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Abstract

Compressive sensing magnetic resonance imaging (CS-

MRI) accelerates the acquisition of MR images by breaking

the Nyquist sampling limit. In this work, a novel generative

adversarial network (GAN) based framework for CS-MRI

reconstruction is proposed. Leveraging a combination of

patch-based discriminator and structural similarity index

based loss, our model focuses on preserving high frequency

content as well as fine textural details in the reconstructed

image. Dense and residual connections have been incor-

porated in a U-net based generator architecture to allow

easier transfer of information as well as variable network

length. We show that our algorithm outperforms state-of-

the-art methods in terms of quality of reconstruction and

robustness to noise. Also, the reconstruction time, which

is of the order of milliseconds, makes it highly suitable for

real-time clinical use.

1. Introduction

Magnetic resonance imaging (MRI) is a commonly used

non-invasive medical imaging modality that provides soft

tissue contrast of excellent quality as well as high reso-

lution structural information. The most significant draw-

back of MRI is its long acquisition time as the raw data

is acquired sequentially in the k-space which contains the

spatial-frequency information. This slow imaging speed

can cause patient discomfort, as well as introduce artefacts

due to patient movement.

Compressive sensing (CS) [10] can be used to acceler-

ate the MRI acquisition process by undersampling the k-

space data. Reconstruction of CS-MRI is an ill-posed in-

verse problem [13]. Conventional CS-MRI frameworks as-

sume prior information on the structure of MRI by making

use of predefined sparsifying transforms such as the dis-

crete wavelet transform, discrete cosine transform, etc. to
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Figure 1. Our method takes zero-filled reconstruction (ZFR) of the

undersampled image as input and generates the corresponding re-

constructed image. This can essentially be viewed as de-aliasing

the ZFR. Example reconstruction results when 30% data is re-

tained. (a) Ground truth (GT), (b) ZFR of noise free image, (c)

ZFR of image with 10% noise, (d) results of the proposed method

for noise-free image, and (e) results of the proposed method for

image with 10% noise. The top right inset indicates the zoomed in

region of interest (ROI) corresponding to the red box, and the bot-

tom right inset indicates the absolute difference between the ROI

and the corresponding GT. The images are normalized between 0

and 1.

obtain the solution [22]. Instead of using predefined trans-

forms, the sparse representation can be learnt from the data

itself, i.e. dictionary learning (DLMRI) [26]. In [11], a

different approach of alternating between solving the opti-

mization problem for reconstruction and denoising the im-

age using block matching 3D (BM3D) model is adopted.

These frameworks however, suffer from the long computa-

tion time taken by iterative optimization processes [25] as

well as the assumption of sparse signals [22], which might

not be able to fully capture the fine details [21].

Bora et al. [5] have shown that instead of using the spar-

sity model, the CS signal can be recovered using pretrained

generative models, where they use an iterative optimization



to obtain the reconstructed signal. Another deep learning

based approach was introduced by Yang et al. [34], where a

data flow graph is designed for alternating direction method

of multipliers [6] to train the network (DeepADMM) for

CS-MRI reconstruction. The inference phase takes a time

similar to ADMM although the optimized parameters used

are learned during the training process. A network archi-

tecture resembling a cascade of convolutional neural net-

works (CNNs) is proposed in [29] (DeepCascade) which

aims to reconstruct dynamic sequences as well as indepen-

dent frames of 2D MR images undersampled using Carte-

sian masks. The cascading network laid out resembles dic-

tionary learning reconstruction approaches, where the pro-

posed approach can be viewed as an extended version of

DLMRI. In [19], the authors unroll a residual learning ap-

proach where they use a deep CNN to learn the aliasing ar-

tifacts in the undersampled image, and subtract the aliasing

artifacts thus estimated to obtain the de-aliased output.

Recent works [33, 23] demonstrate the application of

generative adversarial networks (GANs) [12] to reconstruct

CS-MRI. In these works, the use of a large set of CS-MR

images and their fully sampled counterparts for training the

GAN model can facilitate the extraction of prior informa-

tion required to solve the reconstruction problem [32]. The

trained model is then used to obtain the reconstructed out-

put for a new CS-MR image in a very short time. In [33],

the authors propose a refinement learning based approach to

obtain the de-aliased reconstructed MR image using a con-

ditional GAN framework (DAGAN). Mardani et al. [23]

(GANCS) use pixel-wise ℓ1/ℓ2 loss to train the generator

and a least-squares GAN framework.

