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Abstract

The task of single image super-resolution (SISR) aims

at reconstructing a high-resolution (HR) image from a low-

resolution (LR) image. Although significant progress has

been made with deep learning models, they are trained on

synthetic paired data in a supervised way and do not perform

well on real cases. There are several attempts that directly

apply unsupervised image translation models to address such

a problem. However, unsupervised image translation mod-

els need to be modified to adapt to unsupervised low-level

vision task which poses higher requirement on the accuracy

of translation. In this work, we propose a novel framework

which is composed of two stages: 1) unsupervised image

translation between real LR and synthetic LR images; 2) su-

pervised super-resolution from approximated real LR images

to the paired HR images. It takes the synthetic LR images

as a bridge and creates an indirect supervised path. We

show that our framework is so flexible that any unsupervised

translation model and deep learning based super-resolution

model can be integrated into it. Besides, a collaborative

training strategy is proposed to encourage the two stages

collaborate with each other for better degradation learning

and super-resolution performance. The proposed method

achieves very good performance on datasets of NTIRE 2017,

NTIRE 2018 and NTIRE 2020, even comparable with super-

vised methods.

1. Introduction

The task of single image super-resolution (SISR) aims

at reconstructing a high-resolution (HR) image from a low-

resolution (LR) image. It has broad application in tasks such

as image enhancement, surveillance and medical imaging. In
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Figure 1. SR results of supervised and unsupervised methods on

natural images. Ours CycleSR and CycleSRGAN perform well on

realistic LR images.

the SISR task, people usually assume that an LR image y is

modeled as the degradation output by applying the following

degradation process to an HR image x,

y = (x⊗ k) ↓s +n, (1)

where k denotes a blur kernel, ↓s denotes a downsampling

operation with scaling factor s, and n denotes noise and is

usually modeled as Gaussian noise with standard deviation σ.

It is an ill-posed problem since there are multiple solutions

that can be reconstructed from a given LR image.

Recently, data-driven methods, especially deep learning

based methods [4, 25, 13, 14, 26, 27, 16, 35, 34] achieve

great performance on low-level vision tasks. Trained with

sampled LR-HR pairs, these learning-based methods di-

rectly learn the mapping from distribution of LR to that of

HR. However, they simply take synthetically downsampled

images from HR domain as the corresponding LR images.

Those models are trained with clean HR and its correspond-

ing bicubic/bilinear downsampled LR images. Thus these

methods have poor generalization ability on unseen, realistic

low-resolution images which suffer from other degradation
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factors such as blur and noise.

The large gap between LR domain at training and testing

stage, mainly caused by the lack of HR and real LR pairs,

will make such supervised-learning-based methods fail at

the testing stage, as shown in Figure 1. Very recently, to

reduce this gap, some researchers try to improve quality of

LR images at training stage by collecting a dataset consist-

ing of real-world LR-HR pairs [3, 33]. In this way, models

trained with these real LR and HR pairs will perform well on

the real LR images collected under the same setting. How-

ever, it is expensive to collect such LR-HR pairs because

of complicated data collection and post-processing proce-

dure, which makes such methods difficult to scale. Other

researchers [31, 2] make attempt to reduce this gap with

unsupervised learning, where cycle-consistency and adver-

sarial losses are utilized to deal with unpaired HR and real

LR images. However, it still lacks strong supervision on

super-resolution results.

In this work we aim at reducing the large gap between LR

domain at training and testing stage with unsupervised learn-

ing. To address the limitation with GAN-based unsupervised

methods, we propose to learn the degradation process in

order to generate pairs of HR and the corresponding real-LR-

like images, on which we can further enjoy the advantages

of supervised training. The key issue is how to minimize

the domain gap between HR and real LR, and how to use

approximate pairs for training an image super-resolution

model.

