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Abstract

Deep learning-based mobile imaging applications are

often limited by the lack of training data. To this end, re-

searchers have resorted to using synthetic training data.

However, pure synthetic data does not accurately mimic

the distribution of the real data. To improve the utility of

synthetic data, we present a systematic pipeline that takes

synthetic data coming purely from a game engine and then

produces synthetic data with real sensor characteristics

such as noise and color gamut. We validate the utility of

our sensor-realistic synthetic data for multi-frame high dy-

namic range (HDR) photography using a Samsung Galaxy

S10 Plus smartphone. The result of training two baseline

neural networks using our sensor realistic synthetic data

modeled for the S10 Plus show that our sensor realistic syn-

thetic data improves the quality of HDR photography on

the modeled device. The synthetic dataset is publicly avail-

able at https://github.com/nadir-zeeshan/

sensor-realistic-synthetic-data.

1. Introduction

With the recent breakthrough in deep learning and the

growth in computational capability of mobile phone plat-

forms, deep learning-based imaging applications have been

extensively deployed on mobile devices [54, 9]. Such ap-

plications include synthetic aperture (bokeh) [48], night

shot [5], burst shot [1], etc. However, one generic trained

network model does not fit for all mobile devices, as differ-

ent mobile devices have different cameras (image sensors)

with unique characteristics. Thus, the network model needs

to be tuned for an individual device in order to maximize

its capability [9]. An important requirement to train deep

learning frameworks for developing an accurate model is
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(a) One example of dynamic sets in our synthetic training data at three

exposure levels (i.e., low, medium, and high from left to right).

(b) One example of real images captured by a smartphone at three expo-

sure levels (i.e., low, medium, and high from left to right).

Figure 1. Our synthetic dataset for multi-frame HDR contains di-

verse 3D background models and various subject motions to sim-

ulate dynamic real-world HDR scenarios.

the availability of abundant training data [18, 7]. Cap-

turing a large training dataset for training deep learning

models for specific sensors is nearly impossible in the real-

world because real data collection is limited by several con-

straints, including cost and privacy [24]. While there has

been progress made on the computational fronts, the deep

learning community still has a “data problem” at large.

The need for training data has led to an interest in syn-

thetic data. Synthetic data offers many obvious advantages

over real data: (i) There is no privacy concern in synthetic

data, as people do not have to worry about their personal

information being exposed. (ii) Synthetic data is cheap

at large-scale; ideally, researchers can generate an infinite

amount of data. (iii) In many cases, it is easy to gener-

ate ground-truth for synthetic data. (iv) Synthetic data is

more flexible to be customized, e.g., motions can be cus-

tomized for the deghosting problem in HDR [46, 21]. One

approach to generate synthetic data is using the game devel-
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opment platforms, such as the Unreal Engine [15]. How-

ever, a key shortcoming of such synthetic data is that it does

not model actual camera characteristics, such as color space

and noise. The gap between synthetic and real data may not

pose a huge difficulty in some applications, such as optical

flow [3, 11]. However, for other applications, the gap be-

tween synthetic and real data presents issues; for an HDR

imaging task, learning the color, tone and noise characteris-

tics of the training data is important for accurate results.

HDR is one of the most essential imaging applications

for smartphone cameras to capture high quality and well-

exposed pictures. Multi-frame HDR increases the dynamic

range of captured images by merging several low dynamic

range (LDR) frames of different exposure levels. Merg-

ing suffers from corner cases and artifacts from dynamic

scenes (objects moving in scenes) [51]. Researchers have

introduced several deep learning-based HDR imaging ap-

proaches to overcome the limitations. Kalantari et al. [26]

proposed to learn the merging process. Wu et al. [52] fur-

ther proposed an end-to-end deep learning-based HDR so-

lution to handle large foreground motions in consecutive

captures without using optical flow for image registration.

However, because of the limitations of capturing real data,

both prior works only compiled and used a small train-

ing dataset (around 75 sets). Moreover, pre-trained mod-

els from these works yield poor quantitative and qualitative

HDR results, as we tested on smartphone images captured

by a Samsung Galaxy S10 Plus smartphone.