Many of the aforementioned works, including DeepCas-

cade and DAGAN use ℓ2 loss function in the pixel domain

for training, which is known to give blurry and excessively

smooth outputs. Minimizing the ℓ2 or ℓ1/ℓ2 norm of the

pixel-wise difference does result in a higher peak-signal-

to-noise ratio (PSNR) of the reconstructed image, but it

does not ensure good reconstruction of the structural de-

tails [31]. In terms of frequency, the use of pixel-wise dif-

ference based loss mainly focuses on preserving low fre-

quency components and does not enforce good reconstruc-

tion of high frequency details. Moreover, these state-of-the-

art methods use discriminators which consider the input in

a global sense while classifying. This may not allow the

discriminator to consider the fine high frequency textural

details, which are of vital importance in the MR images.

Although DAGAN uses a frequency domain ℓ2 loss, it has

the drawback of penalizing larger differences more, and al-

lowing several smaller differences. This can yield a recon-

structed output that looks similar to the ground truth but

fails to preserve the finer details in the form of high fre-

quency and structural content.

Contributions: To overcome these drawbacks, we incor-

porate the ℓ1 norm of the pixel-wise difference in the gen-

erator loss function to avoid blurry reconstruction. In order

to preserve the structural and textural details in the recon-

structed image, we propose the use of a structural similarity

(SSIM) index based loss to train the generator. Moreover,

to ensure better reconstruction of high frequency content in

the MR images, we propose the use of a patch-based dis-

criminator. Further, we propose a novel generator archi-

tecture by incorporating residual in residual dense blocks

(RRDBs) in a U-net based architecture to utilize the bene-

fits of residual and dense connections. It is also known that

the binary cross-entropy based adversarial loss, which has

been used in most of the previous works, makes the train-

ing of GANs unstable. Therefore, in order to stabilize the

training process, we incorporate the Wasserstein loss. The

reconstructed images should be less sensitive to the noise

level in the measurements, since hardware devices are al-

ways susceptible to noise. In order to make the reconstruc-

tion robust to noise, we propose the use of noisy images for

data augmentation to train our GAN model. Fig. 1 shows

an example of reconstruction results obtained by the pro-

posed approach (described in section 2 and 3) on noise-free

as well as images contaminated with noise.

2. Methodology

The acquisition model for the CS-MRI reconstruction

problem in discrete domain can be described as:

u = Gy + η, (1)

where y ∈ CN2

is a vector formed by the pixel values in

the N ×N desired image, u ∈ CM denotes the observation

vector, and η ∈ CM is the noise vector. C denotes the set of

complex numbers. The matrix G describes the process of

random undersampling in the k-space. It is the product of an

N2 ×N2 matrix F, which computes the Fourier transform,

and an M ×N2 undersampling matrix U. Given an obser-

vation vector u, the reconstruction problem is to find out the

corresponding y, considering η to be a non-zero vector. We

choose to find the solution to this reconstruction problem

using a GAN model.

A GAN model comprises of a generator G and a discrim-

inator D, where the generator tries to fool the discriminator

by transforming input vector z to the distribution of true

data ytrue. On the other hand, the discriminator attempts to

distinguish samples of ytrue from generated samples G(z).
We incorporate the conditional GAN (cGAN) based frame-

work [24] in our study. The model is conditioned on the

aliased zero-filled reconstruction (ZFR) x ∈ CN2

, given by

x = GHu, where H denotes the Hermitian operator. In-

stead of using a binary cross-entropy based adversarial loss

for training the cGAN model, we use the Wasserstein loss

[2]. This helps in stabilizing the training process of stan-



Figure 2. (a) Generator architecture and (b) discriminator architecture.

dard GANs, which suffer from saturation resulting in van-

ishing gradients. Mathematically, the cGAN model with the

Wasserstein loss solves the following optimization problem:

min
G

max
D

VWGAN = Ey∼py(y)(D(y))

− Ex∼px(x)(D(G(x))),
(2)

where VWGAN denotes the value function and E denotes

the expectation over a batch of images. py(y) and px(x)
denote the distribution of GT and ZFR images, respectively.

