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Abstract

As the popularity of mobile photography is growing con-

stantly, lots of efforts are being invested now into build-

ing complex hand-crafted camera ISP solutions. In this

work, we demonstrate that even the most sophisticated ISP

pipelines can be replaced with a single end-to-end deep

learning model trained without any prior knowledge about

the sensor and optics used in a particular device. For this,

we present PyNET, a novel pyramidal CNN architecture

designed for fine-grained image restoration that implicitly

learns to perform all ISP steps such as image demosaicing,

denoising, white balancing, color and contrast correction,

demoireing, etc. The model is trained to convert RAW Bayer

data obtained directly from mobile camera sensor into pho-

tos captured with a professional high-end DSLR camera,

making the solution independent of any particular mobile

ISP implementation. To validate the proposed approach on

the real data, we collected a large-scale dataset consisting

of 10 thousand full-resolution RAW–RGB image pairs cap-

tured in the wild with the Huawei P20 cameraphone (12.3

MP Sony Exmor IMX380 sensor) and Canon 5D Mark IV

DSLR. The experiments demonstrate that the proposed so-

lution can easily get to the level of the embedded P20’s ISP

pipeline that, unlike our approach, is combining the data

from two (RGB + B/W) camera sensors. The dataset, pre-

trained models and codes used in this paper are available

on the project website: https://people.ee.ethz.

ch/˜ihnatova/pynet.html

1. Introduction

While the first mass-market phones and PDAs with mo-

bile cameras appeared in the early 2000s, at the begin-

ning they were producing photos of very low quality, sig-

nificantly falling behind even the simplest compact cam-

eras. The resolution and quality of mobile photos have been

growing constantly since that time, with a substantial boost

after 2010, when mobile devices started to get powerful

hardware suitable for heavy image signal processing (ISP)

Figure 1. Huawei P20 RAW photo (visualized) and the corre-

sponding image reconstructed with our method.

systems. Since then, the gap between the quality of photos

from smartphones and dedicated point-and-shoot cameras is

diminishing rapidly, and the latter ones have become nearly

extinct over the past years. With this, smartphones became

the main source of photos nowadays, and the role and re-

quirements to their cameras have increased even more.

The modern mobile ISPs are quite complex software sys-

tems that are sequentially solving a number of low-level

and global image processing tasks, such as image demo-

saicing, white balance and exposure correction, denoising



Figure 2. Typical artifacts appearing on photos from mobile cameras. From left to right: cartoonish blurring / “watercolor effect” (Xiaomi

Mi 9, Samsung Galaxy Note10+), noise (iPhone 11 Pro, Google Pixel 4 XL) and image flattening (OnePlus 7 Pro, Huawei Mate 30 Pro).

and sharpening, color and gamma correction, etc. The parts

of the system responsible for different subtasks are usually

designed separately, taking into account the particularities

of the corresponding sensor and optical system. Despite

all the advances in the software stack, the hardware limita-

tions of mobile cameras remain unchanged: small sensors

and relatively compact lenses are causing the loss of de-

tails, high noise levels and mediocre color rendering. The

current classical ISP systems are still unable to handle these

issues completely, and are therefore trying to hide them ei-

ther by flattening the resulting photos or by applying the

“watercolor effect” that can be found on photos from many

recent flagship devices (see Figure 2). Though deep learn-

ing models can potentially deal with these problems, and

besides that can be also deployed on smartphones having

dedicated NPUs and AI chips [24, 23], their current use in

mobile ISPs is still limited to scene classification or light

photo post-processing.

Unlike the classical approaches, in this paper we propose

to learn the entire ISP pipeline with only one deep learning

model. For this, we present an architecture that is trained

to map RAW Bayer data from the camera sensor to the

target high-quality RGB image, thus intrinsically incorpo-

rating all image manipulation steps needed for fine-grained

photo restoration (see Figure 1). Since none of the existing

mobile ISPs can produce the required high-quality photos,

we are collecting the target RGB images with a professional

Canon 5D Mark IV DSLR camera producing clear noise-

free high-resolution pictures, and present a large-scale im-

age dataset consisting of 10 thousand RAW (phone) / RGB

(DSLR) photo pairs. As for mobile camera, we chose the

Huawei P20 cameraphone featuring one of the most sophis-

ticated mobile ISP systems at the time of the dataset collec-

tion.