We take synthetic LR images as an intermediate bridge,

and learn the degradation from synthetic LR to real LR im-

ages instead of directly learning that from HR to real LR

images. In other words, we model the degradation process

from HR to real LR domain in two steps, i.e., synthetic degra-

dation from HR to synthetic LR domain and mapping from

synthetic LR to real LR domain. Furthermore, extra meth-

ods can be employed after downsampling, such as adding

noise, to further minimize the domain gap between synthetic

domain and real LR domain. This will reduce the difficulty

of following translation task. For the second step, we adopt

an image-to-image translation model with cycle-consistency

and take its degradation direction branch to get real-LR-like

images. An SR module is equipped after image translation

model to super-resolve a real-LR-like image to an HR image.

Hence, with an image translation model and an SR module

together, we are able to train a model that super-resolves real

LR images to HR images with an indirect supervised path.

Our contributions can be summarized as follows:

• We propose a novel framework designed for unsuper-

vised SR learning, which first models the real degra-

dation as a combination of synthetic degradation and

image translation, and then train an SR module with

pairs of HR and the corresponding degraded LR images.

(a) (b)

(c)

Figure 2. Image super-resolution training pipelines. (a) Typical

training pipeline on synthetic paired data, (b) Typical training

pipeline on unpaired data, (c) our training pipeline on unpaired

data.

• The proposed framework is flexible enough to integrate

any image translation model and SR model, and to be

trained with either fidelity loss or perceptual quality

oriented loss.

• A joint training strategy is proposed to train our frame-

work in an end-to-end manner, which benefits both

image degradation and super-resolution process.

2. Related Work

Supervised deep learning based image super-resolution.

Recently, a lot of works are proposed to address the task

of SISR based on Convolutional Neural Networks (CNNs).

The first one is proposed by Dong et al. [4], which implic-

itly learns a mapping between LR and HR images using a

shallow fully-convolutional network.

In [13, 14], Kim et al. borrowed the idea of residual con-

nection from ResNet [7] and designed a very deep network

to improve SISR performance. Further works [16, 17, 19,

26, 35, 29] mainly focus on design of network architecture

for performace improvement. In addition, there are several

researchers [17, 24, 29] working on improving perceptual

quality of SISR results by combining fidelity loss with an

adversarial loss [6] and a perceptual loss [10]. However, they

are all trained on HR and synthetic LR pairs as shown in

Figure 2 (a). [3, 33] take a further step to capture LR-HR

image pairs under realistic setting, that is, tuning focal length

of DSLR cameras to collect images of different resolution.

However, models trained with such data may not generalize

well to LR images captured by other devices such as smart-

phones which may contain different level of noise and blur,

and it is expensive to scale.

Unsupervised deep learning based image super-

resolution. Given unsatisfactory performance of most

supervised methods on real data, some recent works [22]
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resort to unsupervised learning to address this issue. Image

super-resolution can be considered as a special image

translation task, i.e., translating images from LR domain to

HR domain. [31] introduces two cycles, with one between

real LR and synthetic LR images, and another one between

real LR and HR images. This method works in a two-stage

fashion at both training and test stage, i.e., they first clean

the real LR images and then apply the super-resolution on it,

while our method can directly apply the super-resolution on

real LR images at test stage. In [36], the model is actually

a variant of CycleGAN model for translation between HR

and real LR domains, with an additional perceptual loss on

real LR domain and ignoring the adversarial loss on HR

domain. Lugmayr et al. [21] also proposed to combine

an unsupervised image translation model and an image

restoration model, but they are trained separately. Fritsche et

al. [5] further improved this method by separating the low

and high frequency components and treat them differently.

The most similar work is [2] which proposes to directly

learn the degradation from HR images to real LR images

through a single high-to-low network, and a low-to-high

network trained with HR and the estimated degraded LR

images. This work shares a similar idea with our method

in the motivation to learn degradation from real LR images.

