
Rendering Natural Camera Bokeh Effect with Deep Learning

Andrey Ignatov

andrey@vision.ee.ethz.ch

Jagruti Patel

patelj@student.ethz.ch

ETH Zurich, Switzerland

Radu Timofte

timofter@vision.ee.ethz.ch

Abstract

Bokeh is an important artistic effect used to highlight

the main object of interest on the photo by blurring all

out-of-focus areas. While DSLR and system camera

lenses can render this effect naturally, mobile cameras are

unable to produce shallow depth-of-field photos due to a

very small aperture diameter of their optics. Unlike the

current solutions simulating bokeh by applying Gaussian

blur to image background, in this paper we propose to

learn a realistic shallow focus technique directly from the

photos produced by DSLR cameras. For this, we present

a large-scale bokeh dataset consisting of 5K shallow /

wide depth-of-field image pairs captured using the Canon

7D DSLR with 50mm f/1.8 lenses. We use these images

to train a deep learning model to reproduce a natural

bokeh effect based on a single narrow-aperture image.

The experimental results show that the proposed approach

is able to render a plausible non-uniform bokeh even in

case of complex input data with multiple objects. The

dataset, pre-trained models and codes used in this paper

are available on the project website:

https://people.ee.ethz.ch/˜ihnatova/

pynet-bokeh.html

1. Introduction

Bokeh effect is a very popular photography technique

used to make the subject in the shot stand out sharply

against a blurred background (Fig. 1). It is achieved by fo-

cusing the camera on the selected area or object and shoot-

ing the photo with a wide aperture lens. This produces

a shallow depth-of-field image where only objects located

within a narrow image plane are visible clearly, while all

other parts of the image are blurred. This effect is often

leading to very pleasing visual results, and besides that al-

lows to wash out unnecessary, distracting or unattractive

background details, which is especially useful in case of

mobile photography. In order to get good bokeh, fast lenses

with a large aperture are needed, which makes this effect

Figure 1. The original shallow depth-of-field image and the image

produced with our method.

unattainable for mobile cameras with compact optics and

tiny sensors. As a result, bokeh effect can only be sim-

ulated computationally on smartphones and other devices

with small mobile cameras.

Synthetic bokeh effect rendering is a relatively new ma-

chine learning topic that has emerged in the past years.

[15, 16] were one of the first papers exploring shallow

depth-of-field simulation based on a single image. These

works were focused on portrait photos only: they first seg-

mented out people from the image with a convolutional neu-

ral network, and then uniformly blurred the remaining im-

age background. The same approach was also considered

1



Figure 2. Sample wide and shallow depth-of-field image pairs from the EBB! dataset.

in [21], where the authors proposed an efficient solution for

person segmentation. There also exists a separate group of

works [8, 2, 19] that are blurring the image based on the

predicted depth map, however they require the camera to

move in order to get the parallax effect, thus the practical

applicability of these approaches is quite limited. An accu-

rate depth map estimation can be also obtained with stereo

vision [1] using synchronously captured photos from multi-

ple cameras.

Since 2015, the majority of flagship and mid-range mo-

bile devices are getting special hardware for accelerating

deep learning models [5]. The performance of such hard-

ware is already approaching the results of mid-range Nvidia

GPUs presented in the past years [6], making the use of

deep learning-based methods for bokeh effect simulation on

mobile devices especially relevant. Paper [17] describes the

synthetic depth-of-field rendering approach used on Google

Pixel devices that is able to achieve very impressive results

for the majority of photo scenes. In this work, the authors

are predicting a depth map based on a single image and are

using camera’s dual-pixel auto-focus system when possible

for refinement of the results. The weakest part of the paper

is the actual bokeh rendering method – a simple approxi-

mated disk blur is used for this, making the visual results

quite different from the natural bokeh photos produced by

DSLR cameras.

In this paper, we present a different approach to the con-

sidered problem. Since the properties of the real bokeh de-

pend on a large number of parameters such as focal length,

distance to the subject, the acceptable circle of confusion,

the aperture size, type and construction, various optical lens

characteristics, etc., it is almost impossible to render this

effect precisely with the existing software tools and meth-

ods. Therefore, in this work we propose to learn the bokeh

technique directly from the photos produced by a high-end

DSLR camera using deep learning. The presented approach

is camera independent, does not require any special hard-

ware, and can also be applied to the existing images.