Our main contributions are:

• An end-to-end deep learning solution for RAW-to-

RGB image mapping problem that is incorporating all

image signal processing steps by design.

• A novel PyNET CNN architecture designed to com-

bine heavy global manipulations with low-level fine-

grained image restoration.

• A large-scale dataset containing 10K RAW–RGB im-

age pairs collected in the wild with the Huawei P20

smartphone and Canon 5D Mark IV DSLR camera.

• A comprehensive set of experiments evaluating the

quantitative and perceptual quality of the reconstructed

images, as well as comparing the results of the pro-

posed deep learning approach with the results obtained

with the built-in Huawei P20’s ISP pipeline.

2. Related Work

While the problem of real-world RAW-to-RGB image

mapping has not been addressed in the literature, a large

number of works dealing with various image restoration and

enhancement tasks were proposed during the past years.

Image super-resolution is one of the most classical im-

age reconstruction problems, where the goal is to increase

image resolution and sharpness. A large number of efficient

solutions were proposed to deal with this task [1, 54], start-

ing from the simplest CNN approaches [10, 27, 50] to com-

plex GAN-based systems [31, 46, 59], deep residual mod-

els [34, 68, 55], Laplacian pyramid [30] and channel atten-

tion [67] networks. Image deblurring [6, 48, 38, 51] and

denoising [65, 64, 66, 52] are the other two related tasks

targeted at removing blur and noise from the pictures.

A separate group of tasks encompass various global im-

age adjustment problems. In [62, 13], the authors proposed

solutions for automatic global luminance and gamma ad-

justment, while work [5] presented a CNN-based method

for image contrast enhancement. In [61, 32], deep learning

solutions for image color and tone corrections were pro-

posed, and in [47, 37] tone mapping algorithms for HDR

images were presented.

The problem of comprehensive image quality enhance-

ment was first addressed in [19, 20], where the authors pro-

posed to enhance all aspects of low-quality smartphone pho-

tos by mapping them to superior-quality images obtained

with a high-end reflex camera. The collected DPED dataset

was later used in many subsequent works [41, 9, 57, 18, 35]

that have significantly improved the results on this problem.

Additionally, in [22] the authors examined the possibility of

running the resulting image enhancement models directly



Huawei P20 RAW - Visualized Huawei P20 ISP Canon 5D Mark IV

Figure 3. Example set of images from the collected Zurich RAW to RGB dataset. From left to right: original RAW image visualized with

a simple ISP script, RGB image obtained with P20’s built-in ISP system, and Canon 5D Mark IV target photo.

on smartphones, and proposed a number of efficient solu-

tions for this task. It should be mentioned that though the

proposed models were showing nice results, they were tar-

geted at refining the images obtained with smartphone ISPs

rather than processing RAW camera data.

While there exist many classical approaches for vari-

ous image signal processing subtasks such as image de-

mosaicing [33, 11, 15], denoising [3, 8, 12], white balanc-

ing [14, 56, 4], color correction [29, 43, 44], etc., only a few

works explored the applicability of deep learning models to

these problems. In [39, 53], the authors demonstrated that

convolutional neural networks can be used for performing

image demosaicing, and outperformed several conventional

models in this task. Works [2, 16] used CNNs for correcting

the white balance of RGB images, and in [63] deep learn-

ing models were applied to synthetic LCDMoire dataset for

solving image demoireing problem. In [49], the authors col-

lected 110 RAW low-lit images with Samsung S7 phone,

and used a CNN model to remove noise and brighten demo-

saiced RGB images obtained with a simple hand-designed

ISP. Finally, in work [42] RAW images were artificially

generated from JPEG photos presented in [7], and a CNN

was applied to reconstruct the original RGB pictures. In this

paper, we will go beyond the constrained artificial settings

used in the previous works, and will be solving all ISP sub-

tasks on real data simultaneously, trying to outperform the

commercial ISP system present in one of the best camera

phones released in the past two years.

