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Abstract

Single RGB image hyperspectral reconstruction has

seen a boost in performance and research attention

with the emergence of CNNs and more availability of

RGB/hyperspectral datasets. This work proposes a CNN-

based strategy for learning RGB to hyperspectral cube

mapping by learning a set of basis functions and weights in

a combined manner and using them both to reconstruct the

hyperspectral signatures of RGB data. Further to this, an

unsupervised learning strategy is also proposed which ex-

tends the supervised model with an unsupervised loss func-

tion that enables it to learn in an end-to-end fully self super-

vised manner. The supervised model outperforms a baseline

model of the same CNN model architecture and the unsuper-

vised learning model shows promising results. Code will be

made available online here.

1. Introduction

Humans are able to perceive the world in colour due to

the cones in the human visual system that converts light in

the visible spectrum. Images captured in RGB colour for-

mat are very well suited to humans as they are in a famil-

iar format to the visual system of human beings. However,

the visible spectral range of the electromagnetic spectrum

contains information beyond the three RGB values gener-

ally expected from traditional colour images. This addi-

tional data encode hyperspectral colour information, as well

as material information. Hyperspectral images are a rich

source of scene information that has been explored in sev-

eral applications including remote sensing [6, 7], astronomy

[31], agriculture [24, 29], medical image analysis [8] and

computer graphics [10].

Capturing hyperspectral images can be done using hy-

perspectral cameras, however, these devices are usually

expensive, bulky, slow (non-realtime) and low in spatial

resolution; making them unsuitable for several realtime

and high resolution applications. There have been sev-

eral attempts at improving the speed [15, 36] and spatial

resolution[41, 40, 25] of hyperspectral capturing devices.

There remains a trade-off between capture speed and spa-

tial resolution; price and size also still remains a challenge.

Alternatively, spectral reconstruction from RGB images

can be used as a hyperspectral image capturing means. This

paradigm of hyperspectral image recording has seen an in-

crease in interest recently [4, 14, 3, 37]. The idea is to learn

a mapping between the RGB values and their corresponding

spectral response. Several methods of learning this mapping

has been reported in the literature including Radial Basis

Functions (RBF) [26], sparse coding [21, 13, 3] and Convo-

lutional Neural Networks (CNN) [33, 14, 39], with the best

performing methods being CNN/deep learning-based.

Deep learning has become ubiquitous in computer vi-

sion, due to the surge in the performance of deep learning

methods in object detection, depth estimation and semantic

segmentation. This work follows this trend, and uses deep

learning as a method to learn the transformation from RGB

images to spectral response cubes. Most methods tackle

this problem by designing a CNN to learn the conversion

of RGB triplets to 31-channel spectral images directly, this

is evident in the NTIRE 2018 challenge [4]. In this work,

the problem is formulated differently. Instead of predicting

a 31-channel spectral image, the model predicts weights for

a set of basis functions which are learned at the same time

as the weights. In classical spectral reconstruction litera-

ture, the spectrum was recovered by weighted combination

of basis functions [1] or sparse coding [27]. The proposed

method combines the simplicity of weighted basis functions

and the performance and robustness of deep learning. The

network predicts 10 weights for each pixel as well as learns

a set of 10 basis functions which is then combined to form

the final spectral image.

A second method is also proposed, which can be used

when there is no ground truth spectral information to use

during training. This method learns the spectral reconstruc-

tion in a completely unsupervised manner simply from the

RGB input data. Similar to the first method, it leverages

learned basis functions and weights for the reconstruction

task.
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2. Related work

Hyperspectral reconstruction from RGB image is a great

alternative to the direct capture of hyperspectral cubes us-

ing hyperspectral imaging devices. This idea dates back to

several early works [12, 16, 11, 3, 23, 1] that use PCA to ex-

tract basis functions from collected databases of spectral re-

flectances such as those from Munsell Colour chips. These

works formulated the problem as a weighted combination of

basis functions. Other studies [27, 21, 13] used sparse cod-

ing to recover spectral cubes from RGB images. Nguyen et

al. [26] proposed the use of a Radial Basis Function (RBF)

network to learn the mapping from RGB to spectral re-

flectance. They also proposed the use of white balancing be-

fore the RBF model to minimise the effects of illumination

on the performance of the model. Arad and Ben-Shahar [3]

tackled the problem by creating a sparse spectral dictionary

along with their projections in RGB. The RGB reprojections

are then used with new RGB images to reconstruct the spec-

tral image with the help of the associated spectral signatures

in the dictionary. In order to avoid learning a three-to-many

mapping of RGB to spectrum, Jia et al. [18] proposed to

learn an RGB to 3D embedding (three-to-three), which is

then used with a manifold-based reconstruction method to

generate the full spectrum; their approach produced more

accurate results than the three-to-many approach. These

methods mainly work on RGB vectors individually due to

the nature of the models used.

