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Abstract

Recent state-of-the-art super-resolution methods have

achieved impressive performance on ideal datasets re-

gardless of blur and noise. However, these methods al-

ways fail in real-world image super-resolution, since most

of them adopt simple bicubic downsampling from high-

quality images to construct Low-Resolution (LR) and High-

Resolution (HR) pairs for training which may lose track

of frequency-related details. To address this issue, we fo-

cus on designing a novel degradation framework for real-

world images by estimating various blur kernels as well as

real noise distributions. Based on our novel degradation

framework, we can acquire LR images sharing a common

domain with real-world images. Then, we propose a real-

world super-resolution model aiming at better perception.

Extensive experiments on synthetic noise data and real-

world images demonstrate that our method outperforms the

state-of-the-art methods, resulting in lower noise and bet-

ter visual quality. In addition, our method is the winner of

NTIRE 2020 Challenge on both tracks of Real-World Super-

Resolution, which significantly outperforms other competi-

tors by large margins.

1. Introduction

Super-Resolution (SR) task is to increase the resolution

of low-quality images, and enhance its clarity [2]. In recent

years, deep learning-based methods [9, 35, 7, 34, 20, 19, 23]

have achieved remarkable results with respect to fidelity

performance, which mainly focuses on designing network

structures to further improve the performance of specific

datasets. Most of them use fixed bicubic operation for

downsampling to construct training data pairs. Similarly, in

test phase, the input image downsampled by bicubic kernel

is feed to the designed network. Subsequently, the gener-

ated results will be compared with Ground Truth (GT) to

calculate PSNR, SSIM and other metrics.
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Figure 1. Visualization comparison among EDSR, ZSSR, and

our RealSR on a real-world low-resolution image.

Despite the improvement of fidelity, a problem ignored

by these methods is that downsampling with the ideal bicu-

bic is unreasonable. Previous methods construct data by

ideal downsampling method:

ILR = IHR↓s, (1)

where ILR and IHR indicate the LR and HR image, respec-

tively, and s denotes the scale factor. This makes it easy

to obtain paired data for training models. However, with

such a known and fixed downsampling kernel, the degraded

images may lose high-frequency details but make the low-

frequency content more clear. Based on such constructed

paired data, SR model f(·) is trained to minimize the aver-

age error of n images:

argmin
f

Σ ‖f(IiLR)− I
i
HR‖, i ∈ {1, 2 · · ·n}. (2)

If testing on the same downsampling dataset, the generated

results are as expected. However, once we directly test on

the original image, the results are very blurry with lots of

noise. The main reason is that the bicubic downsampled

image does not belong to the same domain as the original

image. Due to the domain gap, these methods produce un-

pleasant artifacts and fail on real-world images. For exam-

ple, EDSR/ZSSR produce unsatisfied result of a real image

in Figure 1. Therefore, the key problem of real-world super-

resolution is to introduce an accurate degradation method to

ensure the generated Low-Resolution (LR) image and the

original image with the same domain attributes.

We first analyze the impact of different kernels on the

downsampled image [42, 49, 11]. Before our analysis, we



define the original real images as the source domain X , and

the clean High-Resolution (HR) images as the target do-

main Y . We found blur kernels with different degrees di-

rectly affect the blur of the downsampled images. Bicu-

bic can be regarded as an ideal way of downsampling be-

cause it retains the information from X as much as possible.

However, the frequency of these downsampled images has

changed to another domain X
′

. When training on {X
′

,Y},

the model will try to recover all the details due to all infor-

mation is important in the domain X
′

. The model works

well on ILR but usually fails on Isrc ∈ X , which is an

unprocessed real image. Another problem is the downsam-

pled image has almost no noise, while real-world images in

X usually have a lot. Mere estimation of the blurry kernel

cannot accurately model the degradation process.

