRE 2020 

Challenge on Real Image Denoising - Track1: rawRGB. 

1. Introduction 

As a fundamental topic of image processing, image 

denoising removes the presence of noise, reconstructs the 

structural content details, and then generates high-quality 

images. As a key component in many practical applications 

and commercialization products, such as cameras and 

smartphones, the research of image denoising attracts 

attentions from both academic and industry. Traditional 

image denoising research mainly focuses on removing 

noise within sRGB data. In a recent decade, due to a better 

understanding about noise, it is revealed that denoising 

within Bayer raw data will be much more efficient than 

denoising within sRGB data. As an example in Fig. 1, for 

an image signal processing (ISP) pipeline within cameras 

to render sRGB images from Bayer raw sensor data, a 

simple salt noise within a Bayer image will alter other 

neighbor pixels in the sRGB image if bypassing its 

denoising process. That’s the reason why camera designers 
think it is simpler and more efficient to remove noise in the 

Bayer image than reconstructing corrupted pixels in the 

sRGB image. Hence, this paper focuses on the Bayer image 

denoising to solve the problem at its early stage. 

Most developed sRGB denoising algorithms can be 

applied in removing the noise within the Bayer data. 

Compared to traditional handcrafted methods, such as non-

local mean [1] and BM3D [2], convolutional neural 

network (CNN) started a new chapter for the research of 

image denoising. Recently, the learning-based image 

denoising methods have achieved remarkable performance 

thanks to the large image datasets and well-studied deep 

learning techniques [3]-[8].  
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Figure 1: Example to show how an image signal processing (ISP) 

pipeline (bypassing denoising) makes the denoising problem 

much more complex and difficult in the sRGB data: one salt noisy 

pixel at the center of Bayer image will lead to several noisy pixels 

in the sRGB image. 
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Image datasets for denoising can be divided into two 

categories: synthetic image dataset [5]-[7] and real image 

dataset [9]-[14], based on the source of the provided noisy 

images within dataset. Synthetic image dataset is usually 

built by: 1) first collecting high-quality images as noise-free 

images by downsampling a high-resolution image or post-

processing a low-ISO image [12]; 2) then adding synthetic 

noise based on statistic noise models (including Gaussian 

noise model or Poissonian-Gaussian noise model [15]) to 

get noisy images. Real image dataset is generated in another 

way: 1) First collecting multiple real noisy images in a short 

time to ensure minimal image content change, such as scene 

luminance change or scene object movements; 2) then 

fusing these multiple images to generate a synthetic noise-

free image.  

Compared to the synthetic image dataset, the real image 

dataset is closer to real data processed in practical 

applications. Hence, this paper focuses on real image 

denoising. However, even though many researchers and 

scientists continue in making their efforts to build large real 

image datasets such as SIDD dataset [16] and DND dataset 

[12], there is still a challenge of overfitting problem in the 

learning-based methods due to the limitation of training 

data size. To handle this challenge, this paper introduces a 

new noise permutation, which can generate more synthetic 

noisy data by utilizing real content and real noise 

information.   

For deep learning, many architectures and techniques 

have been proposed and tested in this research topic [17]-

[26]. Most of the state-of-the-art real image denoising 

networks can be classified into two structures: the residual 

structure and encoder-decoder structure. The residual 

structure mainly utilizes spatial features by processing 

different neural blocks on the input features, whereas the 

encoder-decoder structure mainly focuses on processing 

features at different scales. The residual-type methods [19]-

[21], such as DnCNN [9], IrCNN [22], and RIDNet [23], 

focus on learning the difference between the ground-truth 

image and noisy image. The encoder-decoder structure can 

be further divided into three types: U-Net [25], Down-up 

scaling network [26], and Dual-Domain network [3]. U-Net 

follows its original design by using multiple 

downsamplings and upsamplings to capture multi-scale 

features.  Down-up scaling network has only one 

downsampling and one upsampling, and depends on a 

complex backbone network to restore information. 

Different from the first two structures in the spatial domain, 

the Dual-Domain network utilizes multiple U-Net to exploit 

the features in both spatial and frequency domains. Even 

though many different encoder-decoder structures have 

been proposed, the cascaded U-Net structure has not been 

fully explored.  

