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Abstract

This paper reviews the NTIRE 2020 challenge on video

quality mapping (VQM), which addresses the issues of qual-

ity mapping from source video domain to target video do-

main. The challenge includes both a supervised track (track

1) and a weakly-supervised track (track 2) for two bench-

mark datasets. In particular, track 1 offers a new Inter-

net video benchmark, requiring algorithms to learn the map

from more compressed videos to less compressed videos in

a supervised training manner. In track 2, algorithms are

required to learn the quality mapping from one device to

another when their quality varies substantially and weakly-

aligned video pairs are available. For track 1, in total 7

teams competed in the final test phase, demonstrating novel

and effective solutions to the problem. For track 2, some ex-

isting methods are evaluated, showing promising solutions

to the weakly-supervised video quality mapping problem.

1. Introduction

Human captured and transmitted videos often suffer

from various quality issues. For instance, despite the in-

credible development of current smartphone or depth cam-

eras, compact sensors and lenses still make DSLR-quality

unattainable for them. Due to bandwidth limit over inter-

net, videos have to be compressed for easier transmission.

The compressed videos inevitably suffer from compression

artifacts. Therefore, quality enhancement over such videos

are highly in demand.

The challenge aims at pushing competing methods into

effective and efficient solutions to the newly emerging video

quality mapping (VQM) tasks. Following [20], two tracks

are studied in this challenge. Track 1 is configured to

the task of fully-supervised video quality mapping between
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more compressed videos to less compressed videos col-

lected from the Internet, while track 2 are designed for the

weakly-supervised video quality mapping from a ZED cam-

era to a Canon 5D Mark IV camera. Competing methods are

evaluated with the most prominent metrics in the field, i.e.,

Peak Signal-to-Noise Ratio (PSNR) and structural similar-

ity index (SSIM).

Since PSNR and SSIM are not always well correlated

with human perception of quality, we also consider to lever-

age perceptual measures, such as the Learned Perceptual

Image Patch Similarity (LPIPS) [44] metric as well as mean

opinion scores (MOS), which aim to evaluate the quality of

the outputs according to human visual perception.

This challenge is one of the NTIRE 2020 associated

challenges on: deblurring [26], nonhomogeneous dehaz-

ing [4], perceptual extreme super-resolution [43], video

quality mapping (this paper), real image denoising [1], real-

world super-resolution [24], spectral reconstruction from

RGB image [5] and demoireing [42].

2. Related Work

Quality Enhancement on Compressed Videos aims to

eliminate visual artifacts of compressed videos, which are

transmitted over the bandwidth-limited Internet and often

suffers from compression artifacts. There are emerging sev-

eral algorithms like [9, 36, 40], which generally employ the

original (uncompressed or less compressed) videos for full

supervision on video quality map learning. For instance,

[36] proposes an Auto-Decoder to learn the non-linear map-

ping from the decoded video to the original one, such that

the artifacts can be removed and details can be enhanced

on compressed videos. [9] suggests a post-processing algo-

rithm for artifact reduction on compressed videos. Based

on the observation that High in Efficiency Video Coding

(HEVC) adopts variable block size transform, the suggested

algorithm integrates variable filter size into convolutional

networks for better reduction of the quantization error. To

take advantage of the information available in the neighbor-

ing frames, [40] proposes a deep network to take both cur-

rent frame and its adjacent high-quality frames into account



for better enhancement on compressed videos.

Video Super-Resolution (VSR) methods are used as well

to enhance the texture quality of videos. The requirements

for VSR and VQM are similar. It is important to enforce

temporally consistent transitions between enhanced frames

and to accumulate information over time, which is a fun-

damental difference to single image enhancement methods.

Most deep learning based methods adopt the idea of con-

catenating adjacent frames with explicit motion compensa-

tion in order to leverage temporal information [19, 33, 7].