In this paper, we propose a novel Realistic degradation

framework for Super-Resolution (RealSR), which contains

kernel estimation and noise injection to preserve the orig-

inal domain attributes. On one hand, we first use the ex-

isting kernel estimation method [3] to generate more re-

alistic LR images. On the other hand, we propose a sim-

ple and effective method to directly collect noise from the

original image and add it to the downsampled image. Fur-

ther, we introduce the patch discriminator [17] for RealSR

to avoid generated artifacts. To verify the effectiveness of

the proposed method, we conduct experiments on synthetic

dataset and real dataset. The experimental results show that

our method produces clearer and cleaner results compared

with state-of-the-art methods. Finally, we conduct ablation

experiments to verify the effectiveness of the kernel esti-

mation, noise injection, and the patch discriminator for SR

generator, respectively. We also participate in the NTIRE

2020 Challenge on Real-World Super-Resolution, and out-

perform other competitors by large margins on both tracks.

In summary, our overall contribution is three-fold:

• We propose a novel degradation framework RealSR

under real-world setting, which provides realistic im-

ages for super-resolution learning.

• By estimating the kernel and noise, we explore the spe-

cific degradation of blurry and noisy images.

• We demonstrate that the proposed RealSR achieves

state-of-the-art results in terms of visual quality.

2. Related Work

Super-Resolution Recently, many Convolutional Neural

Networks (CNN)-based SR networks [23, 30, 13, 14, 22, 31,

41] achieve strong performance on bicubic downsampling

images. Among them, the representative is EDSR [23],

which uses a deep residual network for training SR model.

Zhang et al. [46] propose a residual in residual structure to

form very deep network which achieves better performance

than EDSR. Dai et al. [8] propose a second-order channel

attention module to adaptively rescale the channel-wise fea-

tures by using second-order feature statistics for more dis-

criminative representations. Haris et al. [12] propose deep

back-projection networks to exploit iterative up- and down-

sampling layers, providing an error feedback mechanism

for projection errors at each stage. Although the authors

have achieved good performance with respect to fidelity,

the generated images have poor visual effects and appear

blurry. To address this issue, some researchers enhanced

realistic texture via spatial feature transform [47, 48, 38].

Soh et al. propose a natural manifold discrimination to clas-

sify HR images with blurry or noisy images, which is used

to supervise the quality of the generated images. Further-

more, some Generative Adversarial Networks (GAN)-based

methods [21, 44, 39] pay more attention to visual effects,

introducing adversarial losses and perceptual losses.

However, these SR models trained on the data generated

by bicubic kernel can only work well on clean HR data,

because the model has never seen blurry/noisy data during

training. This is inconsistent with real-world needs, and real

LR images often carry noise and blur. To address this con-

flict, Xu et al. [40, 5, 4, 45] collect raw photo pairs directly

from nature scene with particular camera equipment. But

collecting such paired data requires strict conditions and a

lot of manual costs. In this paper, we focus on the train-

ing strategy of SR networks in real data by analyzing the

degradation in real images.

Real-World Super-Resolution To overcome these chal-

lenges of real-world super-resolution, recent work [42, 49]

combined with denoising or deblurring have been proposed.

These methods are trained on the artificially constructed

blurry and noise-added data, which further enhanced the ro-

bustness of the SR model. However, these explicit modeling

methods need sufficient prior about blur/noise, therefore the

scope of application is limited.

Recently, a series of real-world super-resolution chal-

lenges [25, 26] have attracted many participants. Many

novel methods are proposed to solve this problem. For

instance, Fritsche et al. [10] propose the DSGAN model

to generate degraded images. Lugmayr et al. [24] pro-

pose an unsupervised learning method for real-world super-

resolution. ZSSR [32] abandon the training process on big

data and train a small model for each test image so that spe-

cific models pay more attention to the internal information

of the image. But the price paid is that the time for infer-

ence is greatly increased, which is difficult to apply to the

real scene. Different from these methods, we explicitly es-

timate the kernel degradation in real images, which is very

important for generating clear and sharp results.
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Figure 2. Framework of our proposed RealSR method. The degradation pool provides diverse blur kernels and noise distributions for

constructing realistic low-resolution images. During training phase, the SR model is optimized to reconstruct high-resolution images.