Our main contributions are:

• A novel end-to-end deep learning solution for realis-

tic bokeh effect rendering. The model is trained to

map the standard narrow-aperture images into shallow

depth-of-field photos captured with a DSLR camera.

• A large-scale dataset containing 5K shallow / wide

depth-of-field image pairs collected in the wild with

the Canon 7D DSLR camera and 50mm f/1.8 fast lens.

• A comprehensive set of experiments evaluating the

quantitative and perceptual quality of the rendered

bokeh photos. We demonstrate that the proposed solu-

tion can process one 1024×1536 px image under 5s on



all high-end mobile chipsets when running it on GPU.

2. Everything is Better with Bokeh! Dataset

One of the biggest challenges in the bokeh rendering task

is to get high-quality real data that can be used for training

deep models. To tackle this problem, a large-scale Every-

thing is Better with Bokeh! (EBB!) dataset containing more

than 10 thousand images was collected in the wild during

several months. By controlling the aperture size of the lens,

images with shallow and wide depth-of-field were taken. In

each photo pair, the first image was captured with a narrow

aperture (f/16) that results in a normal sharp photo, whereas

the second one was shot using the highest aperture (f/1.8)

leading to a strong bokeh effect. The photos were taken

during the daytime in a wide variety of places and in vari-

ous illumination and weather conditions. The photos were

captured in automatic mode, the default settings were used

throughout the entire collection procedure. An example set

of collected images is presented in Figure 2.

The captured image pairs are not aligned exactly, there-

fore they were first matched using SIFT keypoints and

RANSAC method same as in [3]. The resulting images

were then cropped to their intersection part and downscaled

so that their final height is equal to 1024 pixels. Finally, we

computed a coarse depth map for each wide depth-of-field

image using the Megadepth model proposed in [12]. These

maps can be stacked directly with the input images and

used as an additional guidance for the trained model. From

the resulting 10 thousand images, 200 image pairs were re-

served for testing, while the other 4.8 thousand photo pairs

can be used for training and validation.

3. Proposed Method

Bokeh effect simulation problem belongs to a group of

tasks dealing with both global and local image processing.

High-level image analysis is needed here to detect the ar-

eas on the photo where the bokeh effect should be applied,

whereas low-level processing is used for rendering the ac-

tual shallow depth-of-field images and refining the results.

Therefore, in this work we base our solution on the PyNET

architecture [7] designed specifically for this kind of tasks:

it is processing the image at different scales and combining

the learned global and local features together.

3.1. PyNET CNN Architecture

Figure 3 illustrates schematic representation of the

PyNET-based architecture used in this work. The model has

an inverted pyramidal shape and is processing the images

at seven different scales. The proposed architecture has a

number of blocks that are processing feature maps in paral-

lel with convolutional filters of different size (from 3×3 to

9×9), and the outputs of the corresponding convolutional

Figure 3. The architecture of the PyNET-based model. Concat and

Sum ops are applied to the outputs of the adjacent layers.

layers are then concatenated, which allows the network to

learn a more diverse set of features at each level. The out-

puts obtained at lower scales are upsampled with transposed

convolutional layers, stacked with feature maps from the

upper level and then subsequently processed in the follow-

ing convolutional layers. Leaky ReLU activation function

is applied after each convolutional operation, except for the

output layers that are using tanh function to map the results

to (-1, 1) interval. Instance normalization is used in all con-

volutional layers that are processing images at lower scales

(levels 2-5). We are additionally using two transposed con-

volutional layers on top of the main model that upsample

the images to their target size.

The model is trained sequentially, starting from the low-

est layer. This allows to achieve good semantically-driven

reconstruction results at smaller scales that are working

with images of very low resolution and thus performing

mostly global image manipulations. After the bottom layer

is pre-trained, the same procedure is applied to the next level

till the training is done on the original resolution. Since

each higher level is getting upscaled high-quality features

from the lower part of the model, it mainly learns to recon-



Original Image Bokeh image rendered with PyNET Canon 7D Photo

Figure 4. Sample visual results obtained with the proposed deep learning method. Best zoomed on screen.

struct the missing low-level details and refines the results.