Besides new network structure designs, researchers also 

pay attention to the neural network block design. Instead of 

using traditional convolution layer blocks, existing state-of-

the-art methods utilize the complex residual dense block 

(RDB) [27], which is inspired by the residual network and 

dense network. RDB is further extended to be dense 

connected residual block (DCR) by removing the 

catenation layer in RDB [17]. Furthermore, several RDBs 

can be rearranged to build a more complex group residual 

dense block (GRDB) [26]. All these methods show good 

performance in NTIRE 2019 Real Image Denoising 

Challenge [3]. However, these blocks didn’t take the multi-
scale feature into consideration. Hence, this paper proposes 

a new multi-scale residual dense block (MRDB), inspired 

by atrous spatial pyramid pooling (ASPP) [28] and RDB, 

which shows good performance in reconstructing the 

texture details while removing the noise. 

Overall, this paper introduces two new real-image 

denoising networks, MRDN and MCU-Net. The novelty of 

these two networks includes: 1) using MRDB for the multi-

scale feature in the neural block design; 2) using the block-

connection to replace the skip connection for the multi-

layer feature; 3) using noise permutation for data 

augmentation to avoid model overfitting.  All these new 

methods and networks have been demonstrated their 

excellent performance for Bayer image denoising in 

experimental and comparison results based on the SIDD 

benchmark and the NTIRE 2020 Real Image Denoising 

Challenge-Track 1: rawRGB. 

2. Proposed Methods 

2.1. Multi-scale Residual Dense Network 

The Multi-scale Residual Dense Network (MRDN) is 

based on a new basic module, the Multi-scale Residual 

Dense Block (MRDB), as shown in Fig. 2 (a). MRDB 

combines multi-scale features from the ASPP and other 

features from the traditional residual dense block (RDB). 

As shown in Fig. 2 (b), the ASPP [28] contains four 

parallel network blocks including conv 1×1, conv Rate 6, 

conv Rate 12 and pooling. The conv Rate 6 and conv Rate 

12 denote the 3×3 dilated convolutions with the dilation rate 

of 6 and 12, respectively. Conv Rate 6, conv Rate 12 and 

image pooling can well capture the multi-scale features of 

the block input. The features outputted from the ASPP are 

concatenated and compressed to be combined with other 

features from the RDB. To have a seamless local residual 

connection, this concatenated feature is compressed with 

another conv 1×1 before an element-wise adder.  

The output of the MRDB preserves the same number of 

channels of its input to avoid the exponential complexity 

increase. With the MRDB as a building module, the MRDN 

constructs the network using the similar way as the residual 

dense network (RDN) [26] by cascading the MRDBs with 

dense connections. Specifically, the outputs of the MRDBs 

are concatenated and compressed with a conv 1×1, and a 

global residual connection is adopted to obtain clean 

features. 



 

 

2.2. MRDB Cascaded U-Net with Block-Connection 

The traditional U-Net utilizes the skip connection to 

jump over layers across the encoder and decoder. Instead of 

the skip connection, the multi-scale residual dense cascaded 

U-Net with block-connection (MCU-Net) in Fig. 3 uses 

MRDB as the block-connection shown in Fig. 3 (b).  This 

block-connection using MRDB can adaptively transform 

the features of the encoder and transfer them to the decoder 

of the U-Net. Also, to enrich its capability and robustness, 

the MCU-Net adopts a cascaded structure in Fig. 3 (a). 
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Figure 2: Multi-scale Residual Dense Network (MRDN): (a) Diagram of MRDN; (b) Diagram of MRDB. 
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Figure 3: Multi-scale residual dense Cascade U-Net with Block-connection (MCU-Net): (a) MCU-Net; (b) U-Net with Block-connection 

(U-Net-B).



 

 

Each U-Net with the block-connection (U-Net-B) has 

three scales by using three downsamplings and 

upsamplings. The 1×1 convolutional layer is used to 

compress or expand the number of feature channels. To 

enforce the network only learning the difference between 

the input and output, a residual connection is applied. By 

this way, the network is able to learn how to cancel the 

presence of noise and get clean images. 