3. The Proposed RealSR

In this section, we introduce the proposed degradation

method as shown in Figure 2. Our method is mainly divided

into two stages. The first stage is to estimate the degradation

from real data and generate realistic LR images. The second

stage is to train the SR model based on the constructed data.

3.1. Realistic Degradation for SuperResolution

Here, we introduce a novel method of real image degra-

dation based on kernel estimation and noise injection. As-

sume that the LR image is obtained by the following degra-

dation method:

ILR = (IHR ∗ k)↓s + n, (3)

where k and n indicate blurry kernel and noise, respec-

tively. IHR is unknown, indicating that k and n are also

unknown. In order to estimate the degradation method more

accurately, we explicitly estimate the kernel and noise from

the image. After getting the estimated kernel and noise

patch, we build a degradation pool, which is used to degrade

clean HR images into blurry and noisy images, thereby gen-

erating image pairs for training SR models. To describe

our method concisely, we formalize this data-constructing

pipeline as an algorithm shown in Algorithm 1.

Algorithm 1 Realistic Degradation of our RealSR

Input: Real images set X , HR images set Y , downsam-

pling scale factor s

Output: Realistic paired images {ILR, IHR}
1: Initialize kernel pool K = ∅
2: Initialize noise pool N = ∅
3: for all Isrc such that Isrc ∈ X do

4: Estimate k from Isrc by solving Eqn. 4

5: Add k to K
6: Crop n from Isrc

7: if n meet Eqn. 7 then

8: Add n to N
9: end if

10: end for

11: for all IHR such that IHR ∈ Y do

12: Randomly select ki ∈ K, nj ∈ N
13: Generate ILR with ki and nj

14: end for

15: return {ILR, IHR}

3.2. Kernel Estimation and Downsampling

We use a kernel estimation algorithm to explicitly esti-

mate kernels from real images. Inspired by KernelGAN [3],

we adopt a similar kernel estimation method and set appro-

priate parameters based on real images. The generator of

KernelGAN is a linear model without any activation layers,



therefore the parameters of all layers can be combined into

a fixed kernel. The estimated kernel needs to meet the fol-

lowing constraints:

argmin
k

‖(Isrc ∗ k)↓s − Isrc↓s‖1 + |1− Σ ki,j |

+|Σ ki,j ·mi,j |+ |1−D((Isrc ∗ k)↓s)|.
(4)

(Isrc ∗ k)↓s is downsampled LR image with kernel k, and

Isrc↓s is downsampled image with ideal kernel, therefore

to minimize this error is to encourage the downsampled im-

age to preserve important low-frequency information of the

source image. What’s more, the second term of the above

formula is to constrain k to sum to 1, and the third term is

to penalty boundaries of k. Finally, the discriminator D(·)
is to ensure the consistency of source domain .

Clean-Up To get more HR images, we try to generate

noise-free images from X . Specifically, we adopt bicubic

downsampling on the real image in the source domain to

remove noise and make the image sharper. Let Isrc ∈ X
be an image from real source images set, and kbic be the

ideal bicubic kernel. Then the image is downsampled with

a clean-up scale factor sc.

IHR = (Isrc ∗ kbic)↓sc. (5)

Degradation with Blur Kernels We regard the images

after downsampling as clean HR images. Then we per-

form degradation to these HR images by randomly select-

ing a blur kernel from the degradation pool. The down-

sampling process is cross-correlation operations followed

by sampling with stride s, which can be formulated as:

ID = (IHR ∗ ki)↓s, i ∈ {1, 2 · · ·m}, (6)

where ID denotes the downsampled image, and ki refers to

the selected specific blur kernel from {k1,k2 · · ·km}.