A more recent method [18] successfully explores the appli-

cation of 3D convolutions as a natural extension for video

data, without explicit motion compensation. In contrast to

single image enhancers, many applications for video require

real-time performance. Therefore, efficient algorithms for

video processing are in high demand. Temporal informa-

tion can be very efficiently aggregated with recurrent neural

networks (RNN) which are developed in [31, 10]. For in-

stance, [31] efficiently warps the previous high-resolution

output towards the current frame according to optical flow.

In [10], runtimes are further improved by propagating an

additional hidden state, which handles implicit processing

of temporal information without explicit motion compensa-

tion. Perceptual improvements over fully-supervised VSR

methods are realized with generative adversarial networks

(GAN) by [25] and [28].

Quality Enhancement on Device Captured Videos aims

at enhancing the perceived quality of videos taken by de-

vices, which includes enhancements like increasing color

vividness, boosting contrast, sharpening up textures, etc.

However, the major issue of enhancing such videos is the

extreme challenge of collecting well-aligned training data,

i.e., input and target videos that are aligned in both the spa-

tial and the temporal domain. A few approaches address this

problem using reinforcement learning based techniques like

[13, 27, 21], which aims at creating pseudo input-retouched

pairs by applying retouching operations sequentially.

Another direction is to develop Generative Adversarial

Network (GAN) based methods for this task. For example,

[8] proposes a method for image enhancement by learning

from unpaired photographs. The method learns an enhanc-

ing map from a set of low-quality photos to a set of high-

quality photographs using the GAN technique [11], which

has proven to be good at learning real data distributions.

Similarly, [17] leverages the GAN technique to learn the

distribution of separate visual elements (i.e., color and tex-

ture) of images, such that the low-quality images can be

mapped easier to the high-quality image domain which is

encoded with more vivid colors and more sharpened tex-

tures. More recently, [15] suggests a divide-and-conquer

adversarial learning method to further decompose the photo

enhancement problem into multiple sub-problems. Such

sub-problems are divided hierarchically: 1) a perception-

based division for learning on additive and multiplicative

components, 2) a frequency-based division in the GAN con-

text for learning on the low- and high-frequency based dis-

tributions, and 3) a dimension-based division for factoriza-

tion of high-dimensional distributions. To further smooth

the temporal semantics during the enhancement, an efficient

recurrent design of the GAN model is introduced. To the

best of our knowledge, except for [15], there are very few

works specially for weakly-supervised video enhancement.

3. Challenge Setup

3.1. Track 1: Supervised VQM

For this track, we introduce the IntVid dataset [20].

It consists of videos downloaded from Internet websites.

The collected videos cover 12 diverse scenarios: city, cof-

fee, fashion, food, lifestyle, music/dance, narrative, nature,

sports, talk, technique and transport. The resolution of the

crawled videos is mostly 1920×1080. Their duration varies

from 8 seconds to 360 seconds with frame rates in the range

of 23.98-25.00 FPS.

As most of the collected videos consist of changing

scenes, a popular scene detection tool named PySceneDe-

tect1 is used to split the videos into three separate sets of

clips for training, validation and test respectively. In partic-

ular, most of the resulting video clips are selected such that

the majority of the original video content is employed for

training. For the validation and test video clips, the video

length is fixed to 4 seconds containing 120 frames, which

are saved as PNG image files.

Due to the bandwidth limit of Internet, video compres-

sion techniques are often applied to reduce the coding bit-

rate. Inspired by this, [20] applied the standard video

coding system H.264 to compress the collected videos.

As a result, a total of 60 paired compressed and uncom-

pressed videos are generated for training, and 32 paired

compressed/uncompressed clips are produced for validation

and testing. One example for track 1 is shown in Fig.1 (a)-

(b).

3.2. Track 2: Weakly­Supervised VQM

For this track, we employ the Vid3oC dataset [20], which

records videos with a rig containing three cameras. In

particular, we use the Canon 5D Mark IV DSLR cam-

era to serve as a high-quality reference, while utilizing the

ZED camera, which additionally records depth informa-

tion, to provide sequences of the same scene with a sig-

nificantly lower video quality level. As the track focuses

on the RGB-based visual quality mapping, we remove the

depth information from the ZED camera. Using the two

cameras, videos are recorded in the area in and around

1https://pyscenedetect.readthedocs.io



(a) More compressed (b) Less compressed

(c) ZED captured (d) Canon captured

Figure 1: Track 1 (a)-(b): quality mapping from more compressed (a) to less compressed (b) videos which are well aligned.