However, in that work the degradation learning process is

conducted by directly translating from HR space to real LR

space which is supervised with only on real LR space. The

model [2] is mainly supervised with an adversarial loss and

a pixel-wise loss is used to speed up convergence. While in

our work the degradtion learning is decomposed into two

steps, i.e., synthetic degradation and translation between syn-

thetic space and real LR space. The synthetic degradation

can alleviate difficulty of direct translation from origin HR

space to real LR space. And the translation is supervised

with both adversarial losses and cycle-consistency losses

for robustness. Both [36] and [2] share similar pipelines as

described in Figure 2 (b), and difference lies in the super-

vision on LR and HR domains. Our method can falls into

another pipeline as shown in Figure 2 (c). In addition, with

a collaborative training strategy, translation model and SR

model in our framework are able to help each other to obtain

both good degradation and super-resolution performance.

Unsupervised image-to-image translation. There have

been several approaches to address unsupervised image trans-

lation. Zhu et al. [37] proposed CycleGAN by adding cycle

consistency constraint on top of pix2pix [9]. Cycle consis-

tency enforces each image to be correctly reconstructed after

translating from a source domain to a target domain and

translating back to the source domain. Similar approaches

are also proposed in DiscoGAN [15] and [30]. Another kind

of approaches [20] assume that images from source domain

and target domain share a common latent space. Once an

image is projected to the shared latent space, a decoder can

be used to either reconstruct the image in source domain

or produce an image in target domain. Huang et al. [8]

and Lee et al. [18] further proposed to decompose an im-

age into a content-related space and a style-related space to

achieve many-to-many image translation such that an image

can be generated by combining arbitrary content and style

representations. Since our framework is flexible to include

any unsupervised image translation model, any advance in

unsupervised image translation will benefit the proposed

framework for image super-resolution.

3. Method

3.1. Overview

Notation We denote HR images as IH , real LR images as

ILreal, synthetic degraded LR images as ILsyn. After trans-

lation, we use ÎLreal and ÎLsyn to respectively represent the

approximated real LR and synthetic LR, and use ÎH to rep-

resent recovered HR images.

As shown in Figure 3, the proposed framework is com-

posed of two stages: 1) unsupervised image translation be-

tween real LR images and synthetic LR images; 2) super-

vised super-resolution from approximated real LR images to

HR images. Given unpaired images IH and ILreal, we first

apply bicubic downsampling to HR images IH . Taking it

as a bridge, we are able to generate LR images ÎLreal with

similar noise and blur in real LR space through an unsu-

pervised image translation model. The HR images and the

approximated real LR images ÎLreal compose paired training

data such that an SR model can be indirectly trained in an

supervised way. We show that the SR model in the second

stage can enjoy many advantages of supervised training such

as various losses to balance distortion and perceptual quality.

We also show that the proposed framework is flexible enough

to include any unsupervised image translation model and SR

model.

3.2. Unsupervised translation for image degrada
tion

In order to train a SR model on unpaired data, we propose

to learn the degradation process as the first stage. It can

generate the corresponding real-LR-like images ÎLreal for

HR images IH , which compose paired data to train a SR

model. We decompose degradation process into two steps,

i.e., synthetic degradation and translation from synthetic

space to real LR space. With synthetic LR images as a bridge,

the gap between two domains is reduced such that image

translation model can focus on simulating the degradation

such as noise and blur.

Different from [2] which uses a single direction model to

learn the degradation directly from HR to real LR domain,

we propose to use a bi-directional image translation model
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Figure 3. Pipeline of the proposed framework for unsupervised image super-resolution.

for better robustness. As shown in Figure 3, we use a genera-

tor G1 to learn the mapping from synthetic LR domain to real

LR domain, and another generator G2 to learn the inverse

mapping. In order to address the unpaired setting, adversar-

ial losses are applied to encourage the translated images to

follow the same distribution of images in the target domain.

For example, the branch for the mapping from synthetic

domain to real LR domain would translate clean LR images

into images with similar noise and blur as real LR images.