3. Zurich RAW to RGB dataset

To get real data for RAW to RGB mapping prob-

lem, a large-scale dataset consisting of 20 thousand pho-

tos was collected using Huawei P20 smartphone captur-

ing RAW photos (plus the resulting RGB images obtained

with Huawei’s built-in ISP), and a professional high-end

Canon 5D Mark IV camera with Canon EF 24mm f/1.4L

fast lens. RAW data was read from P20’s 12.3 MP Sony

Exmor IMX380 Bayer camera sensor – though this phone

has a second 20 MP monochrome camera, it is only used by

Huawei’s internal ISP system, and the corresponding im-

ages cannot be retrieved with any public camera API. The

photos were captured in automatic mode, and default set-

tings were used throughout the whole collection procedure.

The data was collected over several weeks in a variety of

places and in various illumination and weather conditions.

An example set of captured images is shown in Figure 3.

Since the captured RAW–RGB image pairs are not per-

fectly aligned, we first performed their matching using the

same procedure as in [19]. The images were first aligned

globally using SIFT keypoints [36] and RANSAC algo-

rithm [58]. Then, smaller patches of size 448×448 were

extracted from the preliminary matched images using a non-

overlapping sliding window. Two windows were moving in

parallel along the two images from each RAW-RGB pair,

and the position of the window on DSLR image was ad-

ditionally adjusted with small shifts and rotations to max-

imize the cross-correlation between the observed patches.

Patches with cross-correlation less than 0.9 were not in-

cluded into the dataset to avoid large displacements. This

procedure resulted in 48043 RAW-RGB image pairs (of size

448×448×1 and 448×448×3, respectively) that were later

used for training / validation (46.8K) and testing (1.2K) the

models. RAW image patches were additionally reshaped

into the size of 224×224×4, where the four channels corre-

spond to the four colors of the RGBG Bayer filer. It should

be mentioned that all alignment operations were performed

only on RGB DSLR images, therefore RAW photos from

Huawei P20 remained unmodified, containing the same val-

ues as were obtained from the camera sensor.

4. Proposed Method

The problem of RAW to RGB mapping is generally in-

volving both global and local image modifications. The first

ones are used to alter the image content and its high-level



properties, such as brightness, while balance or color rendi-

tion, while low-level processing is needed for tasks like tex-

ture enhancement, sharpening, noise removal, deblurring,

etc. More importantly, there should be an interaction be-

tween global and local modifications, as, for example, con-

tent understanding is critical for tasks like texture process-

ing or local color correction. While there exists many deep

learning models targeted at one of these two problem types,

their application to RAW to RGB mapping or to general

image enhancement tasks is leading to the corresponding

issues: VGG- [27], ResNet- [31] or DenseNet-based [17]

networks cannot alter the image significantly, while mod-

els relying on U-Net [45] or Pix2Pix [25] architectures are

not good at improving local image properties. To address

this issue, in this paper we propose a novel PyNET CNN

architecture that is processing image at different scales and

combines the learned global and local features together.

4.1. PyNET CNN Architecture

Figure 4 illustrates schematic representation of the pro-

posed deep learning architecture. The model has an inverted

pyramidal shape and is processing the images at five dif-

ferent scales. The proposed architecture has a number of

blocks that are processing feature maps in parallel with con-

volutional filters of different size (from 3×3 to 9×9), and

the outputs of the corresponding convolutional layers are

then concatenated, which allows the network to learn a more

diverse set of features at each level. The outputs obtained at

lower scales are upsampled with transposed convolutional

layers, stacked with feature maps from the upper level and

then subsequently processed in the following convolutional

layers. Leaky ReLU activation function is applied after each

convolutional operation, except for the output layers that are

using tanh function to map the results to (-1, 1) interval. In-

stance normalization is used in all convolutional layers that

are processing images at lower scales (levels 2-5). We are

additionally using one transposed convolutional layer on top

of the model that upsamples the images to their target size.