As far as we are aware of, no prior work has used syn-

thetic data in training deep learning models for HDR imag-

ing because using synthetic data without modeling sensor

characteristics in HDR applications sometimes lead to bad

results. Figure 2 shows that fine-tuning a HDR network

(pre-trained on real data) with pure synthetic data (without

modeling the sensor color space and noise characteristics)

makes the HDR network more susceptible to noise and pro-

duces worse HDR outputs. Therefore, the gap between real

and synthetic data such as noise and color space needs to

be filled before the synthetic data can be used reliably for

deep-learning based HDR imaging.

To improve the utility of synthetic data, we explore a

pipeline to apply sensor realism to pure synthetic data by

carefully modeling the sensor’s color space and noise char-

acteristics. We first generate pure synthetic data from the

Unreal Engine [15]. Then, we use the targeted image sen-

sor to capture a few real images containing a color checker

chart [53]. After the color and noise characteristics are

extracted from those images, we apply those characteris-

tics to the engine-generated pure synthetic data, such that

sensor-realistic data tailored to the targeted image sensor is

obtained. Currently, our HDR dataset contains 150 sets of

pure synthetic data and 150 sets of sensor-realistic synthetic

data (modeled for the S10 Plus). Notice that each sensor has

HDR Ground-truth Pre-trained Pure-synthetic

Figure 2. Fine-tuning a HDR network (pre-trained on real data)

with pure synthetic data (without sensor modeling) makes the net-

work more susceptible to noise. Excessive unnatural white dots

can be identified in the output generated from the network fine-

tuned with pure synthetic data (pure-synthetic) than the network

pre-trained on real data (pre-trained).

its unique realism. The color calibration and noise model-

ing pipeline needs to be performed for each different sensor

separately.

We validate our sensor-realistic synthetic dataset through

training on two baseline deep HDR networks. Both net-

works follow an encoder-decoder based architecture [36].

Network-1 is pre-trained with real images captured by our

targeted S10 Plus. Network-2 is presented by Wu et al.

in [52], which is pre-trained using the Kalantari dataset [26]

captured by a Canon EOS-5D Mark III camera. We test

both networks on static scenes captured by our targeted

S10 Plus, even though network-2 is pre-trained on dynamic

scenes captured by a different device. In this work, we fo-

cus on analyzing the utility of sensor-realistic synthetic data

for improving learning-based HDR imaging on the mod-

eled device. However, we will explore how to utilize syn-

thetic data (e.g., engine-generated accurate motion masks)

to handle dynamic scenes in future works. Results show that

both networks yield improved HDR results generated from

real images captured by the S10 Plus after being fine-tuned

with our sensor-realistic synthetic dataset modeled for that

S10 Plus. In addition, we apply different sensor models to

the synthetic data (two color spaces and three noise levels)

to analyze their influence on real HDR output. The results

confirm that applying the correct sensor model is necessary

to yield the best HDR output.

Our main contributions are summarized as follows:

• We solve the problem of insufficient training data

in deep learning-based HDR imaging by introducing

a synthetic data generation pipeline which produces

sensor-realistic synthetic data that has the color and

noise characteristics of the modeled image sensors.

• We contribute a multi-exposure sensor-realistic syn-
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thetic dataset modeled for a Samsung Galaxy S10 Plus

(examples shown in Figure 1). The generated sensor-

realistic synthetic data is a practical solution to im-

prove the performance of deep learning-based HDR

imaging for specific mobile devices.

• We present a detailed analysis on applying different

sensor realism models to synthetic data for affecting

the performance of the real HDR output.

2. Related Work

AI HDR imaging Kalantari et al. [26] introduced learning-

based multi-frame HDR merging. Wu et al. [52] further

proposed an end-to-end deep learning-based HDR frame-

work without using optical flow for image registration. Eil-

ertsen et al. [12] proposed a deep learning algorithm to re-

construct an HDR image from a single exposure. Zhang et

al. [58] proposed to learn to reconstruct HDR from LDR

panoramas. Yang et al. [56] designed a novel framework

in which they utilized one CNN for reconstructing miss-

ing details in the HDR domain in LDR images and another

CNN for tonemapping on the predicted HDR details. Yan et

al. [55] introduced an attention-guided network to improve

HDR merging by reducing errors caused by misalignment

and saturation. Mostafavi et al. [23] combined GAN and

event cameras to generate HDR images even in extreme il-

lumination conditions. Though many previous works tried

to improve HDR imaging by leveraging the power of neu-

ral networks, none of them attempted to integrate synthetic

data into the training process.