The optimization problem is solved by alternating between

p steps where discriminator (D) is optimized and a single

step of generator (G) optimization. The loss function which

is minimized while training the discriminator is given by:

LDIS = Ex∼px(x)(D(G(x)))− Ey∼py(y)(D(y)). (3)

The Lipschitz constraint is enforced by applying weight

clipping on the weights of the discriminator [2].

Fig. 2 (a) shows the generator architecture of the pro-

posed model. The architecture is based on a U-net [27],

which consists of several encoders and corresponding de-

coders. Each encoder is in the form of a convolutional layer,

which decreases the size and increases the number of fea-

ture maps. Each decoder consists of a transposed convo-

lutional layer, to increase the size of the feature maps. In

order to transfer the features of a particular size from the

encoder to the corresponding decoder, skip connections are

present. Instead of obtaining feature maps of size lower than
N
32 × N

32 using more encoders (and decoders), the proposed

architecture consists of RRDBs at the bottom of the U-net.

The addition of RRDBs at the bottleneck layer helps in in-

creasing the depth of the network which can enable learning

of more complicated functions. Each RRDB [30] consists

of dense blocks, as well as residual connections at two lev-

els: across each dense block, and across all the dense blocks

in one RRDB, as shown in Fig. 2 (a). The output of each

dense block is scaled by β before it is added to the iden-

tity mapping. Residual connections make the length of the

network variable thereby making identity mappings easier

to learn and avoid vanishing gradients in the shallower lay-

ers. Dense connections allow the transfer of feature maps

to deeper layers, thus increasing the variety of accessible

information. Just like residual connections, they also help

in alleviating vanishing gradients. Moreover, their use re-

duces the number of parameters as compared to conven-

tional convolutional networks, since the necessity to learn

redundant information has been removed. Throughout this

network, batch normalization (BN) and leaky rectified lin-

ear unit (ReLU) activation are applied after each convolu-

tional layer. At the output, a hyperbolic tangent activation

is used.

The discriminator is a CNN with 11 layers, as illustrated

in Fig. 2 (b). Each layer consists of a convolutional layer,

followed by BN and leaky ReLU activation. A patch-based

discriminator [14] is incorporated in order to improve the

preservation of high frequency details in the reconstructed

output, since ℓ1 norm of the pixel-wise difference (used as

a loss function in this work) mainly focuses on preservation

of low frequency components and does not enforce good

reconstruction of high frequency details. This discriminator

focuses on the local patches, tries to score each patch (size

m × m) of the image separately in an attempt to classify

whether the patch is real or fake, and gives the average score

as the final output.

In order to reduce the pixel-wise difference between the

generated image and the corresponding ground truth (GT)

image, a mean absolute error (MAE) based loss is incorpo-

rated while training the generator. It is given by:

LMAE = E(‖G(x)− y‖1), (4)



where ‖ · ‖1 denotes the ℓ1 norm. Since the human vision

system is sensitive to structural distortions in images, it is

important to preserve the structural information in MR im-

ages, which is crucial for clinical analysis. Moreover, ℓ1
norm minimization of the pixel-wise difference does not

enforce textural and structural correctness, which may lead

to a reconstructed output of poor diagnostic quality. Su-

per resolution is another well-known inverse problem that

tries to interpolate both low frequency and high frequency

components from a low resolution image. Inspired by previ-

ous works on super resolution [37], a mean SSIM (mSSIM)

[35] based loss is incorporated in order to improve the re-

construction of fine textural details in the images. It is for-

mulated as follows:

LmSSIM = 1− E





1

K

K
∑

j=1

SSIM(Gj(x), yj)



 , (5)

where K is the number of patches in the image, and SSIM

is calculated as follows:

SSIM(u, v) =
2µuµv + c1
µ2
u + µ2

v + c1

2σuv + c2
σ2
u + σ2

v + c2
, (6)

where u and v represent two patches, and µ and σ denote

the mean and variance, respectively. c1 and c2 are small

constants to avoid division by zero.