The model is trained sequentially, starting from the low-

est layer. This allows to achieve good image reconstruc-

tion results at smaller scales that are working with images

of very low resolution and performing mostly global image

manipulations. After the bottom layer is trained, the same

procedure is applied to the next level till the training is done

on the original resolution. Since each higher level is getting

upscaled high-quality features from the lower part of the

model, it mainly learns to reconstruct the missing low-level

details and refines the results. Note that the input layer is

always the same and is getting images of size 224×224×4,

though only a part of the training graph (all layers partici-

pating in producing the outputs at the corresponding scale)

is trained.

Figure 4. The architecture of the proposed PyNET model. Concat

and Sum ops are applied to the outputs of the adjacent layers.

4.2. Loss functions

The loss function used to train the model depends on the

corresponding level / scale of the produced images:

Levels 4-5 operate with images downscaled by a factor

of 8 and 16, respectively, therefore they are mainly tar-

geted at global color and brightness / gamma correction.

These layers are trained to minimize the mean squared error

(MSE) since the perceptual losses are not efficient at these

scales.

Levels 2-3 are processing 2x / 4x downscaled images,

and are mostly working on the global content domain. The

goal of these layers is to refine the color / shape properties

of various objects on the image, taking into account their se-

mantic meaning. They are trained with a combination of the

VGG-based [26] perceptual and MSE loss functions taken

in the ratio of 4:1.

Level 1 is working on the original image scale and is pri-

marily trained to perform local image corrections: texture

enhancement, noise removal, local color processing, etc.,

while using the results obtained from the lower layers. It is

trained using the following loss function:

LLevel 1 = LVGG + 0.75 · LSSIM + 0.05 · LMSE,

where the value of each loss is normalized to 1. The struc-

tural similarity (SSIM) loss [60] is used here to increase the
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Figure 5. Sample visual results obtained with the proposed deep learning method. Best zoomed on screen.

dynamic range of the reconstructed photos, while the MSE

loss is added to prevent significant color deviations.

The above coefficients were chosen based on the results

of the preliminary experiments on the considered RAW

to RGB dataset. We should emphasize that each level is

trained together with all (already pre-trained) lower levels

to ensure a deeper connection between the layers.

4.3. Technical details

The model was implemented in TensorFlow 1 and was

trained on a single Nvidia Tesla V100 GPU with a batch

size ranging from 10 to 50 depending on the training scale.

The parameters of the model were optimized for 5 ∼ 20

epochs using ADAM [28] algorithm with a learning rate of

5e− 5. The entire PyNET model consists of 47.5M param-

eters, and it takes 3.8 seconds to process one 12MP photo

(2944×3958 pixels) on the above mentioned GPU.

1https://github.com/aiff22/pynet

5. Experiments

In this section, we evaluate the quantitative and qualita-

tive performance of the proposed solution on the real RAW

to RGB mapping problem. In particular, our goal is to an-

swer the following three questions:

• How well the proposed approach performs numer-

ically and perceptually compared to common deep

learning models widely used for various image-to-

image mapping problems.

• How good is the quality of the reconstructed images in

comparison to the built-in ISP system of the Huawei

P20 camera phone.

• Is the proposed solution generalizable to other mobile

phones / camera sensors.

To answer these questions, we trained a wide range

of deep learning models including the SPADE [40],



Figure 6. Visual results obtained with 7 different architectures. From left to right, top to bottom: visualized RAW photo, SRCNN [10],

VDSR [27], SRGAN [31], Pix2Pix [25], U-Net [45], DPED [19], our PyNET architecture, Huawei ISP image and the target Canon photo.

DPED [19], U-Net [45], Pix2Pix [25], SRGAN [31],

VDSR [27] and SRCNN [10] on the same data and mea-

sured the obtained results. We performed a user study in-

volving a large number of participants asked to rate the

target DSLR photos, the photos obtained with P20’s ISP

pipeline and the images reconstructed with our method. Fi-

nally, we applied our pre-trained model to RAW photos

from a different device – BlackBerry KeyOne smartphone,

to see if the considered approach is able to reconstruct RGB

images when using camera sensor data obtained with other

hardware. The results of these experiments are described in

detail in the following three sections.