Track 2 (c)-(d): quality mapping from low-quality videos captured by a ZED camera (c) to high-quality Canon DSLR videos

(d), which are roughly aligned.

Zurich, Switzerland during the summer months. The lo-

cations and scenes are carefully chosen to ensure variety in

content, appearance, and the dynamic nature. The length

of each recording is between 30 and 60 seconds. Videos

are captured in 30 FPS, using the highest resolution (i.e.,

1920×1080) available at that frame rate.

In [20], the recorded videos are split into a training set of

50 weakly-paired videos, together with a validation and test

set of 16 videos each. For all sets, a rough temporal align-

ment is performed based on the visual recording of a digital

clock, which is captured by both cameras in the beginning

of each video. The training videos are then trimmed down

to 25-50 seconds by removing the first few seconds (which

include the timer) and encoded with H.264. For each video

in the validation and test set, a 4-second interval is selected.

Each of such small video clips contains 120 frames, which

are stored as individual PNG image files. Fig.1 (c)-(d) illus-

trates one example for track 2.

3.3. Evaluation Protocol

Validation phase: During the validation phase, the source

domain videos for the validation set were provided on Co-

daLab. While the participants had no direct access to the

validation ground truth, they could get feedback through

the online server on CodaLab. Due to the storage limits

on the servers, the participants could only submit a sub-

set of frames for the online evaluation. PSNR and SSIM

were reported for both tracks, even though track 2 only has

weakly-aligned targets. The participants were allowed to

make 10 submissions per day, and 20 submissions in total

for the whole validation phase.

Test phase: In the test phase, participants are expected to

submit their final results to the CodaLab test server. Com-

pared to the validation phase, no feedback was given in

terms of PSNR/SSIM to prevent comparisons with other

teams and overfitting to the test data. By the deadline, the

participants were required to provide the full set of frames,

from which the final results were obtained.

4. Challenge Teams and Methods

In total 7 teams submitted their solutions to track 1. One

team asked to anonymize their team name and references,

since they found out to be using inappropriate extra-data

for training after the test phase submission deadline. No

submissions were made for track 2.

4.1. GTQ team

The team proposes a modified deformable convolution

network to achieve high quality video mapping as shown in

Fig. 2. The framework first down-samples the input frames
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Figure 2: Illustration of the network design suggested by

team GTQ.
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Figure 3: Illustration of the hierarchical feature fusion block

(HFFB) suggested by team GTQ.
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Figure 4: The network architecture of the proposed C2CNet

by team ECNU.

with scale factor 4 through a space to depth shuffling oper-

ation. Then, the extracted features pass through an align-

ment module which applies a cascade of deformable con-

volutions [47] to perform implicit motion compensation. In

the alignment module, the team takes advantage of hierar-

chical feature fusion blocks (HFFB) [16] to predict more

precise offset and modulation scalars used in deformable

convolutions. As shown in Fig. 3, HFFB introduces a spa-

tial pyramid of dilated convolutions to effectively enlarge

the receptive field with relatively low computational cost,

which contributes to dealing with complicated and large

motions between frames. After the alignment operation,

the features are concatenated and fed into stacked residual

in residual dense blocks (RRDB) [39] to reconstruct high

quality frames.

(a)

(b)

(c)

Figure 5: Architecture of team GIL’s model. (a) Overall

Network architecture. (b) MU block. (c) RRCU (t=3) at the

left and Unfolded DRCL-C (t=3) at the right.