The overall loss for training the generator is given by:

LGEN = α1LMAE +α2LmSSIM −α3 E(D(G(x))), (7)

where α1, α2, and α3 are the weighting factors for various

loss terms.

3. Results and Discussion

3.1. Training settings

In this work, a 1-D Gaussian mask is used for undersam-

pling the k-space. Since the ZFR x is complex valued, the

real and imaginary components are concatenated and passed

to the generator in the form of a two channel real valued in-

put. The batch size is set as 32. The discriminator is updated

three times before every generator update. The threshold

for weight clipping is 0.05. The growth rate for the dense

blocks is set as 32, β is 0.2, and 12 RRDBs are used. The

number of filters in the last layer of each RRDB is 512.

Adam optimizer [16] is used for training with β1 = 0.5 and

β2 = 0.999. The learning rate is set as 10−4 for the genera-

tor and 2 × 10−4 for the discriminator. The weighting fac-

tors are α1 = 20, α2 = 1, and α3 = 0.01. The model 1 is

implemented using Keras framework [8] with TensorFlow

backend. For training, 4 NVIDIA GeForce GTX 1080 Ti

GPUs are used, each having 11 GB RAM.

1The code is available at: https://puneesh00.github.io/

cs-mri/

3.2. Data details

For the purpose of training and testing, two different

datasets are used. We first evaluate our model on T-1

weighted MR images of brain from the MICCAI 2013 grand

challenge dataset [18]. This is followed by another eval-

uation using MR images of knee (coronal view) from the

MRNet dataset [4]. The images in both the datasets are of

size 256 × 256. In order to make the reconstructed out-

put robust to noise, data augmentation is carried out us-

ing images with 10% and 20% additive complex Gaussian

noise in the k-space. To make the set of training images

for the MICCAI dataset, 19 797 images are randomly taken

from the training set of the aforementioned dataset. Out

of these, noise is added to 6335 images, while the remain-

ing 13 462 images are used without any noise. In addition,

990 images are chosen from the 13 462 noise-free images,

and noise is added to them also, to get a total of 20 787

images for training. Among the noisy images, number of

images with 10% and 20% noise is equal. Thus, the set

contains 64.76% noise-free images, 30.48% noisy images

whose corresponding noise-free images are not present in

the training set, and 4.76% noisy images whose correspond-

ing noise-free images are present in the training set. To

make the set of training images for the MRNet dataset, a to-

tal of 12 500 images are taken from the training set, where

the aforementioned ratio of noise-free, overlapping noisy

images, and non-overlapping noisy images is maintained.

For testing, 2000 images are chosen randomly from the test

sets of the respective datasets. The tests are conducted in

three stages: using noise-free images, using images with

10% noise added to them, and using images with 20% noise.

3.3. Results

Table 1 summarizes the quantitative results to study the

effect of addition of various components to the model.

These results are reported for images taken from the MIC-

CAI dataset, in which 20% of the raw k-space samples are

retained. For all the cases, the generator is trained with

LGEN . In the first case, the GAN model comprises of a

U-net generator (without RRDBs) and a patch-based dis-

criminator, with BN present throughout the network. It is

trained with Wasserstein loss. In the subsequent cases, the

use of RRDBs (without BN), followed by addition of BN

to RRDBs results in significant improvement in PSNR of

the reconstructed outputs corresponding to noise-free im-

ages. As mentioned in Section 3.1, the loss function used in

training of all the networks takes the weight for LMAE as

20 times the weight for LmSSIM . Such a ratio might cause

the model to focus more towards reducing the MAE. This

results in a more consistent performance of PSNR as the

training progresses. In the inference on noisy test images

(both 10% and 20%), the PSNR and mSSIM have relatively

less consistent performance as seen in the ablation studies.



Table 1. Ablation study of the model.