An emerging method of spectral reconstruction from

RGB involves the use of deep learning/CNNs. This ap-

proach is particularly interesting as the model uses the full

image or patches of the image instead of working on indi-

vidual RGB vectors to form the final spectral cube. This

approach does let the model take spatial contextual infor-

mation into account when training and during inference.

HSCNN [38] is one of such CNN-based approaches. it

works by upsampling the RGB image in the spectral di-

mension to the desired resolution before passing the up-

sampled data to a deep learning model that learns the map-

ping to the corresponding ground truth spectrum. Shi et

al. [33] improved on this by removing the hand-engineered

upsampling step and using a deep residual network and

densely connected network to achieve more accurate re-

sults. Alvarez-Gila et al. [2] used a Generative Adversar-

ial Network to learn hyperspectral signals from RGB im-

ages. Other deep learning based methods have been pro-

posed that make use of different CNN model architectures

such as UNet [39, 34] and Resnet [9, 22] to map RGB im-

ages to 31-channel spectral images.

Earlier methods which used PCA, sparse coding and

RBFs worked well but did not take the spatial context of

the image into account. Deep learning methods take im-

age spatial contextual information into account and produce

more accurate results. However, they all cast the problem as

a 3-to-31-channel mapping problem. It has been shown in

early PCA and sparse coding works that a weighted combi-

nation of basis functions/vectors can produce spectral sig-

natures of RGB inputs. Given that knowledge, the pro-

posed method is formulated as a weighted combination of

basis functions; with the weights and basis functions being

learned jointly using deep learning without hand-crafted ba-

sis functions. This method incorporates the advantages of

PCA based methods and that of deep learning based meth-

ods to form a robust spectral reconstruction approach. A

second method is also proposed which uses the same ap-

proach but introduces an unsupervised learning loss that is

useful in the absence of ground truth hyperspectral training

data.

3. Proposed method

3.1. Problem formulation

Images are formed by cameras using sensors to measure

light reflection. The sensors can be in the form of a Charge-

Coupled device (CCD) or Complementary Metal-Oxide-

Semiconductor (CMOS) chips embedded in the imaging de-

vice. Much like human vision, the sensor detects light re-

flections like the cone cells in the human eyes. The mechan-

ics of image formation by cameras involve the combination

of several elements. These elements include the scene illu-

minant (source of light, e.g. sunlight), objects/surfaces in

the scene and the imaging device [35, 32], amongst others.

The illuminant is characterised by a combination of several

wavelengths in the electromagnetic spectrum. This combi-

nation is known as the Spectral Power Distribution (SPD) of

the illumination source and also what gives the illuminant

its colour. When light is emitted or radiated by an illumi-

nant, its characteristic wavelengths travel from the illumi-

nant and are incident on an object’s surface. The object,

whose surface possesses a reflectance spectrum referred to

as the Surface Spectral Reflectance (SSR), reflects the in-

cident wavelength spectrum of the illuminant modulated

by its SSR. The now modulated electromagnetic radiation

reaches the imaging device and is captured by it. The cap-

tured image is a representation of the spectral response of

the sensors in the imaging device. The imaging device is

made up of sensors characterised by their spectral sensitivi-

ties which dictates how much of the reflected spectra is cap-

tured. Figure 1 depicts the image formation process.

Adopting the dichromatic reflection model and under the

Lambertian assumption, the formation of an image can be

described as:

Ic =

∫

Ω

E(λ)S(λ)Qc(λ)dλ (1)

where E(λ) is the spectral power distribution of the light

source, S(λ) is the surface spectral reflectance of the pixel,



Figure 1: Image formation diagram

Qc(λ) is the camera sensor spectral response function, λ is

the visible electromagnetic spectrum ranging from 400nm

to 700nm and c represents the red, green and blue colour

channels. E(λ) and S(λ) can be combined to form the

scene spectral radiance, turning equation 1 into:

Ic =

∫

Ω

R(λ)Qc(λ)dλ (2)

with R(λ) being the spectral radiance.