3.3. Noise Injection

For noisy images, we explicitly inject noise into the

downsampled images to generate realistic LR images. Since

the high-frequency information is lost during the downsam-

pling process, the degraded noise distribution changes at the

same time. In order to make the degraded image have a

similar noise distribution to the source image, we directly

collect noise patches from the source dataset X . We ob-

serve that patches with richer content have a larger variance.

Based on this observation and inspired by [6, 49], we de-

sign a filtering rule to collect patches with their variance in

a certain range. Simply but effectively, we decouple noise

and content by the following rule:

σ(ni) < v, (7)

where σ(·) denotes the function to calculate variance, and v

is the max value of variance.

Degradation with Noise Injection Assume that a series

of noise patches {n1,n2 · · ·nl} are collected and added

into the degradation pool. The noise injection process is

performed by randomly cropping patches from the noise

pool. Similarly, we formalize this process as:

ILR = ID + ni, i ∈ {1, 2 · · · l}, (8)

where ni is a cropped noise patch from the noise pool con-

sisting of {k1,k2 · · ·kl}. In detail, we adopt an online

noise injection method that the content and the noise are

combined during training phase. This makes the noise more

diverse and regularizes the SR model to distinguish content

with noise. After the degradation with blur kernels and in-

jecting noise, we obtain ILR ∈ X .

3.4. SuperResolution Model

Based on ESRGAN [39], we implement an SR model

and train it on constructed paired data {ILR, IHR} ∈
{X ,Y}. The generator adopts RRDB [39] structure, and

the resolution of the generated image will be enlarged for 4
times. Several losses are applied to training includes pixel

loss, perceptual loss [18], and adversarial loss. The pixel

loss L1 uses L1 distance. Perceptual loss Lper uses the in-

active features of VGG-19 [33], which helps to enhance the

visual effect of low-frequency features such as edges. Ad-

versarial loss Ladv is used to enhance the texture details of

the generated image to make it look more realistic. The final

loss function is the weighted sum of these three losses:

Ltotal = λ1 · L1 + λper · Lper + λadv · Ladv, (9)

where λ1, λper, and λadv are set as 0.01, 1, and 0.005 em-

pirically.

3.5. Patch Discriminator in RealSR

In addition, we observe that the ESRGAN [39] discrim-

inator may introduce many artifacts. Different from default

ESRGAN setting, we use patch discriminator [17, 50] in-

stead of VGG-128 [33] because of two conveniences: 1)

VGG-128 limits the size of the generated image to 128,

making multi-scale training inconvenient. 2) VGG-128
contains a deeper network and its fixed fully connected lay-

ers make the discriminator pay more attention to global fea-

tures and ignore local features. In contrast, we use a patch

discriminator with fully convolution structure, which has a

fixed receptive field. For example, a three-layer network

corresponds to a 70×70 patch. That is, each output value by

the discriminator is only related to the patch of local fixed

area. The patch losses will be fed back to the generator to

optimize the gradient of local details. Note that the final

error is the average of all local errors to guarantee global

consistency.



Method PSNR ↑ SSIM ↑ LPIPS ↓
EDSR 25.31 0.6383 0.5784

ESRGAN 19.06 0.2423 0.7552

ZSSR 25.13 0.6268 0.6160

K-ZSSR 18.46 0.3826 0.7307

Ours 24.82 0.6619 0.2270

Table 1. Quantitative results on DF2K dataset compared with

EDSR, ESRGAN, ZSSR, and K-ZSSR. Note that ‘Ours’ refers to

the proposed RealSR. ↑ and ↓ mean higher or lower is desired.

4. Experiments

4.1. Datasets

DF2K The DF2K dataset merges the DIV2K [36] and

Flikr2K [1] datasets, and contains a total of 3, 450 images.

These images are artificially added with Gaussian noise to

simulate sensor noise. The validation set contains 100 im-

ages with corresponding ground truth, therefore the metrics

based on reference can be calculated.