In addition, cycle consistency, i.e., G2(G1(I
L
syn)) ≈ ILsyn,

is added to further constrain the model training such that the

content in the generated LR images ÎLreal can be maintained,

and vice versa. The loss for training such unsupervised

image translation model is defined as below.

LTrans(G1, D1, G2, D2, I
L
real, I

L
syn)

= Ladv(G1, D1, G2, D2, I
L
real, I

L
syn)

+ λcycLcyc(G1, G2, I
L
real, I

L
syn))

+ λotherLother(G1, G2, I
L
real, I

L
syn),

(2)

where Ladv is the adversarial losses on both real LR domain

and synthetic LR domain, Lcyc is the cycle-consistency loss

and Lother is other losses in an unsupervised image transla-

tion model. Our framework is flexible such that any unsuper-

vised image translation model can be applied here. In this

work, we experiment with two popular translation models,

CycleGAN [37] and UNIT [20]. They share in common on

the constraints of adversarial losses and cycle-consistency

losses, while CycleGAN has an additional identity loss for

content preserving and UNIT has an additional KL diver-

gence loss for constraint on latent space. In Section 4, we

show that both of them perform equally well on several

datasets, which demonstrates the effectiveness of the pro-

posed framework.

3.3. Indirectly supervised learning for super
resolution

Given unpaired IH and ILreal, there is no direct pairwise

supervision to train an SR model Gsr. However, with real-

like LR images ÎLreal which are generated from HR images

IH in two steps, we are able to construct a supervised path

from ILreal to IH , where the trained SR model is expected to

work for real LR images ÎLreal. With such indirect supervi-

sion the model can enjoy many advantages with supervised

training. Any existed SR model which is originally proposed

for the supervised methods which are trained on synthetic

pairs could be used here. In addition, our whole framework

brings much flexiblity for the training of SR module. Differ-

ent from most unsupervised super-resolution methods [31, 2]

where adversarial losses must be used to train the SR module,

the SR module in our framework can be trained with either

only pixel-wise distortion oriented losses or that combined

with perceptual quality oriented losses such as adversarial

loss and perceptual loss [11]. The loss for this stage can be

fomulated as follows,

LSR(Gsr, Dh, Î
L
real, I

H)

= λmseLmse(Gsr, Î
L
real, I

H)

+ λadvsrLadv(Gsr, Dh, Î
L
real, I

H)

+ λpercepLpercep(Gsr, Î
L
real, I

H),

(3)
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where ÎLreal = G1(I
L
syn) is the generated real-like LR im-

ages, Lmse is reconstruction loss for little distortion, Lpercep

and Ladv are respectively perceptual loss and adversarial

loss on HR space for good perceptual quality. We follow the

ESRGAN [29] and use losses in Relativistic GAN [12] as

Ladv . The important role of distortion oriented loss Lmse in

the SR module training allows the SR result to benefit from

pixel-wise feedback from HR images and suffer less from

artifacts brought by adversarial losses.

3.4. Collaborative training

Since our framework consists of two stages, one for trans-

lation module to learn degradation and the other for super-

resolution module to give the final result. It is intuitive to

train these two stages separately. In that way the perfor-

mance of super-resolution would be heavily dependent on

the training of degradation. However, independently trained

translation module might not be perfect in producing real-

like LR images of correct color or degradation level, which

leads to unsatisfactory results on final super-resolution per-

formance. Therefore, we propose to train these two stages

in a collaborative way. With collaborative training the SR

module is encouraged to give feedback to the translation

module on the degradation quality. In other words, there

is an additional constraint from SR module that forces the

generated real LR images to keep the original content un-

changed and only change degradation of images. In turn,

the SR module is trained on a more realistic real-like LR

images such that it can obtain good performance on real LR

images. The total loss for the collaborative training can be

formulated as follows,

Ltotal(G1, G2, D1, D2, Gsr, Dh, I
L
real, I

L
syn, I

H)

= LTrans(G1, D1, G2, D2, I
L
real, I

L
syn)

+ LSR(Gsr, Dh, Î
L
real, I

H).