The goal is to decompose an image into its constituent

parts as shown in equation 2 so that the spectral radi-

ance/signature can be recovered. However, the only known

parts are the image pixel intensity values and the sensor

spectral response, which makes this an under-determined

problem. Due to the recent success by deep leaning models

in image classification, object detection, object segmenta-

tion and depth estimation, this research adopts the use of

deep learning to learn the mapping from RGB images to

spectrum.

The problem is set as a supervised learning task, with

a convolutional neural network learning to predict weights

for a set of basis functions which are learned jointly with the

weights from scratch. The final spectrum is then formed by

taking a weighted combination of the basis functions using

the learned weights (see figure 2 for the architecture of the

proposed supervised learning method). To achieve this, the

spectrum R(λ) could be presented as:

R(λ) =

n
∑

i=1

wi∅i(λ) (3)

where wi is the weight, ∅i(λ) is the basis function, i is the

basis function index and n is the number of basis functions.

Previous research [12, 16, 11, 32] has shown that up to 10

basis functions are enough to accurately reproduce spectral

signatures. Based on this, the number of basis functions

automatically learned is set to 10.

3.2. Network architecture

A modified UNet [30] network is used with skip connec-

tions to allow lower level features to flow to deeper layers.

The 2x2 pooling layers are replaced with linear downsam-

pling layers. Four contracting steps are done as using five

did not show any improvements. The cropping step before

concatenation in the expansive path is replaced with a direct

concatenation as cropping might dispose of edge informa-

tion which could be useful for robust prediction, especially

around the edges of the image. The model was trained us-

ing patches from the RGB image and corresponding ground

truth spectral cubes. The RGB image and spectral cubes

were resized to 512x512, and 64x64 patches were extracted

deterministically (next to each other) and not randomly,

which were used for training. The use of batch normali-

sation [17] was experimented with, however it was found

to be detrimental to the network’s performance. SELU [20]

activation function was also tested, but similar to batch nor-

malisation, it was found to be harmful to the network’s per-

formance. This was expected as SELU is self normalising.

To further boost robustness and regularisation, dropout was

experimented with, however, it produced inferior results.

The basis functions are learned as a 10x31 matrix variable

during training without going through any neural network

layer. During inference, the saved trained matrix is simply

loaded into memory and used. At test time, the full RGB

image is passed through the CNN. The spectral cube is then

generated as a weighted combination of the basis functions,

using the predicted weights. Mean Relative Absolute Error

(MRAE) was used as the loss function to facilitate training.

It was selected to mitigate overly weighting higher value

spectral errors over lower valued ones and enable a more

consistent weighting. The MRAE was computed as shown

in equation 4.

MRAE =

∑

i,c

|Ric−R
gt

ic
|

R
gt

ic

Rn

(4)

where Ric and R
gt
ic denote the i-th pixel and c spectral chan-

nel values for the recovered spectrum and ground truth spec-

trum respectively; and the total number of datapoints in the

spectral cube is represented by Rn.

3.3. Experimental setup

The traning batch size was 128, the learning rate used

was 1e-4 and the Adam optimiser [19] was used during

training. The model was trained for 200 epochs and random

horizontal and vertical flips were used for data augmenta-

tion, with a weight decay of 1e-5. The use of weight decay

proved helpful to avoid overfitting. Weight decay was only

used for the basis functions weights predicting CNN and

not for learning the basis functions; the intuition is to allow

the optimiser to find the most appropriate basis functions



Figure 2: Architecture of proposed method using supervised learning

without the interaction of the additional weight decay on the

loss function. The work was implemented in python using

PyTorch [28] on a Linux machine. Training took roughly

2.7 hours on an Nvidia RTX 2080Ti and consumed about

5.8GB of VRAM. Inference uses 1473MB of VRAM, with

single image inference time of 34.44ms on an Nvidia RTX

2080Ti. The runtime shows how efficient the proposed so-

lution is as it can be deployed in real-time applications.