Note that the input layer is always the same (and is getting

images of size 512×512 pixels during the training), though

only a part of the model graph (all layers participating in

producing the outputs at the corresponding scale) is trained.

It should be also noted that the resolution of the produced

images is twice higher than the size of the input data, which

was done to increase the training and inference speed.

3.2. Training Details

Our initial results demonstrated that though adding the

pre-computed depth map to the input data does not change

the results radically (Fig. 6), this helps to refine the shape of

the blurred image area and to deal with the most complex

photo scenes. Therefore, in all subsequent experiments the

estimated depth map was used by default.

All model levels were trained with the L1 loss except for

the output level 1 where the following combination of the

loss functions was used:

LLevel 1 = LL1
+ (1− LSSIM) + 0.01 · LVGG,

where LSSIM is the structural similarity (SSIM) loss [18] and

LVGG is the perceptual VGG-based [9] loss function. The

above coefficients were chosen based on the results of the

preliminary experiments on the considered EBB! dataset.

We should emphasize that each level is trained together with



Figure 5. The quality of the rendered boundary regions between in and out of focus areas for different image scenes.

all (already pre-trained) lower levels to ensure a deeper con-

nection between the layers.

The model was implemented in TensorFlow 1 and was

trained on a single Nvidia Tesla V100 GPU with a batch

size ranging from 8 to 50 depending on the training scale.

The parameters of the model were optimized for 20 ∼ 100

epochs using ADAM [10] algorithm with a learning rate of

5e− 5. The entire PyNET model consists of 47.5M param-

eters, and it takes on average 143 milliseconds to produce

one bokeh image of size 1024×1536 pixels on the above

mentioned GPU.

4. Experiments

In this section, we evaluate the quantitative and qualita-

tive performance of the proposed solution on the real bokeh

effect rendering problem. In particular, our goal is to an-

swer the following questions:

• How good is the visual quality of the rendered bokeh

photos and how delicate are the transitions to the

blurred areas on the images.

• Is the network able to deal with complex image scenes,

and what is the percentage of failures in such cases.

• How well our solution performs numerically and per-

ceptually compared to the commonly used deep learn-

ing models tuned for this problem.

• How fast can the considered PyNET-based model run

and render bokeh photos on mobile devices.

• How well the proposed solution performs compared

to the commonly used “Portrait Mode” in the Google

Pixel Camera app that is using dual-pixel auto-focus

hardware for estimating the depth map of the image.

1https://github.com/aiff22/PyNET-Bokeh

In order to answer these questions, we performed a wide

range of experiments, which results are described in detail

in the following five sections.

4.1. Analyzing the Results

Since the perceptual quality of the rendered bokeh im-

ages is our primary target, we start the experiments with

the analysis of the obtained visual results. Figure 4 shows

sample bokeh images rendered with the proposed PyNET

model, the original wide depth-of-field and the target Canon

photos. The produced images exhibit a pronounced bokeh

effect that is globally very close to the one on DSLR photos,

though some local low-level details are rendered differently.

The main focus subject and the strength of the blur are se-

lected correctly based on the distance to the in-focus image

plane. The bokeh on the reconstructed images looks quite

natural, without any strong artifacts or corruptions at both

the local and global levels. There is also no notable sharp-

ness degradation in the in-focus image regions.

Figure 5 displays the boundary regions between in and

out of focus image parts. As one can see, the transitions

to the blurred areas are rendered quite accurately and gen-

tly, without mixing the two regions and the halo artifacts.

The problems occur only in relatively complex borderline

areas where it is hard to distinguish between the fore- and

background objects, which results in distinctive under- or

over-blurred image segments.

According to the obtained visual results, around 5-8%

of the rendered bokeh images might contain strong visible

artifacts. The problems usually happen in complex scenes

with multiple objects that have either similar colors or are

occluded by each other (Fig. 7). In such cases, it is difficult

to separate the corresponding objects without knowing the

detailed semantic information or an accurate depth map es-

timation that can be potentially inferred from multiple cam-

eras with the conventional stereo vision algorithms.



Figure 6. Sample visual results obtained without (2nd row) and with (3rd row) the estimated depth map.