(4)

The total loss Ltotal can be either optimized jointly with

respect to parameters of both modules simultaneusly or al-

ternatively between the total loss with respect to translation

module and SR module respectively. When LSR only con-

tains distortion oriented loss Lmse, both kinds of optimiza-

tion methods are equivalent. But when LSR also contains

perceptual quality oriented losses Lpercep and Ladv, joint

optimization with respect to all parameters would become

unstable and difficult to converge. To make the optimization

flexible and consistent for both cases, we choose to alterna-

tively optimize the modified translation loss L′

Trans and SR

loss LSR during training in this work.

L′

Trans(G1, G2, D1, D2, I
L
real, I

L
syn, I

H)

= LTrans(G1, G2, D1, D2, I
L
real, I

L
syn, I

H)

+ λSR
TransLmse(Gsr, G1(I

L
syn), I

H)

(5)

Synthetic LR NTIRE 2017 T2 NTIRE 2018 T2 NTIRE 2018 T4

(unknown) (mild) (wild)

Figure 4. Three tracks of super-resolution challenge on DIV2K.

The modified translation loss L′

Trans considers the feedback

from SR module but is only used to update parameters of

translation module. In the alternative optimization, the SR

loss LSR(Î
L
real, I

H) considers ÎLreal as constant and is only

used to update parameters of SR module. The translation

module would benefit from only reconstruction loss of HR

images in the process of parameter update, which helps

producing more reaistic degradation and makes it easy to

train. We can also easily find that when LSR = Lmse

and λSR
Trans = λmse, alternative optimization is equivalent

to joint optimization of the total loss with respect to all

parameters simultaneusly. Unless specified otherwise we

have λSR
Trans = λmse in all implementations.

4. Experiments

4.1. Experimental Setup

Datasets DIV2K [1, 28], which contains 1,000 images

with different scenes and is splitted to {800, 100, 100}
for training, validation and testing. It was collected for

NTIRE2017 and NTIRE2018 Super-Resolution Challenges

in order to encourage research on image super-resolution

with more realistic degradation. We evaluate the proposed

method on three tracks in these two challenges, i.e., un-

known, mild and wild degradation respectively. Specifically,

LR images in the unknown track suffer from only blur, the

ones in the mild track suffer from both blur and Poisson

noise, and the ones in the wild are similar but the level of

blur and noise varies across images. In all three tracks, the

degradation is unknown. An example is shown in Figure 4.

Since HR and degraded LR images appear in pairs in all

three tracks, we can quantitatively evaluate the reconstruc-

tion performance of proposed method. To experiment with

unsupervised setting, the first 400 images of HR and the rest

400 of LR are selected in original training set to compose our

unpaired training set. Performance on the original validation

set is used for comparison. Following [28], we evaluate all

comparisons with 100 validation images in same way.

Quantitative metrics We use PSNR, SSIM and LPIPS to

evaluate the performance. LPIPS [32] is a learned metric to

measure the perceptual quality of reconstruction. And the

other two are known as classical distortion measurements

directly calculated on image pairs.
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Table 1. Quantitative comparison for 4× SR on three datasets: average PSNR/SSIM/LPIPS for scale factor x4. † means the methods are

under unsupervised setting. The arrows indicate if high↑ or low↓ values are desired. Blue text indicates the best and green text indicates the

second best performance.