Synthetic data for AI tasks Synthetic data is already

broadly deployed for training neural networks in a variety

of tasks, including pose estimation [47, 34], object detection

and tracking [14, 20], text localization [16], semantic seg-

mentation [17, 22, 45, 29], generating X-Ray images [41],

etc [49]. Other than public synthetic datasets such as Sin-

tel [4], SYNTHIA [37], Flying Chairs [11], and Virtual

Kitti [14], some researchers have tried to design frameworks

and tools to help others generate good synthetic data from

multiple sources [31, 44, 33, 35, 59]. However, the syn-

thetic data generated from these sources does not appear

realistic. To address this, some researchers have tried to im-

prove the realism of synthetic data from multiple aspects to

better serve neural networks [38, 40, 28, 39, 2, 43, 17, 45].

Shrivastava et al. [40] introduced simulated and unsuper-

vised learning to improve the realism of synthetic eyes for

better performance on gaze estimation and hand pose esti-

mation. Tremblay et al. [43] improved the realism of syn-

thetic data by randomizing its textures, pose, lighting, etc.

Ledig et al. [28] added a perceptual loss function into the

training process to recover more realism in the generated

super-resolution images. However, none of these works

modeled the realism of different sensors, such as the sen-

sor specific noise characteristics and color gamut. Thus,

these works cannot produce synthetic data that is realis-

tic enough to train the network to yield the best result on

targeted devices, especially for data-driven computational

photography tasks such as deep HDR imaging.

3. Sensor-realistic Synthetic Data

Figure 3 shows our proposed sensor-realistic synthetic

data generation and processing pipeline together with one

example of the synthetic data before and after sensor real-

ism is applied. Unreal Engine is used for rendering vari-

ous synthetic models and motions and generating synthetic

multi-exposure images. Then, to bridge the gap between

synthetic and real data, we model the sensor realism (color

calibration and noise modeling) of the targeted sensor in

accordance with real capture parameters, such as exposure

time and ISO. Sensor-realistic synthetic data helps neural

networks to better deal with color and noise which are of-

ten very important factors in real images. Please refer to

the supplementary material for steps about how to imple-

ment this pipeline to get your sensor-realistic synthetic data

tailored for your targeted mobile device.

3.1. Synthetic Data Generation

Unreal Engine is a suite of tools for game developers to

design and build games [15]. This engine has been proven

effective in rendering a variety of synthetic scenes. Our

work utilizes various Unreal Engine human models includ-

ing a variety of indoor and outdoor 3D environments, as

well as various types of human models with diverse motions

to simulate realistic data examples.

We implement a synthetic data capture loop using the

Blueprints visual scripting system in Unreal Engine. In each

synthetic data capture loop, we move the virtual camera to

a desired location and then press the capture button (e.g.,

a keyboard input), just like capturing images in real-world.

In particular, we are able to control the following factors in

capturing synthetic data. First, we can control the camera

view point to precisely control the under- and over-exposed

regions inside each image. By doing this, we can simu-

late diverse HDR scenarios which are hard to acquire when

capturing real images. Second, we can control the subject

motion, e.g., the movement of a human models. In partic-

ular, we stop the subject motion to generate static sets for

the purpose of acquiring ground-truths. Then, we resume

the subject motion to generate dynamic sets which can sim-

ulate challenging scenarios containing possible motions in

real-world HDR captures. Third, we can control the camera

parameters to generate images at different exposure levels

(e.g., {EV-2, EV0, and EV2}). This capture loop can be

repeated until enough training data is acquired.
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Figure 3. Our sensor-realistic synthetic data generation and processing pipeline generates synthetic multi-exposure images, models the

sensor realism (color calibration and noise modeling), and applies the sensor realism to pure synthetic data to turn it into sensor-realistic

synthetic data. This sensor-realistic synthetic data example shows warmer color tones similar to the modeled device.