3.4. Unsupervised learning approach

An unsupervised learning method is also proposed,

which can be used when there is no ground truth spectral

signature data available. To tackle this case, two additional

modules are added on to the supervised learning architec-

ture which enables the model to be trained in an end-to-end

fully unsupervised manner whilst still producing good spec-

tral reconstruction from RGB images. The architecture for

the unsupervised learning method is depicted in figure 3. It

shows the extra modules that enable unsupervised training

- ”image formation” and ”photometric reconstruction loss”.

The image formation module is responsible for reconstruct-

ing an image from the predicted spectral cube. To achieve

this, a discretised version of equation 2 is used as shown in

equation 5.

Ic =
∑

λ
R(λ)Qc(λ) (5)

Substituting equation 3 into equation 5 produces the final

formula (equation 6) for reconstructing the image.

Ic =
∑

λ
(

n
∑

i=1

wi∅i(λ))Qc(λ) (6)

with Ic being the reconstructed pixel value for the c-th

colour channel, Qc is the c-th camera sensor spectral re-

sponse, wi and ∅i are predicted weight for the i-th basis

function and the i-th basis function respectively, n is the

number of basis functions, λ the spectral wavelength and c

the colour channels (R, G, B).

The photometric reconstruction loss module takes the

original RGB image and the reconstructed RGB image as

inputs. It then determines the error or difference between

both inputs and uses that residual as a training signal in the

absence of ground truth hyperspectral spectrum data. Intu-

itively, if there is no error between the two RGB images,

the network must have predicted the correct spectrum as it

is a precursor to the image formation, however, if there is a

large error, then the network must have predicted an incor-

rect spectrum for the image. L1 loss was used as the image

reconstruction loss function as it was empirically found to

be sufficient for unsupervised learning.

4. Experimental results

To assess the performance of the proposed supervised

learning method, the model is trained using the training

strategy described in section 3.3. A baseline CNN-based

RGB to spectral reconstruction model of the same CNN

model architecture is trained using the same training strat-



Figure 3: Architecture for unsupervised learning of spectral reconstruction

egy for fairness. The only difference between the two

methods is that the baseline method directly outputs a 31-

channel spectral image from the last layer whilst the pro-

posed method uses the predicted weights and learned basis

functions to create the spectral image before the loss func-

tion.

4.1. Dataset and evaluation premise

The dataset used for experimentation is the NTIRE 2020

Spectral Reconstruction Challenge [5] dataset. It is a hyper-

spectral image dataset with varying scenes and contents. It

is made up of 450 hyperspectral cubes along with their cor-

responding RGB images for training. A further 10 RGB and

hyperspectral image sets were also provided for validation

purposes. As it is a challenge, another set of 20 RGB im-

ages were provided (the test set) which were split between

two challenge tracks (10 each), however, their associated

ground truth hyperspectral cubes were not provided. The

challenge comprises of two tracks - Clean track and Real

World track. The clean track involves hyperspectral data re-

construction from uncompressed 8-bit RGB images in png

format. The images have been formed using the CIE 1964

colour matching function. On the other hand, the real world

track involves recovering hyperspectral data from RGB im-

ages which have gone through mosaicing, noise injection,

demosaicing and jpeg compression. This makes it a tougher

problem to solve. The evaluation in this work follows the

same approach and assesses the performance of the pro-

posed method against the baseline using the validation data

from the Clean and Real World tracks of the NTIRE 2020

Spectral Reconstruction Challenge. All models are trained

on the challenge training dataset.

4.2. Evaluation metrics

Quantitative evaluation of the performance of the pro-

posed method is done using the MRAE and root mean

square error (RMSE) metrics. The MRAE metric has al-

ready been introduced in section 3.2 (equation 4). RMSE is

an error metric that squares the residuals, takes and averages

and finally a root of the result. it is written as:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Ri −R
gt
i )2 (7)

where n is the total number of datapoints, R
gt
i and Ri are

the i-th pixel of the ground truth and reconstructed hyper-

spectral cubes respectively.

4.3. Results and discussion

The results of the quantitative evaluation of the base-

line and proposed method for both the clean and real world

tracks are shown in table 1. The figures show that the pro-

posed supervised learning method outperforms the baseline

methods on both MRAE and RMSE metrics on both tracks.