2.3. Noise Permutation 

Data augmentation is an efficient technique to help 

neural networks to avoid the overfitting problem. The 

commonly used luminance/contrast/saturation jittering will 

change the noise characteristics of real noisy images, which 

should be avoided for image denoising. Further, other 

applicable image augmentations, such as image 

flipping/rotation, cannot be directly utilized due to the 

special property of Bayer data. These traditional data 

augmentation will generate low-quality images because of 

mismatched Bayer patterns after augmentation [30]. To 

handle this problem, Bayer augmentation was proposed 

[30], which only takes content augmentation into 

consideration. However, the noise diversity is as important 

as the content diversity. Hence, some researchers developed 

learning-based methods including cERGAN generator [26] 

and Noise Flow [31]. Different from these two approaches 

generating artificial noise for noise-free images, this paper 

introduces a new data permutation to utilize real noise from 

real noisy images. By changing the spatial distribution of 

real noise, more training samples are generated with real 

content and noise. 

 

 
Figure 4: Framework of noise permutation. 

As shown in Fig. 4, the first step of this method is to 

generate the noise image data by subtracting the ground-

truth image from its corresponding noisy image. For the 

noise data, a noise-clustering process divides the data into 𝑁  clusters based on their corresponding ground-truth 

intensity values. Then, within each cluster, a random 

permutation is performed to swap the positions of those 

noises. After the permutation, a new synthetic noise image 

is generated and added back to its corresponding ground-

truth image to generate a new synthetic noisy image.  

The advantages of this noise permutation include: 1) it 

doesn’t introduce artificial noise based on some statistical 
noise models; 2) it largely preserves the signal dependency 

property of the noise in the rawRGB space with proper N; 

3) it provides more training samples with different near-real 

noisy images for a given ground-truth image. Hence, this 

methods shows benefits in avoiding the model overfitting.  

3. Experimental Results 

3.1. Datasets 

We used training images released by the NTIRE 2020 

Real Image Denoising Challenge-Track1: rawRGB, which 

are from the SIDD dataset [32]. These training images come 

from 160 different scene instances, each scene instance has 

two pairs of high-resolution images and each pair includes 

one noisy image and its corresponding ground-truth image. 

In total, there are 320 training image pairs. These images 

were captured in different physical environments by 

different smartphone cameras including Samsung Galaxy 

S6 Edges, Apple iPhone7, Google Pixel, Motorola Nexus 6 

and LG G4. For these images, we divided them into the 

training group (302 images, 151 scene instances) and the 

validation group (18 images, 9 scene instances).  

A smaller input size of our network during training leads 

to a faster speed and a lower memory requirement of GPUs. 

Hence, instead of feeding an entire image to our network, 

we extracted different 256×256 Bayer patches from each 

high-resolution image. These patches come from dividing 

the entire image directly and additional 25 random 

croppings. All these patches will be rearranged into the 

same Bayer pattern [30].  To test the performance of the 

trained model, we downloaded the SIDD benchmark data 

from the SIDD official website. These SIDD benchmark 

data were extracted from another 40 noisy images provided 

by the SIDD benchmark organizers. For each image, they 

extracted 32 patches with the size of 256 by 256 as 

benchmark data. For these downloaded SIDD benchmark 

patch data, we generated their corresponding denoised 

results with our trained model. By submitting the denoised 

results to the SIDD benchmark website, we received the 

PSNR and SSIM metrics reports.  

3.2. Implementation Details 

The networks are trained with Adam optimizer [33] with 𝛽1 = 0.9,  𝛽2 = 0.999, using 𝐿1  loss. The learning rate is 

set to 0.0001, and the weight decay parameter is 10−8. The 

initial training was performed on the whole dataset to get 

the pretrained model. With the pretrained model, we 

selected the hard patches whose PSNR is smaller than 50 

dB to further fine-tune the model with learning rate 10−5. 

In addition, the Bayer data augmentation such as flipping 

and/or rotating image and noise permutation were adopted 

during the training. We used Python with PyTorch to 

implement these networks and trained them on two Nvidia 

Tesla V100 GPUs with the batch size as 8. Approximately, 

MCU-Net took 3~4 days for training and MRDN took ~7 

days for training. 
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Figure 5: Comparison results of BM3D [2], CycleISP [42], RDN, MRDN, CU-Net, MU-Net and MCU-Net (To better visualize the dark 

Bayer image, their intensity values are multiplied by a scale value for proper visualization; PSNR and SSIM are calculated on Bayer 

images; and top ranking in PSNR/SSIM is in bold). 