Network Settings 1st 2nd 3rd 4th 5th

U-net G + patch-based D ✓ ✓ ✓ ✓ ✓

RRDBs ✗ ✓ ✓ ✓ ✓

BN in RRDBs ✗ ✗ ✓ ✓ ✓

Data augmentation ✗ ✗ ✗ ✓ ✓

Wasserstein loss ✓ ✓ ✓ ✗ ✓

Images PSNR (dB) / mSSIM

Noise-free 40.45 / 0.9865 41.39 / 0.9810 41.88 / 0.9829 41.80 / 0.9820 42.31 / 0.9841

10% noise added 38.25 / 0.9641 38.03 / 0.9624 38.03 / 0.9620 39.55 / 0.9728 39.80 / 0.9751

20% noise added 33.98 / 0.9217 34.01 / 0.9210 33.78 / 0.9180 37.21 / 0.9576 37.56 / 0.9619

Figure 3. Reconstruction results of the proposed method for 20% undersampled images, taken from the MICCAI dataset. (a) GT, recon-

struction results for (b) noise-free image, (c) image with 10% noise, and (d) image with 20% noise. The top right inset indicates the zoomed

in ROI corresponding to the red box. The bottom right inset indicates the absolute difference between the ROI and the corresponding GT.

The images are normalized between 0 and 1.

One possible reason for this observation might be the large

number of nonlinearities present in the model, which give

the ability to learn a highly complex function. As mentioned

in [28], a highly complex function can have improved per-

formance for the noise-free case at the cost of slightly in-

creased sensitivity to noise as compared to its less complex

counterparts. The use of data augmentation with noisy im-

ages, in the fifth case, results in significantly better quantita-

tive results for the reconstruction of noisy images, as com-

pared to the first three cases. This improves the robustness

of the model. In the fourth case, we train the network with

the conventional binary cross-entropy based adversarial loss

instead of Wasserstein loss. On comparing this case with

the fifth case, it is evident that the use of Wasserstein loss

improves the training process. The settings of the fifth case

are finalized and used for the subsequent results reported in

this work.

The qualitative results of the proposed method are shown

in Fig. 3 for 20% undersampled images taken from the

MICCAI dataset. It can be seen that the proposed method

is able to reconstruct the structural content in the image,

including many fine details, successfully. This is also in-

dicated by the quantitative results shown in Table 1. Also,

the contrast of the reconstructed image looks very similar to

that of the GT. The reconstruction results for noisy inputs,

as well as their differences with the corresponding GT, in-

dicate the robustness of the model.

Fig. 4 and Table 2 show the qualitative and quanti-

tative comparison of the proposed method, respectively,

with some state-of-the-art methods like DLMRI [26],

DeepADMM [34], BM3D [11], and DAGAN [33]. These

results are reported for images taken from the MICCAI

dataset, in which 30% of the k-space data is retained. The

comparison of the zoomed in ROI of the reconstructed out-

puts corresponding to the noise-free images, produced by

the aforementioned methods, as well as the difference with

the GT show that these methods are not able to fully pre-

serve the structural content present in the GT. It can be

seen that our method produces the least difference between

the ROI and the corresponding GT. Even in the case of

noisy images, our method is robust to the artifacts in the

image as it produces a smooth background, similar to the

GT, whereas other methods produce outputs with noisy ar-

tifacts as well as granularity. This can be seen in the re-

sults shown in the second and third row in Fig. 4. The

artifacts are more visible in the background of the zoomed

in ROI, whereas the granularity can be more easily seen in

the greyish boundary surrounding the brain structure as well

as in the black background. Moreover, the contrast is much

better preserved in our reconstructed outputs as seen in the

zoomed in ROI of all the three rows in Fig. 4.

The quantitative results also reinforce the effectiveness

of the proposed method. Table 2 shows that both the PSNR

and mSSIM for the proposed method are significantly better

than the previous methods for noise-free as well as images

with 10% and 20% noise. All the previous methods, with

the exception of DAGAN, experience a significant decline

in the PSNR and mSSIM values when their reconstruction



Figure 4. Qualitative results and comparison with previous methods for 30% undersampled images, taken from the MICCAI dataset. The

first row shows reconstruction results for noise-free images, the second row shows reconstruction results for images with 10% noise, and

the third row shows reconstruction results for images with 20% noise. The top right inset indicates the zoomed in ROI corresponding to the

red box. The bottom right inset indicates the absolute difference between the ROI and the corresponding GT. The images are normalized

between 0 and 1.

Table 2. Quantitative comparison with previous methods using MICCAI dataset.