It produced a 0.0014 and 0.0008 reduction in MRAE and

RMSE respectively in the clean track; and 0.0018 and

0.0009 reduction in MRAE and RMSE respectively in the

real world track. Despite the modest improvements, it

should be noted that the proposed method achieves it by pre-

dicting fewer parameters (10 vs 31). The performance on



Table 1: MRAE and RMSE results on the validation dataset

Baseline - Clean Proposed - Clean Baseline - Real World Proposed - Real World

MRAE RMSE MRAE RMSE MRAE RMSE MRAE RMSE

ARAD HS 0453 0.0469 0.0164 0.0518 0.0175 0.0677 0.0180 0.0659 0.0214

ARAD HS 0465 0.0435 0.0050 0.0473 0.0059 0.0807 0.0081 0.0815 0.0081

ARAD HS 0463 0.0716 0.0378 0.0646 0.0332 0.0858 0.0388 0.0810 0.0357

ARAD HS 0455 0.0703 0.0337 0.0755 0.0366 0.1022 0.0364 0.0980 0.0320

ARAD HS 0462 0.0542 0.0105 0.0439 0.0078 0.0889 0.0119 0.0850 0.0106

ARAD HS 0457 0.0450 0.0083 0.0400 0.0065 0.0804 0.0101 0.0825 0.0101

ARAD HS 0451 0.0386 0.0145 0.0325 0.0119 0.0764 0.0288 0.0689 0.0252

ARAD HS 0456 0.0264 0.0104 0.0246 0.0104 0.0419 0.0132 0.0421 0.0130

ARAD HS 0459 0.0209 0.0067 0.0225 0.0067 0.0440 0.0111 0.0460 0.0112

ARAD HS 0464 0.0302 0.0158 0.0309 0.0147 0.0523 0.0209 0.0508 0.0203

Average 0.0448 0.0159 0.0434 0.0151 0.0720 0.0197 0.0702 0.0188

the clean dataset is much better than the performance on the

real world dataset. This is expected as the real world model

has to learn noise removal and jpg compression levels in ad-

ditional to its ultimate task of spectral reconstruction. Look-

ing at the metrics on individual images, it can be seen that

on both tracks the baseline methods performs better than the

proposed method on some images, however, the proposed

method outperforms the baseline on more images and there-

fore on overall performance. The reconstructed spectra for

some pixels are shown in figure 4. It can be seen that the

proposed method, especially on the clean track matches the

ground truth spectra better than the baseline method. This

goes to show the fidelity of the reconstruction capablity of

the proposed method. The models appear to perform best in

the blue spectral range as well as the range between green

and red. They exhibited less reconstruction accuracy in the

high red spectral range, perhaps suggesting the availability

of fewer ground truth spectra in that range or a deficiency

in the CNN model architecture employed. Despite this, the

proposed model appears to cope better with the issue as can

be seen in figure 4 (d, e, f). This display of robustness can be

attributed to the problem formulation, which does not learn

individual spectrum band details but rather a global set of

basis functions with weights to form the spectrum. Addi-

tionally, the proposed method is advantageous because it is

able to reconstruct the spectral cube using fewer parameters

than would normally be required (i.e. predicting 10 weights

per pixel instead of 31, a 67.74% reduction in predicted out-

put). This becomes even more significant when predicting

301 spectral bands (96.68% reduction in this case).

The trained models for both tracks were submitted to the

NTIRE 2020 Spectral Reconstruction Challenge [5]. They

achieved RMAEs of 0.0440 and 0.0714 on the clean and

real world tracks respectively.

4.4. Unsupervised learning method results

The same CNN model architecture used for the super-

vised learning method is employed for the unsupervised

learning strategy. The reconstructed spectral cube is passed

to the image formation module which creates an image from

it and then passes the recreated image to the image recon-

struction loss module where the photometric error between

the reconstructed image and the original image is used for

backpropagation and thus, learning.

Table 2 provides figures of the evaluation metrics used to

assess the model’s performance. It is clear when compar-

Table 2: Clean track validation dataset result for the unsu-

pervised learning model

MRAE RMSE

0.1056 0.0275

ing table 2 against table 1 that the supervised learning

method outperforms the unsupervised learning method.