3.2. Color Calibration

The color gamut [50] of real cameras differ from man-

ufacturer to manufacturer and model to model. Therefore,

the captured images yield different color and tone character-

istics. However, despite Unreal Engine producing colorful

images, it always generates data in the same color space

that does not necessarily resemble with the sensor of inter-

est. The color calibration component in Figure 3 shows our

approach to model the color space difference between Un-

real Engine and the real sensor.

To begin with, we put a light probe inside a targeted

scene [8, 32]. The light probe we used is a stainless steel

gazing ball. It helps to provide the lighting information

for a static scene. Then, we use the modeled image sen-

sor (a S10 Plus in this work) to capture two images of that

light probe from two different angles. The two captured

images contain all illuminations in 360◦ of that targeted

scene. After that, we use the HDRShop [27] tool to au-

tomatically encode the illumination information extracted

from the two captured images. Then, the illumination can

be imported into Unreal Engine as a cubemap to light up a

synthetic color checker. We adjust the exposure, exposure

compensation, ISO, aperture, and light intensity in the Post-

ProcessingVolume [15] for the virtual camera inside Unreal

Engine according to the camera parameters in real captures.

Finally, we proceed to capture the synthetic color checker

(ColorSynthetic) with the virtual camera. To acquire the

real color checker image, we simply use the modeled image

sensor again to capture a real color checker (ColorReal) in

the targeted scene under the same lighting condition. By

sampling the color difference between the real color checker

ColorReal and the synthetic checker ColorSynthetic, we

estimate the color space transition matrix T using least

squares for the modeled device, as shown in Equation 1.

ColorReal = T · ColorSynthetic (1)

3.3. Noise Modeling

To mimic real smartphone images, we model the smart-

phone camera sensor noise characteristics using normal ap-

proximation to Poisson-Gaussian noise [57, 25, 13]. To val-

idate this approximation, we conduct experimental analy-

sis of the sensor noise in raw images. A total of 600 im-

ages were captured under twelve imaging conditions. Each

imaging condition has a different combination of illumina-

tion temperature, ISO level and illumination brightness. For

each imaging condition, we captured 50 frames to obtain a

noise-free image by time-averaging after excluding defec-

tive and saturated pixels. From this dataset, we estimate the

parameters (a, b) of a signal-dependent additive Gaussian

noise with the distribution given as:

N (z|0, σ(i, j)2) = 1

σ(i, j)
√
2π

e
−z2

2σ(i,j)2 , (2)

where σ(i, j)2 is the pixel dependent variance given as

σ(i, j)2 = a ∗ I(i, j) + b , (3)

and I(i, j) is the signal value at pixel (i, j). The param-

eters a and b control the amount of signal dependent and

signal independent components of noise estimated for dif-

ferent ISO levels, respectively.

4. Network Models

To validate our sensor-realistic synthetic dataset, we

train two different AI networks for multi-frame HDR imag-

ing. First, we use the basic encoder-decoder based archi-

tecture, also known as U-Net. We use this architecture to

generate the blending weights (Blendmap) for the input im-

ages [26] and then use the exposure fusion algorithm to

blend the input frames using the blending weights obtained

through the network [30]. Second, we use the network pre-

sented in [52], which is a derivative of an encoder-decoder

architecture. This network takes several LDR images at dif-

ferent exposure levels and directly outputs the HDR image.

Besides the architectural difference, Network-1 is pre-

trained on a real dataset collected by us using a Samsung

Galaxy S10 Plus smartphone. Whereas, Network-2 is pre-

trained on the dataset provided by [26] captured by a Canon

EOS-5D Mark III camera. We are not comparing the HDR
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Figure 4. HDR image processing pipeline in Network-1 replaces

the Blendmap Generation step with the deep learning network to

produce the blending weight maps.

quality between these two networks. However, we focus on

demonstrating the effectiveness of our sensor-realistic syn-

thetic data by observing improvements in HDR results for

both networks.