Method
Noise-free images 10% noise added 20% noise added Reconstruction/

PSNR (dB) mSSIM PSNR (dB) mSSIM PSNR (dB) mSSIM Test time (s)

DLMRI[26] 37.405 0.8732 34.144 0.6140 31.564 0.4346 25.7732

DeepADMM[34] 41.545 0.8946 39.078 0.8105 35.373 0.6000 0.3135

BM3D[11] 42.521 0.9764 37.836 0.7317 33.657 0.4947 6.8230

DAGAN[33] 43.329 0.9860 42.006 0.9814 39.160 0.9619 0.0063

Proposed 46.877 0.9943 42.338 0.9855 39.493 0.9740 0.0091

results for noise-free and noisy images are compared. This

proves that the reconstruction quality significantly deteri-

orates on addition of noise as these methods lack robust-

ness. It is observed that the proposed method significantly

outperforms the other methods in the noise-free setting, but

the improvement in the noisy setting is less significant. As

mentioned before, this might be the result of the large num-

ber of nonlinearities present in the model, which allow the

learned function to be highly complex and obtain better per-

formance for the noise-free case at the cost of slightly more

sensitivity to noise [28]. However, the proposed augmen-

tation technique increases the robustness of the model, as

seen by the results presented in Table 2. Moreover, the re-

construction time of the proposed method is 9.06 ms per im-

age, which can facilitate real-time reconstruction of MR im-

ages. DLMRI and BM3D have a much higher reconstruc-

tion time owing to the iterative fashion in which they obtain

the output. On the other hand, GAN based approaches have

a reconstruction time of the order of milliseconds as the test-

ing phase only involves a forward pass through the trained

generator. For the generator model of DAGAN and the pro-

posed approach, the FLOPs (total number of floating-point

operations) are 197M and 314M, respectively. The corre-

sponding FLOPS (floating-point operations per second) are

31.31G and 34.55G, which are calculated using the infer-

ence times listed in Table 2.

To demonstrate the generalization of the proposed ap-

proach, Table 3 and Fig. 5 show the quantitative and qual-

itative results for images taken from the MRNet dataset, in

which 30% of the k-space data is retained, as well as the

comparison with DAGAN [33], which obtained the closest

results on the MICCAI dataset. From Table 3, it is observed

that the proposed method outperforms DAGAN by a signif-

icant margin as it obtains better results for images with 20%

noise than those obtained by DAGAN on noise-free images.

It is also observed that the PSNR and mSSIM values ob-



tained for MRNet dataset are lower than those obtained for

MICCAI dataset. One possible reason for this might be the

larger black region present in the images in the MICCAI

dataset, which lacks any details or structural information.

Fig. 5 shows that the proposed method is able to obtain a

reconstructed output of high quality, as the difference be-

tween the GT and the reconstructed image is very low.

Table 3. Quantitative results and comparison using MRNet dataset.

Method
PSNR (dB) / mSSIM

Noise-free images 10% noise added 20% noise added

DAGAN[33] 31.529 / 0.8754 30.452 / 0.8182 28.267 / 0.7098

Proposed 34.823 / 0.9412 33.522 / 0.9167 32.034 / 0.8884

Figure 5. Qualitative results and comparison for 30% undersam-

pled image, taken from the MRNet dataset. These are the recon-

struction results for noise-free images. The left inset indicates the

zoomed in ROI corresponding to the red box. The right inset indi-

cates the absolute difference between the ROI and the correspond-

ing GT. The images are normalized between 0 and 1.

Figure 6. Results of zero-shot inference. (a,d) GT, (b,e) ZFR, (c,f)

reconstruction results for noise-free image. The top right inset in-

dicates the zoomed in ROI corresponding to the red box. The bot-

tom right inset indicates the absolute difference between the ROI

and the corresponding GT. The images are normalized between 0

and 1.

We also tested the model trained on MR images of brain

from the MICCAI dataset to reconstruct MR images of ca-

nine legs from the MICCAI 2013 challenge. Fig. 6 shows

the results of this zero-shot inference for images in which

20% of the k-space data is retained. Though no images of

canine legs were used for training, the model is able to faith-

fully reconstruct most of the structural content, and is able

to achieve average PSNR and mSSIM values of 41.28 dB

and 0.9788, respectively, for 2000 test images.