4.2. ECNU team

Team ECNU proposes a Compression to Compression

Network (C2CNet). The input to C2CNet is a more com-

pressed video frame and the ground truth is a less com-

pressed video frame. As shown in Fig. 4, C2CNet is com-

posed of a head 3 × 3 convolutional layer, a de-sub-pixel

convolutional layer composed of an inverse pixel-shuffle

layer and a 3 × 3 convolution, a non-linear feature map-

ping module composed of 64 Adaptive WDSR-A-Blocks, a

3 × 3 convolution and a short skip connection with resid-

ual scaling β=0.2, an upsampling skip connection, a sub-

pixel convolutional layer composed of a 3 × 3 convolution

and a pixel-shuffle layer, a global skip connection and a tail

3 × 3 convolution. The number of channels for C2CNet is

128. The Adaptive WDSR-A-Block is composed of 64, 256

and 64 channels. The Adaptive WDSR-A-Block is modified

from a WDSR-A-Block [41], by adding learnable weight α

(initialized with 1) for body scaling and learnable weight β

(initialized with 0.2) for residual scaling. Each 3×3 convo-

lution is followed by a weight normalization layer (omitted

in Fig. 4).



Figure 6: Schematic representation of team TCL’s ap-

proach.

4.3. GIL team

The team employs a network with two-stage architec-

ture proposed in FastDVDnet [34] and is shown in Fig. 5a.

It takes five consecutive frames as an input and generates

a restored central frame. Three MU blocks in the first

stage (shown in green) share parameters. Each MU block

is a modified U-Net [29] shown in Fig. 5b. It uses a con-

volutional layer with stride=2 for down-sampling and a

pixel-shuffle [32] layer for up-sampling. It features a skip

connection for global residual learning and contains sev-

eral RRCUs (recurrent residual convolutional unit) inspired

from R2U-Net [3]. Each RRCU consists of two DRCL-

C (dense recurrent convolutional layer-concatenate) and a

skip connection for residual learning. Figures of RRCU

and DRCL-C are shown in Fig. 5c. States of the DRCL-C

change over discrete time steps and the maximum time step

is limited to 3. The DRCL-C is different from a standard

RCL (recurrent convolutional layer) [22]. It reuses previ-

ous features by concatenating them [14]. A convolutional

layer with 1x1 filters is used after every concatenation in

DRCL-C to make the number of channels constant. The

network has approximately 3.6 million parameters.

4.4. TCL team

The team uses a pyramidal architecture with deformable

convolutions and spatio-temporal attention based on the

work of [37] along with a single-frame U-Net [29]. The

overview of the method is illustrated in Fig. 6. By com-

bining these two methods, the local frame structure is pre-

served with the usage of U-Net and additional information

from neighboring frames along with motion compensation,

mostly by exploiting the PCD module from [37], is used

to enhance output quality. Both networks are trained sep-
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Figure 7: Network architectures used by team JOJO-MVIG.

arately and the final result is obtained by a weighted sum

with weight parameter β found by grid search, which is val-

idated on a hold-out set from the training frames.

4.5. JOJO­MVIG team

The team proposes a unified dual-path model to jointly

utilize spatial and temporal information and map low-

quality compressed frames to high-quality ones. As shown

in Fig. 7, the model consists of a feature extraction stage,

two spatio-temporal fusion paths, and a reconstruction mod-

ule. The overall design of the pipeline follows [37].

In the feature extraction part, the multi-level features are

calculated. The fusion stage explores spatial and temporal

correlation across input frames and fuses useful informa-

tion. Two fusion paths are designed for motion compensa-

tion and global pooling. The motion compensation fusion

part measures and compensates the motion across frames

by aligning them to the reference frame. The fusion is per-

formed on aligned frames/features. The team adopts the

alignment and fusion part from EDVR [37] for the motion

compensation part.

Compared to the motion compensation path, the global

pooling fusion path requires no alignment and adopts a U-

net [30] like architecture in which global max-pooling lay-

ers are inserted into all residual blocks. Global pooling

has been used in [2] to conduct permutation invariant de-

blurring. Here global pooling is used to exchange infor-

mation between different frames, and since max-pooling is

a selective process, different frames vote for the best in-

formation for restoration. Furthermore, the team adopts

the CARAFE Module [35] to enable pixel-specific content-

aware up-sampling. More specifically, the team uses 7

frames as input, with reconstruction blocks consisting of 40

residual blocks and feature extraction module consisting of

5 residual blocks. The channel number for each residual

block is set to 128.