4.2. Analyzing the PyNET Architecture

When analyzing the obtained image results, one of the

key questions that we had is the role of different PyNET

levels in rendering the final bokeh image. To understand

this, an experiment was conducted where we were disabling

PyNET levels from the 7th (lowest) to the 4th one by set-

ting their outputs / activations to zeros, and observing the

changes in the produced images. The corresponding results

are presented in Fig. 8. It turned out that this is one of the

rare cases when it is possible to directly identify the role of

different layers in data processing and generation of the re-

constructed image. We provide the description of our find-

ings below:

Level 7 is responsible for the overall image brightness, blur

strength in the background areas and blur shift. When

disabling this level, the final image results do not change

significantly except for a slightly shifted and less / more

blurred background, and a bit different global image bright-

ness (Fig. 8, b).

Level 6 is generally refining the outputs obtained from level

7, the same changes can be also observed here (Fig. 8, c).

Level 5 produces a coarse blur mask that is defining what

image areas should be blurred and what regions should stay

in focus (Fig. 8, d).

Level 4 provides a detailed refined blur mask that is used

by the upper level to generate the actual results. When dis-

abling this level, the network produces images that are com-

pletely blurred (Fig. 8, d).

Level 3 is responsible for generating the actual bokeh effect.

When it does not receive any information from the lower

layer, it is just blurring the entire image with the default blur

(Fig. 8, d). We should emphasize that the out-of-focus areas

on the final images (Fig. 8, a) are looking quite different

from the ones on the totally blurred images, which shows

that the type and strength of the bokeh effect is also learned

and provided by levels 4 and 5.

The obtained results are generally following our expec-

tations described in Section 3.1. A more advanced study

might also reveal how one can alter the features from the

lower layers to change the final reconstructed image in a

predictable way, which can be used, e.g., for explicitly ad-

justing the strength of the bokeh effect.

Figure 7. Examples of strong visual artifacts present on the EBB! test photos.



a) all levels are enabled b) level 7 is disabled c) levels 6+ are disabled d) levels 5+ are disabled e) levels 4+ are disabled

Figure 8. Visual results obtained by disabling PyNET’s levels. From left to right: a) all levels are enabled, b) level 7 is disabled, c) levels

6+ are disabled, d) levels 5+ are disabled, e) levels 4+ are disabled. Best zoomed on screen.

4.3. Quantitative and Qualitative Evaluation

In this section, we compare our solution to the current

state-of-the-art architectures that were designed and tuned

specifically for the considered problem. The following

models are used in the next experiments:

1. Zheng et al. [4]: a multiscale predictive filter CNN with

the gate fusion and the constrained predictive filter blocks;

2. Dutta et al. [4]: a multiscale CNN trained to combine

several images blurred with different Gaussian filters;

3. Purohit et al. [14]: a modified U-Net based architecture;

4. Xiong et al. [4]: an ensemble of five U-Net based models

with residual attention mechanism;

5. Yang et al. [4]: two stacked bokehNet CNN models with

additional memory blocks.

All models were trained on the same EBB! dataset.

For each network, we computed PSRN, SSIM [18] and

LPIPS [20] metrics on the test subset of the dataset. Besides

that, we conducted a user study involving several hundreds

of participants (using Amazon’s MTurk platform) evaluat-

ing the visual results of all considered methods. The users

were asked to rate the full resolution bokeh images rendered

with each method by selecting one of the five quality levels

(0 - almost identical, 4 - mostly different) in comparison

with the corresponding target Canon photos. The expressed

preferences were then averaged per each approach to obtain

the final Mean Opinion Scores (MOS). The numerical re-

sults of these experiments are presented in Table 1, sample

visual results of all methods are shown in Fig. 9.

The first thing that should be noted is that, contrary to

our expectations, neither of the numerical metrics work on

the considered bokeh effect rendering problem. In particu-

lar, the best LPIPS results were obtained by Purohit et al.,

however, this solution is producing images with very strong

artifacts in the bokeh area. The best PSNR and SSIM results

were achieved by Xiong et al., though this approach is un-

fortunately also blurring in-focus objects and has significant

issues with rendering the boundaries between the in and out

of focus areas. Therefore, we had to rely on the actual visual

results produced by all methods and the user study. Accord-

ing to both criteria, the PyNET model was able to signifi-

cantly outperform the rest of the solutions. Compared to the

second best approach, it is rendering the borders of in-focus

objects considerably more accurately, especially in complex

image scenes, and produces a slightly stronger bokeh effect.