This is somewhat expected as the unsupervised model did

not interact with any ground truth spectrum during train-

ing. What the table shows is that the model did in fact learn

to reconstruct spectral images from RGB images as MRAE

and RMSE are 0.1056 and 0.0275 respectively. These are

relatively low numbers for a model that has not learned

the task, especially when none of these error metrics was

used as the training loss function. Qualitatively, figure 5

indicates that the model does a good job at reconstructing

spectra. Figure 5 (a and b) show good reconstruction qual-

ity, with the reconstruction spectra appearing very similar

to the ground truth and showing competitive results against

the proposed supervised learning method. However, figure

5 (c) shows an example of a poor reconstruction. While the



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Comparison between ground truth and reconstructed spectra for some randomly selected pixels

shapes are somewhat similar, the magnitudes differ by up to

0.2 and the unsupervised reconstructed spectrum has nega-

tive points which are non existent in the ground truth. The

worse performance of the unsupervised method can be at-

tributed to issues like this. Despite that, it is believed that

training with more data and better CNN model architectures

can make unsupervised learning a viable methods for spec-

tral reconstruction.

4.5. Significance of basis functions for learning

To further assess the performance of the proposed su-

pervised learning method and show the importance of the

use of learned basis functions, three additional models were

trained for both the baseline and proposed methods using

reduced contraction layers in the UNet backbone architec-

ture. Contraction layers of 3, 2 and 1 were used. Table

3 shows the results of the additional training and indicates

that the proposed method which uses learned basis func-

tions performs better even as the CNN architecture becomes

shallower, thereby indicating the importance of the learned

basis functions in the proposed method.

Table 3: Results for different numbers of contraction layers

Contraction layers

MRAE

Baseline Proposed

4 0.0448 0.0434

3 0.0465 0.0462

2 0.0485 0.0470

1 0.0586 0.0539

To check the significance of the basis functions for learn-

ing in the unsupervised learning context, another model us-



(a) (b) (c)

Figure 5: Output spectra of selected pixels using the proposed unsupervised learning method

ing the same unsupervised learning strategy was trained but

without the use of basis functions (essentially the baseline

model with the unsupervised learning image formation and

loss attached to it). The idea was to check if the basis func-

tions contributed to the stability, accuracy and learning ca-

pability of the unsupervised learning model. Table 4 and

figure 6 indicate that the answer to that question is a yes.

The table shows a rise of 1.1041 and 0.2263 in MRAE and

RMSE respectively when compared with the unsupervised

learning method that uses learned basis functions in table 2.

Figure 6 shows that the model does not learn how to recon-

struct spectra. The reconstructed spectra are very dissimi-

lar to the ground truth spectra and probably does not form

the liking of any known spectral signature. This once again

highlights the importance of the basis functions for unsu-

pervised/self supervised learning of spectra as it provides a

global strategy to learning and removes the 3-to-many map-

ping problem, essentially providing global constraints on

the model and leading the optimiser down the right path.

Table 4: Clean track validation dataset result for the unsu-

pervised learning model without basis functions

MRAE RMSE

1.2097 0.2538

5. Conclusion

This paper presents novel methods for recovering hyper-

spectral image cubes from RGB images. The novelty comes

from the use of basis function in a neural network environ-

ment and the unique method of training a CNN to predict

weights and learn a set of basis functions jointly. The strat-

egy is implemented using a modified UNet CNN model

architecture and trained in a supervised manner with the

NTIRE 2020 Spectral Reconstruction Challenge dataset.

The model is compared with a baseline model of the same

architecture without the use of basis functions and found to

(a)

(b)

Figure 6: Output spectra from unsupervised learning with-

out the use of basis functions

outperform the baseline model whilst requiring fewer pre-

dicted outputs. A further innovation is introduced in the

form of a method for learning the mapping from RGB data

to spectra in a completely unsupervised manner. The model

can be trained end-to-end and leverages the physics of im-

age formation and photometric reconstruction error as en-

ablers. The importance of the basis functions in this con-

text is explored and shown to provide significant boost in

training stability and learning ability for the unsupervised

learning model and also enhances the robustness of the su-

pervised learning model. This goes to show the significance

of formulating the RGB to spectrum mapping in the way in-

troduced in this paper.
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