Further, we performed the zero-shot inference of the

model trained on 30% undersampled MR images of knee

from the MRNet dataset to reconstruct MR images of ca-

nine legs from the MICCAI 2013 challenge. It is able to

achieve average PSNR and mSSIM values of 43.79 dB and

0.9883, respectively, for 2000 test images.

Potential hallucination by GANs: Conventional GAN

training techniques may suffer from hallucination of de-

tails which could potentially be harmful for image diag-

nosis. The proposed scheme tries to control the hallucina-

tion of details by the use of pixel-wise MAE loss as well as

the mSSIM based loss in the image domain, both of which

try to ensure that the generated image is close to the GT.

LMAE tries to make sure that the low frequency details

are of the generated output as closely aligned to the ground

truth, whereas LmSSIM focuses on increasing the similar-

ity of generated and GT in terms of structural details. The

zero-shot inference is also helpful in pointing out that the

proposed GAN model has shown no sign of hallucination

on data samples taken from a distribution that is different

from the training distribution.

Additional Experiment for Super Resolution: To un-

derstand the usability of the proposed model in other com-

puter vision applications, we take super resolution (SR) as

a vision task, for which the model is not optimized, and

evaluate its performance on some commonly used datasets

for this task. All the hyperparameter values mentioned in

section 3.1 are maintained for this experiment, except α1,

which is set as 30. For training, patches of size 192 × 192
were used from the images present in the DIV2K [1] and the

Flickr2K datasets. These are the high resolution (HR) or the

GT images (y). This variable image size is supported by the

fully convolutional architecture of the generator as well as

the discriminator, i.e. neither of the networks involve the

use of dense layers. The patch-based discriminator, which

classifies sections of the image and not the entire image,

also allows the image size to be variable. For the task of

4× super resolution, the corresponding low resolution (LR)

images of size 48 × 48 are used. These are obtained using

bicubic downsampling, which is a widely used degradation

model. As the size of the input and the output images is the

same in our framework, we use the images obtained using

bicubic interpolation on the low resolution images as the

input for the model (x). For the purpose of testing, we use

Set5 [3] and Set14 [36] datasets. The quantitative results of

our model as well as the comparison with previous methods

for 4× super resolution are presented in Table 4. The PSNR

and mSSIM values are calculated by considering only the Y



channel of the images, after converting them from RGB to

YCbCr colorspace, as mentioned in several previous works

on super resolution. The qualitative results obtained using

our approach are illustrated in Fig. 7 and Fig. 8. Although

the proposed framework is optimized for the task of CS-

MRI reconstruction, it gives satisfactory performance for

the super resolution task as well.

Table 4. Quantitative results and comparison with previous meth-

ods for the SR experiment.

Method
PSNR (dB) / mSSIM

Set5 Set14

Bicubic 28.42 / 0.8104 26.00 / 0.7027

SRCNN[7] 30.48 / 0.8628 27.50 / 0.7513

VDSR[15] 31.35 / 0.8830 28.02 / 0.7680

FSRCNN[9] 30.72 / 0.8660 27.61 / 0.7550

LapSRN[17] 31.54 / 0.8850 28.19 / 0.7720

EDSR[20] 32.46 / 0.8968 28.80 / 0.7876

Ours 31.63 / 0.8982 27.62 / 0.7784

Figure 7. Qualitative results of the SR experiment on an image

from Set5.

Figure 8. Qualitative results of the SR experiment on an image

from Set14.

4. Conclusion

In this paper, a novel GAN based framework has been

utilized for CS-MRI reconstruction. The use of RRDBs in

a U-net based generator architecture increases the amount

of information available. In order to preserve the high fre-

quency content as well as the structural details in the recon-

structed output, a patch-based discriminator and structural

similarity based loss have been incorporated. The use of

noisy images during training makes the reconstruction re-

sults highly robust to noise. The proposed method is able

to outperform the state-of-the-art methods, while maintain-

ing the feasibility of real-time reconstruction. In future, we

plan to analyze the performance of the proposed model for

different k-space sampling patterns. In order to improve the

reconstruction time, we plan to work on lightweight archi-

tectures. Further work may be carried out on devising regu-

larization terms that help to preserve the finest of details in

the reconstructed output.
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