3.3. Experimental Results 

This paper focuses on Bayer image denoising. But the 

Bayer images are too dark to be displayed. Hence, to 

visually check the denoised result, we present our denoised 

results in two ways.  

One way is to scale up the intensity values within Bayer 

image data, as shown in Fig. 5. Another way is to utilize a 

simple and light-weight camera image signal processing 

(ISP) pipeline to render the sRGB images from the Bayer 

images, as shown in Fig. 6. This ISP pipeline code is 

provided by the SIDD dataset, which can be directly 



 

 

downloaded from its official website. PSNR and SSIM are 

also calculated based on the Bayer raw data for Fig. 5 and 

sRGB data for Fig. 6.  

From the images in Figs. 5 and 6, one can observe that 

the proposed MRDN and MCU-Net models can 

successfully remove the noise while maintaining the detail 

structural and texture details, and generate the near-ground-

truth (GT) images. These can also be verified by the high 

PSNR and SSIM metrics of MCU-Net and MRDN. 
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Figure 6: Comparison results of BM3D [2], CycleISP [42], RDN, MRDN, CU-Net, MU-Net and MCU-Net (To better visualize the dark 

Bayer image, a simplified image singal processing pipeline system from SIDD dataset [16] is applied on these denoised Bayer images to 

render their sRGB images; PSNR and SSIM are calculated on sRGB images; and top ranking in PSNR/SSIM is in bold). 



 

 

Table 1: Experiments of MRDB vs RDB on SIDD benchmark. 

 
MRDN RDN MCU-Net  CU-Net  

PSNR on raw (dB) 48.68 48.67 48.80 48.73 

SSIM on raw 0.990 0.990 0.990 0.990 

PSNR on sRGB (dB) 36.42 36.41 36.54 36.45 

SSIM on sRGB 0.875 0.874 0.875 0.874 

 

Table 2: Experiments of block-connection vs skip connection in 

U-Net framework on SIDD benchmark. 

 MCU-Net 

(Block-connection)  
MU-Net 

(Skip connection)  

PSNR on raw (dB) 48.80 48.71 

SSIM on raw 0.990 0.990 

PSNR on sRGB (dB) 36.54 36.43 

SSIM on sRGB 0.875 0.874 

 

Table 3: Comparison results in SIDD benchmark (top 3 in 

bold, top 1 in bold and Underline). 

 PSNR 

on raw 

(dB) 

SSIM  

on raw 

PSNR  

on sRGB 

(dB) 

SSIM  

on sRGB 

EPLL [40] 40.73 0.935 25.19 0.842 

GLIDE [38] 41.87 0.949 25.98 0.816 

KSVD-G [41] 42.50 0.969 28.13 0.781 

KSVD-DCT [41] 42.70 0.970 28.21 0.784 

TNRD [39] 42.77 0.945 26.99 0.744 

LPG-PCA [35] 42.79 0.974 30.01 0.854 

FoE [36] 43.13 0.969 27.18 0.812 

MLP [21] 43.17 0.965 27.52 0.788 

KSVD [34] 43.26 0.969 27.41 0.832 

DnCNN [9] 43.30 0.965 28.24 0.829 

NLM [1] 44.06 0.971 29.39 0.846 

WNNM [37] 44.85 0.975 29.54 0.888 

BM3D [2] 45.52 0.980 30.95 0.863 

CycleISP [42] 47.93 0.985 35.44 0.856 

aRID 48.05 0.980 35.78 0.902 

MRDN 48.68 0.990 36.42 0.875 

MCU-Net 48.80 0.990 36.54 0.875 

3.4. Experiments on MRDB vs RDB 

As one of the main contributions within this paper, the 

MRDB is proposed to introduce the multi-scale feature in 

the traditional residual dense block. To demonstrate the 

performance of the MRDB, two comparison groups are 

created. For MRDN, we replaced its MRDB with RDB to 

get a comparable RDN. For MCU-Net, we did the same 

replacement and name it as CU-Net for the ablation study.  

To evaluate their performance, SIDD benchmark results 

are provided in Table 1. From this table, MRDN has 0.01 

dB gain on raw PSNR compared to RDN, and MCU-Net 

has almost 0.07 dB gain on raw PSNR compared to CU-

                                                           
1  https://www.eecs.yorku.ca/~kamel/sidd/benchmark.php. 