4.1. Network1

The first network we use is U-Net, which is famous

in image segmentation applications [10, 36, 6]. We pose

the HDR imaging as a segmentation problem such that

our network produces a discrete blending weight for ev-

ery pixel. We discretize the blending weights into 256

levels such that for a pixel i, the blending weight wi ∈
{ 0

256
, 1

256
, . . . , 256

256
}. To generate the final HDR output from

the blending weights, we use Laplacian pyramids of the in-

put images and blend them similar to the exposure fusion

algorithm [30]. To tone map the output image, we apply an

exponential tone mapping curve, similar to gamma correc-

tion. Figure 4 shows our HDR image processing pipeline

for this network.

The network architecture shown in Figure 5 contains an

encoder branch, as well as a decoder branch. The encoder

branch of the network helps gain contextual knowledge of

the input images to understand the general image structure,

whereas the decoder branch reconstructs the final blend-

ing weight maps. Between the encoder and the decoder

branches, there are skip connections that help in increasing

the resolution of the blending weight maps.

We use a weighted L1 loss function to train the model

considering that the training data is unbalanced, i.e., it con-

tains unequal amounts of different tonal values. When com-

puting the weighted L1 loss function, we penalize the loss

function for each of the 256 output channels differently. The

weighting used for each of the 256 channels is inversely

proportional to their frequency of occurrence in the training

data. Mathematically, the loss function is given as follows:

L(x, y) =
∑

w∈W

255
∑

i=0

∣

∣

∣
fw (x, θ)− yw

∣

∣

∣
αi I (yw == i) , (4)

where θ are network parameters, x are input image frames,

fw(x, θ) is network output on pixel w, W is the patch, αi

is weighting for output channel i and I(.) is indicator func-

tion. Figure 6 shows the weighting coefficients computed

for both real and synthetic training data. We use the respec-

tive weighting coefficients when training the network.

To pre-train this network, we use 308 static scenes ac-

quired from a Samsung Galaxy S10 Plus smartphone. For

Encoder Decoder

Pooling Transpose Convolution

32 64 128 256 512 256 128 64 32 256

Convolution

Input 

Layer

Figure 5. The architecture used to produce blending weight maps

in Network-1. Each block has their number of channels written

underneath them. All encoder blocks consist of two convolutional

layers. The decoder blocks consist of a transposed convolutional

layer followed by two convolutional layers. We use 3×3 filters for

all the layers except for the last layer where we use 5× 5 filters.
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(a) Weighting coefficient for

real training data.
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(b) Weighting coefficient for

synthetic training data.

Figure 6. Weighting coefficients computed over the two different

training datasets. Weighting coefficients are inversely proportional

to the frequency of occurrence of different classes in the training

data ground truth blending maps. Class 0 represents fully saturated

region, whereas class 255 represents fully underexposed region.

each scene, we use a pair of low exposure and high exposure

frames in the 8-bit RGB format. These frames are first fed

to the exposure fusion algorithm [30] to generate the blend-

ing weights, which is used as the ground-truth to pre-train

the network. The pre-trained network produces the baseline

results for comparisons. Finally, we fine-tune this network

using 150 static samples of sensor-realistic training data.

4.2. Network2

Second, we use the network architecture proposed by

Wu et al. in [52]. The network architecture is a deriva-

tive of U-Net. There are three different encoder branches,

one for each of the three input exposure levels, a merger

branch, and a decoder branch. The loss function is com-

puted using the L2 norm, however, the network output and

the ground-truth images are tone-mapped first using µ-law

with µ = 5000 [52].

In our experiments, we use the pre-trained network pro-
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vided by the authors, which is trained on Canon EOS-5D

Mark III camera for producing the baseline results. To train

the network with our sensor-realistic synthetic data, we use

the same loss function and training scheme as [52]. More

specifically, for each sample, we first generate a set of static

frames at three different exposure levels as well as a set of

dynamic frames at the same three exposure biases. Next,

we apply the color space and noise model on these frames

to model the sensor characteristics. The middle exposure

level is treated as the reference frame. The network learns

to handle the motion by manipulating the training data. Dur-

ing the training, the two non-reference frames in the static

set are replaced by the corresponding dynamic frames and

this new set of three frames makes a single training sam-

ple [26, 52].