5.1. Quantitative Evaluation

Before starting the comparison, we first trained the pro-

posed PyNET model and performed a quick inspection

of the produced visual results. An example of the re-

constructed images obtained with the proposed model is

shown in Figure 5. The produced RGB photos do not con-

tain any notable artifacts or corruptions at both the local

and global levels, and the only major issue is vignetting

caused by camera optics. Compared to photos obtained with

Huawei’s ISP, the reconstructed images have brighter col-

ors and more natural local texture, while their sharpness is

slightly lower, which is visible when looking at zoomed-in

images. We expect that this might be caused by P20’s sec-

ond 20 MP monochrome camera sensor that can be used for

image sharpening. In general, the overall quality of pho-

tos obtained with Huawei’s ISP and reconstructed with our

method is quite comparable, though both of them are worse

than the images produced by the Canon 5D DSLR in terms

of the color and texture quality.

Next, we performed a quantitative evaluation of the pro-

posed method and alternative deep learning approaches. Ta-

ble 1 shows the resulting PSNR and MS-SSIM scores ob-

tained with different deep learning architecture on the test

Method PSNR MS-SSIM

PyNET 21.19 0.8620

SPADE [40] 20.96 0.8586

DPED [19] 20.67 0.8560

U-Net [45] 20.81 0.8545

Pix2Pix [25] 20.93 0.8532

SRGAN [31] 20.06 0.8501

VDSR [27] 19.78 0.8457

SRCNN [10] 18.56 0.8268

Table 1. Average PSNR/SSIM results on test images.

subset of the considered RAW to RGB mapping dataset. All

models were trained twice: with the original loss function

and the one used for PyNET training, and the best result

was selected in each case. As one can see, PyNET CNN was

able to significantly outperform the other models in both the

PSNR and MS-SSIM scores. The visual results obtained

with these models (Figure 6) also confirm this conclusion.

VGG-19 and SRCNN networks did not have enough power

to perform good color reconstruction. The images produced

by the SRGAN and U-Net architectures were too dark, with

dull colors, while the Pix2Pix had significant problems with

accurate color rendering – the results are looking unnatu-

rally due to distorted tones. Considerably better image re-

construction was obtained with the DPED model, though

in this case the images have a strong yellowish shade and

are lacking the vividness. Unfortunately, the SPADE archi-

tecture cannot process images of arbitrary resolutions (the

size of the input data should be the same as used during the

training process), therefore we were unable to generate full

images using this method.

5.2. User Study

The ultimate goal of our work is to provide an alternative

to the existing handcrafted ISPs and, starting from the cam-

era’s raw sensor readings, to produce DSLR-quality images



BlackBerry KeyOne RAW Image (Visualized) Reconstructed RGB Image (PyNET) BlackBerry KeyOne ISP Image

Figure 7. The results of the proposed method on RAW images from the BlackBerry KeyOne smartphone. From left to right: the original

visualized RAW image, reconstructed RGB image and the same photo obtained with KeyOne’s built-in ISP system using HDR mode.

for the end user of the smartphone. To measure the over-

all quality of our results, we designed a user study with the

Amazon Mechanical Turk 2 platform.

For the user study we randomly picked test raw input

images in full resolution to be processed by 3 ISPs (the ba-

sic Visualized RAW, Huawei P20 ISP, and PyNET). The

subjects were asked to assess the quality of the images

produced by each ISP solution in direct comparison with

the reference images produced by the Canon 5D Mark IV

DSLR camera. The rating scale for the image quality is as

follows: 1 - ‘much worse’, 2 - ‘worse’, 3 - ‘comparable’,

4 - ‘better’, and 5 - ‘much better’ (image quality than the

DSLR reference image). For each query comprised from an

ISP result versus the corresponding DSLR image, we col-

lected opinions from 20 different subjects. For statistical

relevance we collected 5 thousand such opinions.