Methods
NTIRE17 T2 NTIRE18 T2 NTIRE18 T4

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

†Bicubic 23.976 0.644 0.487 23.196 0.563 0.547 22.579 0.543 0.572

SR_syn 23.955 0.654 0.457 23.066 0.545 0.560 22.410 0.517 0.581

SR_paired 29.819 0.818 0.326 24.154 0.617 0.515 23.706 0.590 0.538

†CycleGAN 23.213 0.648 0.459 22.901 0.517 0.513 21.685 0.466 0.550

†Bulat et al. 25.204 0.690 0.433 23.609 0.585 0.530 22.655 0.536 0.561

†*Bulat et al. 26.191 0.705 0.409 23.280 0.555 0.564 23.250 0.554 0.553

†CycleSR 27.021 0.770 0.399 24.779 0.631 0.500 23.807 0.593 0.526

†UNITSR 26.613 0.732 0.428 24.894 0.616 0.511 23.819 0.576 0.538

Implementation details Our framework is composed of

two stages, unsupervised translation and supervised super-

resolution. For the first stage, we experiment with two popu-

lar translation models, CycleGAN [37] and UNIT [20]. For

the second stage, we adopt a modified VDSR for track 2 of

NTIRE17 and the original SRResNet model for track 2 and

track 4 of NTIRE18 respectively. In training process, we use

Adam optimizer with β1 = 0.9, β2 = 0.999. The learning

rate is set to 2× 10−4 and 1× 10−4 for the translation mod-

ule and SR network. λSRtrans are set to be {1e3, 1e2, 1e2}
respectively for track 2 of NTIRE17, track 2 and track 4

of NTIRE18. Other hyper-parameters of translation part

remain unchanged as they originally are. Before joint train-

ing, translation module is pre-trained with unpaired real LR

and synthetic LR images, while super-resolution module

is pre-trained with HR and synthetic LR pairs. Both are

pre-trained for a few epochs to have a good initialization

for stable training. After joint training for 100 epochs, the

learning rate of SR model starts to linearly decay and stops

at zero after another 100 epochs. For fair comparison with

baselines, only L2 loss is taken in SR training.

4.2. Comparison on DIV2K

In this subsection, we compare the proposed method with

several baseline methods on three datasets. Both quantitative

and qualitative results are given to demonstrate the effec-

tiveness of our framework. By employing CycleGAN and

UNIT as translation module and include only Lmse in SR

losses LSR, we can get two instances of the proposed model,

CycleSR and UNITSR. Compared methods are briefly ex-

plained as below:

Bicubic: bicubic interpolation is applied to LR images;

SR_syn: Models of the same architecture as SR module in

our framework is trained on synthetic LR-HR images pairs

and evaluated on the three datasets;

CycleGAN: LR images are first upsampled with bicubic in-

terpolation and then a CycleGAN is trained on those images

and HR images;

Bulat et al.[2]: Since their training code is not publicly

available, we carefully reimplement their method and tune

the hyper-parameters to train the model. For fair comparison,

we take the same network as the SR module in our method

as low-to-high network, and modify a branch of CycleGAN

as high-to-low network. The whole framework is trained

with almost the same losses as mentioned in the paper except

that we use only pixel loss on low-to-high network for good

PNSR/SSIM.

*Bulat et al.[2]: Further our collaborative traning strategy

are adopted in their method.

SR_paired: We also train models of the same architecture

as SR module in our framework on original paired data.

However, on track of mild and wild, paired LR image and

HR images are not exactly aligned due to severe motion blur.

We first preprocess these pairs to achieve alignment.

Quantitative results. We compute PSNR, SSIM and

LPIPS scores for all methods. As shown in Table 1, the

method trained on synthetic pairs performs even worse than

the simple bicubic upsampling on all three datasets, which

implies the importance of study on image super-resolution

with unpaired real data. Among all the unsupervised meth-

ods which are marked by †, our CycleSR outperform all

others, showing the advantage of the proposed framework in

dealing with unpaired training data. Specifically, CycleGAN

gives the worst reconstruction performance among all com-

pared unsupervised methods. That could be attributed to the

lack of pixel-wise reconstruction loss on HR space, which

also explains why Bulat et al. [2] gives better performance.