We should also highlight that the PyNET model is taking the

input images downscaled by a factor of 2, thus also learning

to perform image upscaling. Though training on the origi-

nal resolution images might lead to slightly better numerical

results, this will also significantly increase the training and

inference times, while we did not observe any notable dif-

ference in the produced visual results.

Team Hardware, GPU Runtime, s Normalized Runtime, s PSNR↑ SSIM↑ LPIPS↓ MOS↓

PyNET Nvidia Tesla V100 0.14 0.14 23.28 0.8780 0.2438 0.85(1)

Zheng et al. [4] GeForce GTX 2080 Ti 0.27 0.26 23.44 0.8874 0.2452 0.87(2)
Dutta et al. [4] GeForce GTX 1080 Ti 0.8 0.57 22.14 0.8633 0.2811 0.88(3)
Purohit et al. [14] Nvidia TITAN X 2.5 1.15 23.62 0.8836 0.2248 0.93(4)
Xiong et al. [4] GeForce GTX 1080 Ti 0.89 0.63 23.93 0.8917 0.2300 0.98(5)
Yang et al. [4] Nvidia TITAN 0.6 0.15 23.18 0.8851 0.2467 1.02(6)

Table 1. The results on the EBB! test subset obtained with different solutions. The runtime of all methods was normalized based on the

aggregated GPU performance index reported at: http://ai-benchmark.com/ranking_deeplearning.html



Original Image Yang et al. [4] Xiong et al. [4] Purohit et al. [14] Dutta et al. [4] Zheng et al. [4] PyNET (Ours) Canon Photo

Figure 9. Visual results obtained with 6 different methods. From left to right, top to bottom: the original wide depth-of-field image, Yang et

al. [4], Xiong et al. [4], Purohit et al. [14], Dutta et al. [4], Zheng et al. [4], our PyNET-based solution and the target Canon photo.

4.4. The Latency on Mobile Devices

While the deployment of the proposed solution on mo-

bile devices is not the main focus of this paper, we still

decided to perform the corresponding experiment to show

the feasibility of running the PyNET on smartphones. For

this, we chose four mainstream high-end mobile chipsets:

the Qualcomm Snapdragon 855, the Samsung Exynos 9820,

the HiSilicon Kirin 980 all released at the end of 2018, and

the Qualcomm Snapdragon 845 presented one year earlier.

To run the pre-trained PyNET model, it was first converted

to the TensorFlow Lite format [13], and then launched on

the above chipsets using the corresponding Android library.

TensorFlow Lite GPU delegate [11] was chosen to acceler-

ate the model on smartphone GPUs: since it is independent

of the vendors’ NN drivers, it can run on any mobile device

with OpenCL support. We used the same settings as in [6]

to measure the runtime of the model, the obtained results

are presented in Table 2.

When running the model without any modifications, it

took almost 13 and 17 seconds on the Kirin 980 and the

Exynos 9820 SoCs, respectively, while on both Qualcomm

chipsets the model failed with an OOM error. The reason

for this is that instance normalization layers are still not sup-

ported adequately by the TensorFlow Lite framework, and

the corresponding ops are computed on the CPU, thus in-

creasing the inference time and memory consumption dra-

matically due to additional CPU-GPU synchronization. Af-

ter disabling instance normalization, the model was able to

process one 1024×1536 pixel photo in less than 5.5 seconds

on all chipsets. The results on the current flagship mobile

SoCs would be even better and should generally not exceed

3 seconds per image, making the solution ready to be de-

ployed on mobile devices. We should also note that with



Figure 10. Visual results obtained using the proposed PyNET model (top) and the Google Pixel Camera application (bottom). Both

approaches were applied to the same photos, Pixel Camera was additionally using dual-pixel auto-focus hardware. Best zoomed on screen.

several small modifications of the current architecture, one

can achieve huge speed-up at the cost of a slightly degraded

accuracy, however this topic is out of scope of this paper.