4.6. BossGao team

The BossGao team exploits cutting-edge deep neural ar-

chitectures for the video quality mapping task. Specifically,
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Gao. The team exploits cutting-edge deep neural architec-

tures for the video quality mapping task, i.e PCD align mod-

ule, TSA fusion module, residual blocks and RDN blocks.

For progressive training, first, the PCD align module and the

1st Restoration module are trained together. Next, the TSA

fusion module is plugged in and the existing parameters are

used as initialization. Then, the new framework with TSA

module is trained again. More restoration modules can be

stacked to get a deeper framework, which can be trained to

achieve better performance.

the team develops the following frameworks:

• Framework1: PCD+TSA+10ResBlocks+30ResBlocks

• Framework2: PCD+RDN1

• Framework3: PCD+TSA+RDN1

• Framework4: PCD+TSA+RDN2

where 10 ResBlock means 10 residual blocks [23], and

there are two convolution layers in each ResBlock. RDN1

denotes 10 RDBs [45] with 8 convolution layers in each

RDN. RDN2 denotes 8 RDBs with 6 convolution layers in

each RDN. PCD and TSA are proposed in [38]. The frame-

work is illustrated in Fig. 8.

Another contribution of the team is that, they propose to

train the modules in these frameworks progressively. They

train a framework by starting with fewer modules. More

modules are added in progressively. When new modules

are plugged in, the existing parameters are used as initial-

ization, and the new modules and old modules are trained

together. The modules in their frameworks are added in a

carefully arranged order. Specifically, a framework with a

PCD module and shallower restoration modules is trained

first. Then, a TSA module is plugged in. Furthermore,

more restoration modules can be stacked on to get a deeper

frameworks. Frameworks trained by their method achieve

better performance than the corresponding networks that are

trained once-off.

In the final phase, the frameworks with the best per-

formance are selected to produce the final test videos, i.e.

Framework1, Framework3 and Framework4. Framework2

is only used for the last submission in the development

phase.

4.7. DPE (baseline for track 2)

DPE [8] is originally developed for weakly-supervised

photo enhancement. For track 2, we apply it to enhance

videos frame by frame. In particular, DPE treats the prob-

lem with a two-way GAN whose structure is similar to Cy-

cleGAN [46]. To address the unstable training issue of

GANs and obtain high-quality results, DPE proposes a few

improvements along the way of constructing the two-way

GAN. First, it suggests to augment the U-Net [29] with

global features for the design of the generator. In addition,

individual batch normalization layers are proposed for the

same type of generators. For better GAN training, DPE pro-

poses an adaptive weighting Wasserstein GAN scheme.

4.8. WESPE (baseline for track 2)

Similar to DPE [8], WESPE [17] is another baseline

that exploits the GAN technique for weakly supervised per-

frame enhancement. The WESPE model comprises a gen-

erator G paired with an inverse generator Gr. In addition,

two adversarial discriminators Dc and Dt and total vari-

ation (TV) complete the model’s objective definition. Dc

aims at distinguishing between high-quality image y and en-

hanced image ỹ = G(x) based on image colors, and Dt dis-

tinguishes between y and ỹ based on image texture. More

specially, the objective of WESPE consists of: i) content

consistency loss to ensure G preserves x’s content, ii) two

adversarial losses ensuring generated images ỹ lie in the tar-

get domain Y : a color loss and a texture loss, and iii) TV

loss to regularize towards smoother results.