5. Dataset

Except for the real datasets used to pre-train the net-

works, we use both synthetic and real datasets in the exper-

iments performed in §6. The real dataset is used to test the

final HDR results, whereas the synthetic dataset is used to

fine-tune the network models pre-trained on real data. No-

tice that because of the many differences between Network-

1 and Network-2, such as the exposure level of input images

and the combinations of real data used in pre-training, we

used 1) different versions of synthetic dataset in fine-tuning

each network (static data for Network-1 and dynamic data

for Network-2); 2) different methods to generate ground-

truth (a proprietary algorithm for Network-1 and the linear

triangular method for Network-2). However, both networks

are tested on static real datasets because we are interested

in exploring the utility of synthetic data to increase the dy-

namic range of the photograph without having a confound-

ing effect coming from ghost artifacts. We intend to explore

deghosting with the help of synthetic data in a future paper.

Datasets used in Network-1 A pure synthetic dataset

contains 150 sets of static synthetic images generated by

following the procedure in §3.1. A sensor-realistic synthetic

dataset contains 150 sets of static synthetic images with the

sensor realism modeled for a Samsung Galaxy S10 Plus

smartphone applied by following the procedure described

in §3.2 and §3.3. A real testset (testset-1) contains 24 sets

of static images captured by the modeled device at a res-

olution of 4032x3024. All three datasets are captured at

two exposure levels (i.e., {EV-3 and EV0}). We use a pro-

prietary algorithm to compute the Blendmap first and then

use the exposure fusion algorithm [30] to generate the HDR

ground-truth for datasets used in this network.

Datasets used in Network-2 We used four versions of

sensor-realistic synthetic datasets each containing 150 sets

of synthetic images with different color calibration models

and noise models applied to fine-tune Network-2. Each set

in each synthetic dataset contains a static subset with mo-

tion stopped and a dynamic subset with motion resumed. A

real testset (testset-2) contains 15 sets of static images cap-

tured by our modeled device at a resolution of 4032x3024.

All datasets are captured at three exposure levels (i.e., {EV-

2, EV0, and EV2}). We follow the same linear triangular

method described in [52] to generate the HDR ground-truth

from the static sets, replace the reference frame in the dy-

namic sets by the reference frame in static sets, and then

feed the modified dynamic sets together with the ground-

truth to the network for fine-tuning.

Please refer to the supplementary material for some ex-

amples in each synthetic dataset.

6. Evaluation

6.1. Experiments

We evaluate and verify the effectiveness of our sensor-

realistic synthetic data in three separate experiments.

1. We fine-tune Network-1 with the pure synthetic dataset

and the sensor-realistic synthetic dataset, separately.

Then, we compare the HDR results quantitatively

among the original pre-trained network (Net O), the

network fine-tuned with pure synthetic data (Net P),

and the network fine-tuned with sensor-realistic syn-

thetic data (Net S), tested on the real testing dataset

testset-1.

2. We fine-tune Network-2 only with the sensor-realistic

synthetic dataset. We compare the HDR results quan-

titatively among Net O and Net S, tested on the real

testing dataset testset-2.

3. We fine-tune Network-2 with different versions of the

sensor-realistic synthetic dataset with different sensor

models (two color models and three noise levels) ap-

plied. We analyze in detail how different sensor mod-

els will affect the quality of the real HDR output, also

tested on testset-2.

To train the network, we use the TensorFlow library [42]

on the Linux platform in all three experiments. In Experi-

ment 1, we train Network-1 for 300 epochs on two Nvidia

Titan Xp GP102 GPUs. To augment the data, we select a

patch randomly in the input samples, and perform random

horizontal and vertical flips as well as rotations by 90 de-

grees. In Experiment 2 and 3, we train Network-2 presented

in [52] for 50 epochs on an Nvidia GeForce RTX 2080Ti

GPU. Data augmentation (random flipping and rotating) is

performed while generating TFRecords [42] before train-

ing, as introduced in [52].