4.5. Comparison to the Google Pixel Camera

In the last section of the paper, we compare bokeh im-

ages rendered using the PyNET model with the photos ob-

tained using the Google Pixel Camera capturing images in

the “Portrait Mode” [17]. The latter solution is utilizing

camera’s dual-pixel auto-focus system for an accurate esti-

mation of the depth map that is then used to render bokeh

effect on the photos. To compare these two approaches, we

captured a large number of photos with the Google Pixel

Camera installed on the Google Pixel 2 smartphone: it was

saving both the original wide depth-of-field image and the

rendered bokeh photo, the first image from each pair was

then processed with the PyNET model trained on the EBB!

dataset. The visual results produced by both solutions are

presented in Figure 10.



Mobile Chipset Snapdragon 855 Exynos 9820 Kirin 980 Snapdragon 845

GPU Model Adreno 640 Mali-G76 Mali-G76 Adreno 630

GPU Cores - 12 10 -

GPU Frequency 600 MHz 600 MHz 750 MHz 710 MHz

PyNET with Instance Norm, seconds - 17.3 13.4 -

PyNET w/o Instance Norm, seconds 4.1 3.6 4.3 5.4

Table 2. Average processing time for images of resolution 1024×1536 pixels obtained on several mainstream high-end mobile SoCs. In

each case, the model was running directly on the corresponding GPU using OpenCL-based TensorFlow Lite GPU delegate [11].

When considering the close-up photos (Fig. 10, 1st row),

PyNET is able to render images with much stronger and

more pleasing bokeh effect than the Google Pixel Camera.

For more distant objects, Pixel Camera is often producing

better results due to the more accurate estimation of the dis-

tance to the objects and their boundaries (2nd row). When

shooting more complex distant scenes, both the PyNET and

the Google Pixel camera are often unable to provide good

results (3rd row), though the latter one is producing unnat-

urally blurred photos more often. The conducted user study

considering all collected photos demonstrated that, when

rescaled to the same resolution, the images produced by

the PyNET were preferred over the results of the Google

Pixel camera in 53.7% of the cases. We should note that the

above comparison is not really fair since the Google Pixel

Camera is able to process much larger images, though is

also using additional camera hardware and was specifically

tuned for the considered Pixel phone. However, the results

indicate that the PyNET model is potentially able to outper-

form the existing commercial solutions when modifying its

architecture for processing larger images, especially if us-

ing an accurate depth map that can be estimated using data

from multiple cameras installed in the majority of modern

mobile devices. We leave this challenge for the future work

that can be done taking into account the above conditions.

5. Conclusions

In this paper, we presented a novel approach for the real-

istic bokeh effect rendering task. To simulate natural cam-

era bokeh effect, we proposed to learn it directly from the

real photos captured by a high-end DSLR camera. For this,

we first collected a large-scale EBB! dataset consisting of

aligned wide and shallow depth-of-field image pairs cap-

tured using the Canon 7D camera and 50mm f/1.8 fast lens.

Then, we trained the proposed PyNET-based solution on

the considered data and achieved significant qualitative im-

provements over the existing deep learning solutions tuned

for this problem as confirmed by the conducted user study.

We demonstrated that the proposed solution requires less

than 5 seconds for processing one 1024×1536 pixel image

on all mobile high-end chipsets, and additionally shown that

the rendered bokeh photos are comparable to the results of

the Google Pixel Camera application when comparing both

methods on images of the same resolution. We conclude

that the results show the viability of our approach of an end-

to-end bokeh effect rendering model, though further study

is required to make it process high-resolution photos under

the constraints imposed by mobile hardware.

Acknowledgements

This work was partly supported by ETH Zurich General

Fund (OK) and by Amazon AWS and Nvidia grants.

References

[1] Jonathan T Barron, Andrew Adams, YiChang Shih, and Car-

los Hernández. Fast bilateral-space stereo for synthetic de-

focus. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4466–4474, 2015. 2

[2] Hyowon Ha, Sunghoon Im, Jaesik Park, Hae-Gon Jeon, and

In So Kweon. High-quality depth from uncalibrated small

motion clip. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 5413–5421,

2016. 2

[3] Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth

Vanhoey, and Luc Van Gool. Dslr-quality photos on mobile

devices with deep convolutional networks. In the IEEE Int.