With our collaborative training strategy, Bulat et al. [2]can

gain further improvement. In spite of this, CycleSR and

UNISR still perform better than that due to superiority of

the proposed unsupervised super-resolution framework. Our
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0859 HR HR Bicubic Synthetic SR SR Paired CycleGAN Bulat et al. *Bulat et al. CycleSR UNITSR

NTIRE17 T2 (PSNR, SSIM) (19.94, 0.44) (19.80, 0.43) (25.49, 0.74) (18.46 0.49) (21.98, 0.46) (23.32, 0.51) (24.43, 0.62) (24.46,0.59)

0815 HR HR Bicubic Synthetic SR SR Paired CycleGAN Bulat et al. *Bulat et al. CycleSR UNITSR

NTIRE18 T2 (PSNR,SSIM) (20.85, 0.61) (21.12, 0.63) (23.77, 0.72) (22.00, 0.65) (21.25,0.66) (21.79,0.63) (23.94, 0.74) (23.57, 0.71)

0888 HR HR Bicubic Synthetic SR SR Paired CycleGAN Bulat et al. *Bulat et al. CycleSR UNITSR

NTIRE18 T4 (PSNR,SSIM) (26.32, 0.83) (26.20, 0.81) (28.77, 0.86) (27.13,0.77) (26.41,0.83) (26.80,0.82) (29.36, 0.86) (29.10, 0.85)

Figure 5. Visual comparison for 4× SR on three datasets. *Bulat et al. denotes their method with our collaborative training. The best two

results in terms of PSNR/SSIM are in bold

Table 2. Preliminary results for Track1 of NTIRE 2020 Real-World

Super-Resolution Chanllenge.

Team Name PSNR↑ SSIM↑ LPIPS↓

AITA_Noah_ExtraData 24.65 (18) 0.70 (13) 0.222 (1)

Noah_AITA_noExtraData 25.72 (11) 0.74 (9) 0.223 (2)

Impressionism 24.67 (17) 0.68 (15) 0.232 (3)

Samsung_SLSI_MSL 25.59 (13) 0.73 (10) 0.252 (4)

MSMers 23.20 (20) 0.65 (19) 0.272 (5)

BOE-IOT-AIBD 26.71 (4) 0.76 (4) 0.280 (6)

methods impose more constraint on the unsupervised degra-

dation learning process such that it can generate more re-

alistic LR images and the learned super-resolution model

can give better performance at test stage. Compared to

SR_paired method, our method is outperformed on Track2

of NTIRE 2017 but is comparable or even better on both

tracks of NTIRE 2018. With severe blur and noise degrada-

tion with two tracks of NTIRE 2018, supervised methods are

sensitive to the result of pre-alignment, while our methods

do not require pre-alignment and are robust to such severe

degradation.

In addition, to demonstrate the effectiveness of our

framework on real-world degradations, we also participated

NTIRE2020 Real-World Super-Resolution [23] challenge.

Our CycleSR is used by the team AITA-Noah to generate

degraded images. For Track1, named image processing

artifacts, CycleSR is the part of iterative data degradation

framework to provide degraded images, while in Track2,

named Smartphone Images, only degraded images produced

by CycleSR are used. Furthermore, after getting fake-paired

images via CylceSR, similar architecture based on the ES-

RGAN is used in both tracks to further improve the super-

resolution performance. The preliminary results in Track1

are shown in Table 2 and unfortunately there is no release

result in Track2 before paper submitting. From Table 2

can be seen that the method achieves superior LPIPS score

compared to other approaches.

Qualitative results. We visualize the super-resolutions of

compared methods in Figure 5. Model trained on clean pairs

can not deal with LR images with noise and blur. Cycle-

GAN is prone to images with much artifact and color drift.

Bulat et al. [2] is also able to give reasonable results but

still suffers from some artifacts and pollution by noise and

blur. Our methods can remove blur and noise better and

produce sharper images than theirs due to the robust degra-

dation learning model and strong supervision on SR images

with our framework. Our method obtains even comparable

perceptual performance as the supervised method.

4.3. Ablation Study

In this section we conduct ablation study in terms of

training strategy and SR losses. Experiments here are based

on CycleSR, i.e., CycleGAN is taken as the choice of the

translation stage in our whole framework.