4.9. DACAL (baseline for track 2)

For track 2, we suggest the DACAL method [15] as

the last baseline, which enhances videos directly. To

further reduce the problem complexity, DACAL decom-

poses the photo enhancement process into multiple sub-

problems. On the top level, a perception-based division

is suggested to learn additive and multiplicative compo-

nents, required to translate a low-quality image or video

into its high-quality counterpart. On the intermediate level,

a frequency-based division is exploited in the GAN con-

text to learn the low- and high-frequency based distribu-

tion separately in a weakly-supervised manner. On the

bottom level, a dimension-based division is suggested to

factorize high-dimensional distributions into multiple one-

dimensional marginal distributions for better training on the

GAN model. To better deal with the temporal consistency

of the enhancement, DACAL introduces an efficient recur-

rent design of the GAN model. The



Method ↑PSNR ↑SSIM ↓LPIPS TrainingReq TrainingTime TestReq TestTime Parameters ExtraData

P
ar

ti
ci

p
an

ts

BossGao 32.419 0.905 0.177 8×V100 5-10d 1×V100 4s n/a No

JOJO-MVIG 32.167 0.901 0.182 2×1080Ti ≈ 4d 1×1080Ti 2.07s ≈22.75M No

GTQ 32.126 0.900 0.187 2×2080Ti ≈ 5d 1×2080Ti 9.74s 19.76M No

ECNU 31.719 0.896 0.198 2×1080Ti 2-3d 1×1080Ti 1.1s n/a No

TCL 31.701 0.897 0.193 2×1080Ti ≈ 3d 1×1080Ti 25s ≈8.92M No

GIL 31.579 0.894 0.195 1×970Ti ≈ 6d 1×970Ti 11.37s 3.60M No

7-th team 30.598 0.878 0.176 n/a 4d n/a 0.5s ≈7.92M Yes

No processing 30.553 0.877 0.176

Table 1: Quantitative results for Track 1. Bold: best, Underline: second and third best. TrainingTime: days, TestTime:

seconds per frame.

5. Challenge Result Analysis

5.1. Track 1: Supervised VQM

This challenge track aims at restoring the discarded in-

formation, which has been lost due to compression, with

the highest fidelity to the ground truth. Because of full su-

pervision, the ranking among the participating teams can be

computed objectively.

Metrics The most popular full reference metrics to eval-

uate the quality of images and videos are PSNR and SSIM.

PSNR can be computed directly from the mean-squared-

error (MSE). Therefore, L2-norm based objectives are com-

monly used to obtain high PSNR scores. SSIM is calculated

from windows based statistics in images. In this challenge,

both metrics are calculated per frame and averaged over all

sequences. Table 1 reports the quantitative results of partici-

pating methods as well as the baseline, i.e. the input without

any processing. With a PSNR value of 32.42dB and SSIM

score of 0.91, team BossGao achieves the highest scores

overall and is the winner of challenge track 1. Team JOJO-

MVIG and GTQ follow closely with a PSNR difference of

0.25dB and 0.29dB to the winner respectively. The remain-

ing teams also achieve respectable PSNR scores slightly be-

low 32dB. The ranking in terms of SSIM is almost the same.

In addition, as can be seen by the reported training times,

capacity and test times, models with more parameters and

teams with more processing power generally perform bet-

ter. However, team ECNU manages to surpass more ex-

pensive methods with the fastest runtime. Team GIL tar-

gets for a compact network with the least parameters, which

can be trained on a single lower-end GPU but still produces

promising enhancement results.

Visual Comparison Selected samples from the test data

are provided in Fig. 9 to compare the visual quality of the

enhanced video frames among all teams. The visual com-

parison shows that team BossGao also performs the best

for the quality enhancement on such sampled frames. It

should be noted that due to the inherent loss of information

after compression, fidelity based methods are not able re-

construct all high frequency details and tend to over-smooth

the content. In order to assess continuity between frames,

temporal profiles for all teams are provided in Fig. 10. A

single vertical line of pixels is recorded over all frames in

the sequence and stacked horizontally.