6.2. Quantitative Results

To evaluate and compare the results, we quantify the

HDR output using metrics mentioned in [26]. We com-

6



Network-1 Net O Net P Net S

PSNR-T 40.40 39.48 41.56

PSNR-L 37.70 37.06 39.54

SSIM-T 0.9927 0.9893 0.9930

SSIM-L 0.9934 0.9880 0.9937

Table 1. Network-1 fine-tuned with our sensor-realistic synthetic

dataset (Net S) outperforms the network pre-trained with real data

only (Net O), and the network fine-tuned with pure synthetic data

(Net P). The results are averaged across 24 samples in testset-1.

pute PSNR-T for the peak signal-to-noise ratio between two

tone-mapped images and PSNR-L for the peak signal-to-

noise ratio between two images in the linear domain. Sim-

ilarly, we compute the perceptual difference SSIM-T after

tone mapping and SSIM-L in the linear domain. All quanti-

tative results are averaged across the number of test images.

Table 1 shows the HDR results from experiments per-

formed on Network-1 (Experiment 1). The network fine-

tuned with our sensor-realistic data yields the best HDR

results in all metrics, whereas the network fine-tuned with

pure synthetic data actually performs worse than the net-

work pre-trained with real data only. Figure 7 shows an

example of the HDR results before and after the network

is fine-tuned with our sensor-realistic synthetic dataset.

In detail, the network fine-tuned with the sensor-realistic

synthetic dataset outputs more details on the background

through the window. Note that the improvement coming

from the sensor-realistic synthetic data is not very drastic in

Network-1 because this network is already pre-trained with

real data captured by the modeled device (the same sensor

realism model applied to synthetic data).

Table 2 shows the HDR results from experiments per-

formed on Network-2 (Experiment 2). This network was

pre-trained on Kalantari dataset coming from Canon EOS-

5D Mark III camera [26]. The pre-trained network has very

low PSNR-T and SSIM-T values when tested on Samsung

Galaxy S10 plus images from testset-2. However, after fine-

tuning with our sensor-realistic synthetic dataset, PSNR-

T and SSIM-T are improved substantially by 26.82% and

34.29% respectively, tested again on testset-2 captures com-

ing from the modeled device. Figure 8 shows an example of

the HDR output before and after the network is fine-tuned

with our sensor-realistic synthetic dataset. Note that the im-

ages are equally enhanced using the Photomatix tool [19]

for visualization. In Figure 8, the network outputs better

detail in the window and tree. In Experiment 2, we did not

fine-tune Network-2 with pure synthetic data because this

network is pre-trained with a completely different dataset

captured by a Canon camera. Fine-tuning the network with

sensor-realistic data after pre-training the network with data

coming from a different sensor can have confounding ef-

fects because of the non-convexity of the optimization prob-

lem and the performance can be unpredictable. We plan

Network-2 Net O Net S

PSNR-T 19.50 24.73

SSIM-T 0.5783 0.7766

Table 2. HDR results for fine-tuning Network-2 using our sensor-

realistic synthetic dataset. Both PSNR-T and SSIM-T are im-

proved when tested on real images captured by the modeled sensor.

The results are averaged across 15 samples in testset-2

Network-2 S9 Color S10 Plus Color

PSNR-T 17.95 24.73

SSIM-T 0.6174 0.7766

Table 3. HDR results for fine-tuning Network-2 [52] using the

sensor-realistic synthetic data with different color calibration mod-

els applied. Network fine-tuned with synthetic data modeled for

S10 Plus performs better on captures from S10 Plus. The results

are averaged across 15 samples in testset-2.

to conduct a different experiment to train Network-2 from

scratch with data from S10 Plus and different forms of syn-

thetic data in future.

Please refer to the supplementary material for more ex-

amples showing the experimental results.

6.3. Ablation Study

In addition to the quantitative results shown above, we

perform a detailed analysis on Network-2 to study how dif-

ferent sensor models applied to synthetic data can affect the

HDR results (Experiment 3).

For analyzing the influence of color calibration, we com-

pare the HDR results between the networks fine-tuned us-

ing two versions of sensor-realistic synthetic data with two

different color spaces applied (color spaces modeled for a

Samsung Galaxy S9 and a S10 Plus accordingly). Table 3

shows that fine-tuning the network using the sensor-realistic

synthetic data with the color space modeled for S10 Plus ap-

plied yields better HDR results tested on S10 Plus captures.