Training strategy: The first choice is to train the two

stages separately, where super-resolution module is trained

with a fixed pre-trained translation module. For the collabo-

rative training, different model is obtained when λSR
Trans =

λmse and is chosen from 1e2, 1e3, 1e4. We also experiment

with training with λSR
Trans = 0 and λmse = 1, i.e., LTrans

and LSR are optimized alternatively.
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Figure 6. Visual comparison for real LR and degradation learning results of approximated real LR cases on NTIRE17 T2.

Table 3. Quantitative results of ablation study on training strategy.

PSNR/SSIM/LPIPS of each strategy on NTIRE17 T2 are presented.

λSRtrans Seperated 0 100 1000 10000

PSNR↑ 24.663 25.479 25.886 27.021 17.352

SSIM↑ 0.685 0.714 0.733 0.770 0.556

LPIPS↓ 0.502 0.467 0.434 0.399 0.573

HR CycleSR CycleSRGAN

Figure 7. Visual comparison for our CycleSR and CycleSRGAN

on track 2 of NTIRE 2018

As shown in Table 3, the strategy of training two stages

separately perform worse than collaborative training strate-

gies. Even for a special case of collaborative training,

where the two modules are trained alternatively without

feedback from SR module to translation module, it still ob-

tains better SR result than the one trained separately. When

λSR
Trans = λTrans and is not zero, i.e., there is feedback

from SR module to translation module, the performance

is further improved. The best result is obtained when it

is set to 1000. However, as it further increases to 1e4, it

dominates the optimization of translation module. In this

way, the degradation learning overfits in terms of excessively

satisfying the super-resolution part.

Moreover in Figure 6 we visualize the degraded LR im-

ages ÎLreal to show our degradation learning results. We can

see that the level of degradation gets closer to the real one

as feedback from SR module increases. The best result is

given when λSR = 1e3. However, there is severe overfitting

with further increase in λSR so that the degradation looks

like bicubic downsampling.

Choice of SR loss Since our framework is flexible in

choices of SR loss and the SR modules are trained with

only fidelity loss Lmse in above experiments. Here we also

Table 4. Quantitative results of our method trained with different

losses in supervised path: average PSNR/SSIM/LPIPS for scale

factor x4 in all three challenges.

Challenge CycleSR CycleSRGAN

PSNR↑
NTIRE17 T2 27.021 25.978

NTIRE18 T2 24.779 23.605

NTIRE18 T4 23.807 22.303

SSIM↑
NTIRE17 T2 0.770 0.737

NTIRE18 T2 0.631 0.545

NTIRE18 T4 0.593 0.497

LPIPS↓
NTIRE17 T2 0.399 0.377

NTIRE18 T2 0.500 0.466

NTIRE18 T4 0.526 0.489

include perceptual oriented losses in SR loss, and propose

the CycleSRGAN for better perceptual quality. As shown

in Table 4, CycleSRGAN performs worse than CycleSR in

terms of PSNR and SSIM, but gives higher perceptual scores

in terms of LPIPS in all three tracks. Visual comparison in

Figure 7 shows that CycleSRGAN produces sharper edges

and more details in the super-resolution result.

5. Conclusion

In this work, we present a general framework for unsuper-

vised image super-resolution, which is closer to real scenario.

Instead of directly applying unsupervised image translation

to address this task, we propose a novel approach which

integrates translation and supervised training into one frame-

work and enables collaboration between two modules in

training process. Synthetic LR images are taken as a bridge

and creates an indirect supervised path from real LR images

to HR images. We show that the proposed approach learns

to super-resolve a real LR image without any corresponding

HR images in the training dataset. It is flexible enough to

integrate any existed deep learning based translation and

super-resolution models, including those trained with either

fidelity losses or perceptual oriented losses. It is evaluated

on image super-resolution challenge datasets and achieves

favorable performance against supervised methods.
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