The Mean Opinion Scores (MOS) for each ISP approach

are reported in Table 2. We note again that 3 is the MOS

for image quality that is ‘comparable’ to the DSLR cam-

era, while 2 corresponds to a clearly ‘worse’ quality. In

this light, we conclude that the Visualized RAW ISP with

a score of 2.01 is clearly ‘worse’ than the DSLR camera,

while the ISP of the Huawei P20 camera phone gets 2.56,

almost half way in between the ‘worse’ and ‘comparable’.

Our PyNET, on the other hand, with a score of 2.77 is

2https://www.mturk.com

RAW input ISP MOS ↑

Visualized RAW 2.01

Huawei P20 Huawei P20 ISP 2.56

PyNET (ours) 2.77

Canon 5D Mark IV 3.00

Table 2. Mean Opinion Scores (MOS) obtained in the user study

for each ISP solution in comparison to the target DSLR camera

(3 – comparable image quality, 2 – clearly worse quality).

substantially better than the innate ISP of the P20 camera

phone, but also below the quality provided by the Canon

5D Mark IV DSLR camera.

In a direct comparison between the Huawei P20 ISP and

our PyNET model (used now as a reference instead of the

DSLR) with the same protocol and rating scale, we achieved

a MOS of 2.92. This means that the P20’s ISP produces

images of poorer perceptual quality than our PyNET when

starting from the same Huawei P20 raw images.

5.3. Generalization to Other Camera Sensors

While the proposed deep learning model was trained to

map RAW images from a particular device model / camera

sensor, we additionally tested it on a different smartphone to

see if the learned manipulations can be transferred to other

camera sensors and optics. For this, we have collected a

number of images with the BlackBerry KeyOne smartphone



BlackBerry RAW Image (Visualized) Reconstructed RGB Image (PyNET) BlackBerry KeyOne ISP Image

Figure 8. Image crops from the BlackBerry KeyOne RAW, reconstructed and ISP images, respectively.

that also has a 12 megapixel main camera, though is using

a different sensor model (Sony IMX378) and a completely

different optical system. RAW images were collected using

the Snap Camera HDR 3 Android application, and we addi-

tionally shoot the same scenes with KeyOne’s default cam-

era app taking photos in HDR mode. The obtained RAW

images were then fed to our pre-trained PyNET model, the

resulting reconstruction results are illustrated in Figure 7.

As one can see, the PyNET model was able to recon-

struct the image correctly and performed an accurate recov-

ery of the colors, revealing many color shades not visible

on the photos obtained with BlackBerry’s ISP. While the

latter images have a slightly higher level of details, PyNET

has removed most of the noise present on the RAW photos

as shown in Figure 8 demonstrating smaller image crops.

Though the reconstructed photos are not ideal in terms of

the exposure and sharpness, we should emphasize that the

model was not trained on this particular camera sensor mod-

ule, therefore much better results can be expected when tun-

ing PyNET on the corresponding RAW–RGB dataset.

6. Conclusions

In this paper, we have investigated and proposed a

change of paradigm – replacing an existing handcrafted ISP

pipeline with a single deep learning model. For this, we

first collected a large dataset of RAW images captured with

the Huawei P20 camera phone and the corresponding paired

3
https://play.google.com/store/apps/details?id=com.marginz.snaptrial

RGB images from the Canon 5D Mark IV DSLR camera.

Then, since the RAW to RGB mapping implies complex

global and local non-linear transformations, we introduced

PyNET, a versatile pyramidal CNN architecture. Next, we

validated our PyNET model on the collected dataset and

achieved significant quantitative PSNR and MS-SSIM im-

provements over the existing top CNN architectures. Fi-

nally, we conducted a user study to assess the perceptual

quality of our ISP replacement approach. PyNET proved

better perceptual quality than the handcrafted ISP innate to

the P20 camera phone and closer quality to the target DSLR

camera. We conclude that the results show the viability of

our approach of an end-to-end single deep learned model

as a replacement to the current handcrafted mobile camera

ISPs. However, further study is required to fully grasp and

emulate the flexibility of the current mobile ISP pipelines.

We refer the reader to [21] for an application of PyNET to

rendering natural camera bokeh effect and employing a new

“Everything is Better with Bokeh!” dataset of paired wide

and shallow depth-of-field images.
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