For analyzing the influence of noise modeling, we com-

pare the HDR results among the networks fine-tuned with

multiple versions of the sensor-realistic synthetic dataset

with different amount of noise added (ISO levels at 50, 200,

and 400). Due to the majority of images in testset-2 being

taken at ISO 50 (9 out of 15 sets) and ISO 200 (5 out of

15 sets), with only 1 set of images taken at ISO 320, PSNR

value is decreased as more noise (higher ISO) is added to

synthetic training data, as shown in Table 4.

Applying the correct sensor realism to the synthetic data

is necessary to yield the best HDR result. In other words,

data augmentation methods such as randomly adding noise

or shifting color will make the network perform even worse.

Synthetic data cannot replace true data, at least for HDR

applications for now. We will explore training the network

with less true data and more sensor-realistic synthetic data

in future works.

7



HDR Ground-truth Ground-truth Pre-trained Pure-synthetic Sensor-realistic

PSNR: 42.14 PSNR: 43.44 PSNR: 46.96

Figure 7. Network-1 fine-tuned with our sensor-realistic synthetic dataset (sensor-realistic) outputs more details (closest to ground-truth)

for the building seeing through the window than the outputs from the network fine-tuned with pure synthetic data (pure-synthetic) and the

network pre-trained with real data only (pre-trained). Note that the improvement coming from the sensor-realistic synthetic data is not very

drastic in Network-1 because this network is already pre-trained with real data captured by the targeted S10 Plus device (the same sensor

realism model applied to synthetic data).

HDR Ground-truth Ground-truth Pre-trained Sensor-realistic

Figure 8. Network-2 [52] fine-tuned with our sensor-realistic synthetic dataset (sensor-realistic) outputs more details (window, tree) in the

shaded area, while the pre-trained network (pre-trained) fails. Images are equally enhanced by Photomatix [19] for visualization.

Network-2 ISO 50 ISO 200 ISO 400

PSNR-T 24.73 23.81 22.27

PSNR-L 23.67 23.15 22.89

Table 4. HDR results for fine-tuning Network-2 using multiple

versions of the sensor-realistic synthetic data with different noise

models applied. Testset-2 has more images taken at ISO 50, thus

PSNR decreases when more noise (higher ISO) is applied. The

results are averaged across 15 samples in testset-2.

7. Conclusion

In this paper, we have presented a sensor-realistic syn-

thetic data generation and processing pipeline to address

the data problem in deep learning-based imaging applica-

tions on mobile devices. We verify the effectiveness of this

pipeline by generating a sensor-realistic synthetic dataset

for the data-driven HDR imaging on off-the-shelf smart-

phone cameras and training two deep HDR networks us-

ing this dataset. Experimental results show that both net-

works yield improved HDR output generated from real im-

ages captured by our targeted smartphone cameras when

our sensor-realistic synthetic data was used for training the

networks. As a starting point, this sensor-realistic synthetic

data generation and processing pipeline will be explored

more to cover more types of imaging and vision problems

with more extensive realism modeled and applied such as

scene realism and optical realism.
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[1] Miika Aittala and Frédo Durand. Burst image deblurring

using permutation invariant convolutional neural networks.

In ECCV, 2018. 1

[2] A. Atapour-Abarghouei and T. P. Breckon. Real-time

monocular depth estimation using synthetic data with do-

main adaptation via image style transfer. In 2018 IEEE/CVF

8



Conference on Computer Vision and Pattern Recognition,

pages 2800–2810, June 2018. 3

[3] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A nat-

uralistic open source movie for optical flow evaluation. In

A. Fitzgibbon et al. (Eds.), editor, European Conf. on Com-

puter Vision (ECCV), Part IV, LNCS 7577, pages 611–625.

Springer-Verlag, Oct. 2012. 2

[4] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A nat-

uralistic open source movie for optical flow evaluation. In

A. Fitzgibbon et al. (Eds.), editor, European Conf. on Com-

puter Vision (ECCV), Part IV, LNCS 7577, pages 611–625.

Springer-Verlag, Oct. 2012. 3

[5] Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun.

Learning to see in the dark. CoRR, abs/1805.01934, 2018.

1
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