Conf. on Computer Vision (ICCV), 2017. 3

[4] Andrey Ignatov, Jagruti Patel, Radu Timofte, Bolun Zheng,

Xin Ye, Li Huang, Xiang Tian, Saikat Dutta, Kuldeep Puro-

hit, Praveen Kandula, et al. Aim 2019 challenge on bokeh

effect synthesis: Methods and results. In 2019 IEEE/CVF

International Conference on Computer Vision Workshop (IC-

CVW), pages 3591–3598. IEEE, 2019. 7, 8

[5] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang,

Max Wu, Tim Hartley, and Luc Van Gool. AI benchmark:

Running deep neural networks on android smartphones. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 0–0, 2018. 2

[6] Andrey Ignatov, Radu Timofte, Andrei Kulik, Seungsoo

Yang, Ke Wang, Felix Baum, Max Wu, Lirong Xu, and Luc

Van Gool. Ai benchmark: All about deep learning on smart-

phones in 2019. arXiv preprint arXiv:1910.06663, 2019. 2,

8

[7] Andrey Ignatov, Luc Van Gool, and Radu Timofte. Replac-

ing mobile camera isp with a single deep learning model.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition Workshops, pages 0–0, 2020. 3



[8] Lens Blur in the new Google Camera app.

https://ai.googleblog.com/2014/04/lens-blur-in-new-google-

camera-app.html. 2

[9] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

European Conference on Computer Vision, pages 694–711.

Springer, 2016. 4

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[11] Juhyun Lee, Nikolay Chirkov, Ekaterina Ignasheva, Yury

Pisarchyk, Mogan Shieh, Fabio Riccardi, Raman Sarokin,

Andrei Kulik, and Matthias Grundmann. On-device neu-

ral net inference with mobile gpus. arXiv preprint

arXiv:1907.01989, 2019. 8, 10

[12] Zhengqi Li and Noah Snavely. Megadepth: Learning single-

view depth prediction from internet photos. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2041–2050, 2018. 3

[13] TensorFlow Lite. https://www.tensorflow.org/lite. 8

[14] Kuldeep Purohit, Maitreya Suin, Praveen Kandula, and Ra-

jagopalan Ambasamudram. Depth-guided dense dynamic

filtering network for bokeh effect rendering. In 2019

IEEE/CVF International Conference on Computer Vision

Workshop (ICCVW), pages 3417–3426. IEEE, 2019. 7, 8

[15] Xiaoyong Shen, Aaron Hertzmann, Jiaya Jia, Sylvain Paris,

Brian Price, Eli Shechtman, and Ian Sachs. Automatic por-

trait segmentation for image stylization. In Computer Graph-

ics Forum, volume 35, pages 93–102. Wiley Online Library,

2016. 1

[16] Xiaoyong Shen, Xin Tao, Hongyun Gao, Chao Zhou, and Ji-

aya Jia. Deep automatic portrait matting. In European con-

ference on computer vision, pages 92–107. Springer, 2016.

1

[17] Neal Wadhwa, Rahul Garg, David E Jacobs, Bryan E Feld-

man, Nori Kanazawa, Robert Carroll, Yair Movshovitz-

Attias, Jonathan T Barron, Yael Pritch, and Marc Levoy.

Synthetic depth-of-field with a single-camera mobile phone.

ACM Transactions on Graphics (TOG), 37(4):64, 2018. 2, 9

[18] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale struc-

tural similarity for image quality assessment. In The Thrity-

Seventh Asilomar Conference on Signals, Systems Comput-

ers, 2003, volume 2, pages 1398–1402 Vol.2, Nov 2003. 4,

7

[19] Fisher Yu and David Gallup. 3d reconstruction from ac-

cidental motion. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3986–

3993, 2014. 2

[20] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 586–595, 2018. 7

[21] Bingke Zhu, Yingying Chen, Jinqiao Wang, Si Liu, Bo

Zhang, and Ming Tang. Fast deep matting for portrait anima-

tion on mobile phone. In Proceedings of the 25th ACM inter-

national conference on Multimedia, pages 297–305, 2017. 2