Net. 

Beside the comparison among the Bayer raw data, we 

also render their corresponding sRGB data by using SIDD's 

ISP pipeline and calculate the PSNR and SSIM metrics on 

sRGB data. From Table 1, MRDN has 0.01 dB gain on 

sRGB PSNR compared to RDN, and MCU-Net has almost 

0.09 dB gain on sRGB PSNR compared to CU-Net. 

These gains demonstrate the advantage of MRDB over 

RDB. This advantage can be also observed among the 

results of MRDN vs RDN and MCU-Net vs CU-Net in 

Figs. 5 and 6.  

3.5. Experiments on Block-Connection vs Skip 

Connection 

As another contribution of this paper, the block-

connection is introduced to replace the traditional skip 

connection for better performance in extracting features. To 

demonstrate its advantage, we designed an ablation test by 

comparing MU-Net and MCU-Net. Here, MU-Net is 

modified based on MCU-Net by replacing the block-

connection with the skip connection. Both networks are 

evaluated over the SIDD benchmark.  

The test results are shown in Table 2, where one can see 

that the block-connection can bring in 0.09 dB gain over the 

skip connection in raw PSNR and 0.12 dB in sRGB PSNR. 

Similar improvements can be visually observed among the 

denoised images by MCU-Net and MU-Net in Figs. 5 and 

6. 

3.6. Comparison Results 

To evaluate the performance of the proposed MCU-Net 

and MRDN, their SIDD benchmark scores are shown in 

Table 3 together with the scores of other prior arts, which 

include BM3D [2], NLM [1], KSVD [34], LPG-PCA [35], 

FoE [36], MLP [21], WNNM [37], GLIDE [38], TNRD 

[39], EPLL [40], DnCNN [9], KSVD [41], CycleISP [42] 

and aRID. Here, aRID is a new submission to SIDD 

benchmark website without disclosing its detail. For the 

methods whose SIDD benchmark score have been 

published, we directly copied their scores from the SIDD 

website1. For CycleISP, it has no published score on the 

website, and its score is calculated by the benchmark 

website based on the results generated by the pretrained 

model and testing script they shared in their official GitHub 

website2.  

To highlight the ranking, the top 3 methods are marked 

in bold and the top method is underlined. From Table 3, 

MCU-Net and MRDN achieve better performance than 

prior arts on the SIDD benchmark data. This can be also 

justified by the visual comparison of results from our 

models, CycleISP [42] and BM3D [2] in Figs. 5 and 6. 

2  https://github.com/swz30/CycleISP 

https://www.eecs.yorku.ca/~kamel/sidd/benchmark.php
https://github.com/swz30/CycleISP


 

 

3.7. NTIRE 2020 Challenge on Real Image Denoising - 

Track1: rawRGB 

Beside the SIDD benchmark score, we also tested our 

new network models on the validation data of NTIRE 2020 

Challenge on Real Image Denoising - Track1: rawRGB 

[32]. Due to the limited number of submissions allowed for 

each user, we only tested our new models and an ensemble 

model of RDN, MRDN and CU-Net. The received metrics 

including PSNR and SSIM are shown in Table 4. These 

high PSNR and SSIM scores show superior performance of 

our models. Especially, the ensemble model achieves the 

top ranking of SSIM in the NTIRE 2020 Challenge on Real 

Image Denoising - Track1: rawRGB [32]. 

Table 4: PSNR and SSIM evaluations of our methods on the 

validation data of NTIRE 2020 Challenge on Real Image 

Denoising - Track1: rawRGB. 

Method  PSNR (dB) SSIM 

MRDN 52.66 0.9960 

MCU-Net 52.63 0.9960 

Our ensemble model 52.75 0.9960 

4. Conclusion 

This paper proposed two new networks, which are 

MRDN and MCU-Net, based on new MRDB, and new 

block-connection within U-Net. Also, to avoid the model 

overfitting, a novel noise permutation is proposed to 

generate synthetic noisy images which combine real 

content information of the ground-truth images and noise 

information of noisy images with different spatial 

distribution. Experimental and comparison results on the 

SIDD and NTIRE 2020 Challenge on Real Image 

Denoising - Track1: rawRGB demonstrate the superior 

performance of these new approaches in generating high-

quality denoised Bayer images. 
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