Additionally, we computed LPIPS [44] scores to com-

pare perceptual quality among the teams. Optimizing for

perceptual quality was not required by the participants in

this challenge track, but the metric still provides interesting

insights into quantitative quality assessment and its limi-

tations. The scores among all teams is roughly consistent

with PSNR and SSIM, which implies that the top teams

also produce visually more pleasing results compared to

their competitors. Interestingly, the input without process-

ing along with team 7, which basically doesn’t alter the in-

put, achieves the best score. We assume that the distortions,

due to smoothing of L2-norm based methods, cause worse

scores for the top teams, despite much higher reconstruction

quality. In contrast, compression algorithms are designed

to optimize for perceptual quality, which could lead to the

strong LPIPS score for the input.

5.2. Track 2: Weakly­Supervised VQM

In this challenge track, the goal of the task is to enhance

the video characteristics from a low quality device (ZED

camera) to the characteristics of a high-end device (Canon

5D Mark IV) with limited supervision. Weak supervision

is provided by weakly-paired videos, which share approxi-

mately the same content and are roughly aligned in the spa-

tial and temporal domain.

Metrics Since there is no pixel-aligned ground truth

available, full reference metrics are no option for qual-

ity assessment. Usually, results for these types of prob-

lems are scored by a MOS study, conducted by humans

visually comparing different methods. While there exist

metrics to measure distances between probability distribu-

tions for high level content, e.g. Fréchet Inception Dis-

tance (FID) [12], that are widely applied to generative mod-

els, finding reliable metrics for low-level characteristics re-

mains an open problem. Popular perceptual metrics such as
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Figure 9: Visual Comparison for Track 1.
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Figure 11: Visual Comparison for Track 2.
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Figure 12: Temporal Profiles for Track 2.

Source WESPE DPE DACAL

LPIPS↓ 0.590 0.755 0.793 0.750

Table 2: LPIPS scores for Track 2. Bold: best, Underline:

second best.

Learned Perceptual Image Patch Similarity [44] metric and

Perceptual Index [6] are used in the field too. However, we

found the scores for these metrics are not suitable for the

problem setting in this challenge and do not always corre-

late with human perception. Perceptual Index is not a rel-

ative score, it only measures general quality. However, we

are interested in measuring the mapping quality from one

domain to another. LPIPS requires aligned frames which is

a problem since the frames are only roughly aligned. Never-

theless, we provide LPIPS scores for a selection of methods

along with visual results, see Table 2, Fig. 11 and Fig. 12.

Surprisingly, the source without processing achieves the

best score by a large margin. While source and target frames

are captured by a real camera, the methods alter the videos

artificially. Since LPIPS relies on a feature extractor, which

is trained on real images, this could lead to worse scores for

the methods, due to low level distortions.

Visual Comparison Since there are no submissions for

this track, visual results and temporal profiles for a selection

of recent image and video quality mapping methods is pro-

vided as reference in Fig. 11 and Fig. 12 . WESPE [17] and

DPE [8] are single image methods which are applied per

frame, DACAL [15] is a true video enhancer. All the com-

peting methods are trained on the Vid3oC dataset [20]. The

visual results show that DACAL preserves more details and

enhances contrast better, while WESPE introduces biased

colorization and DPE produces blurry textures.

6. Conclusions

This paper presents the setup and results of the NTIRE

2020 challenge on video quality mapping. This challenge

addresses two real world settings: track 1 concerns video

quality mapping from more compressed videos to less com-

pressed ones with available paired training data; track 2 fo-

cuses on video quality mapping from a lower-end device to

a higher-end device, given a collected weakly-paired train-

ing set. 7 teams competed in Track 1 in total. The par-

ticipating methods demonstrated interesting and innovative

solutions to the supervised quality mapping on compressed

videos. In contrast, we evaluated three existing methods for

track 2, showing their performance is promising but much

effort is still needed for better video enhancement. The

evaluation with LPIPS on both challenge tracks reveals the

limits of current quantitative perceptual quality metrics and

shows the need for more research in that area, especially

for track 2 where no pixel-aligned reference is available.

Our goal is that this challenge stimulates future research

in the area of video quality mapping in either supervised

or weakly-supervised scenarios, by serving as a standard

benchmark and by the evaluation of new baseline methods.
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