DPED The DPED [15] dataset contains 5, 614 images

taken by the iPhone3 camera. The images in this dataset

are unprocessed real images, which are more challeng-

ing containing noise, blur, dark light and other low-quality

problems. The 100 images in validation set are cropped

from original real images. Since there is no corresponding

ground truth, we can only provide a visual comparison.

4.2. Evaluation Metrics

For the case of synthetic data, we calculate PSNR, SSIM

and LPIPS [43] of results generated by different methods.

Among them, PSNR and SSIM are commonly-used evalu-

ation metrics for image restoration. These two metrics pay

more attention to the fidelity of the image rather than visual

quality. In contrast, LPIPS pays more attention to whether

the visual features of images are similar or not. It uses pre-

trained Alexnet to extract image features, and then calcu-

lates the distance between the two features. Therefore, the

smaller the LPIPS is, the closer the generated image is to

the ground truth.

4.3. Evaluation on Corrupted Images

First, we compare our RealSR with state-of-the-art SR

methods on corrupted DF2K dataset. We evaluate perfor-

mance on validation set which consists of 100 images. Af-

ter generating results by these methods, we calculate PSNR,

SSIM, and LPIPS according to ground truth. Due to the

fact that LPIPS better reflects visual quality, we mainly

focus on this metric. The comparing methods include

EDSR [23], ESRGAN [39], ZSSR [32], K-ZSSR. We eval-

uate the EDSR and ESRGAN method using the pre-trained

model released by the authors. Since ZSSR doesn’t need

a training process, we simply run its test code on the val-

LR                         GT       EDSR   ESRGAN  ZSSR   K-ZSSR    Ours

Figure 3. Qualitative results on DF2K dataset compared with

EDSR, ESRGAN, ZSSR, and K-ZSSR. GT denotes the original

HR ground truth image. The red and yellow area is cropped from

different results and enlarged for visual convenient.

idation images. Specifically, K-ZSSR is a combination of

KernelGAN [3] and ZSSR. The estimated kernel by Kernel-

GAN is used for downsampling image patches during ZSSR

training while ZSSR adopts default bicubic for degradation.

Quantitative Results on DF2K As shown in Table 1, our

RealSR achieves the best LPIPS performance, indicating

our results are much closer to the ground truth in terms

of visual characteristics. Note that our method is lower in

PSNR than EDSR, and this is because we use perceptual

loss that pays more attention to visual quality. Generally,

the PSNR and LPIPS metrics are not positively correlated,

and even show the opposite relationship within a certain

range.

Qualitative Results on DF2K From Figure 3, we see the

local details of different methods on the same image, where

our RealSR produces much less noise. On one hand, com-

pared with EDSR and ZSSR, our results are clearer with

richer texture details. On the other hand, compared with

ESRGAN and K-ZSSR, our results have almost no arti-

facts, which is benefit from the accurate degradation esti-

mated from real noise distribution. In particular, K-ZSSR

uses a more blurry kernel than bicubic, therefore the image

used for training has almost no noise, which leads to many

artifacts when feeding with noisy images. The SR model

mistakes the noise as the content of input image during test.



LR                                            EDSR     ESRGAN       ZSSR          K-ZSSR        Ours
Figure 4. Qualitative results on DPED dataset compared with EDSR, ESRGAN, ZSSR, and K-ZSSR. The red and yellow area is cropped

from different results and enlarged for visual convenient.

4.4. Evaluation on RealWorld Images

The most concerning problem of our proposed method is

real-world super-resolution, so we evaluate our RealSR on

the DPED dataset, in which the photos suffer from degrada-

tion problems such as blur, noise, etc. Just like the problems

encountered in SR training of real images, no ground truth

that can be referred to in the validation stage. Therefore,

we only show the results of visual comparison. In order to

make the details clearer, we enlarge the local area.

Qualitative Results on DPED As shown in Figure 4, the

EDSR, ESRGAN, and ZSSR methods do not correctly dis-

tinguish the noise from the branches and the sky, leading to

blurry results. In our results, the trunk and branches are

clearer, and the dividing line between the object and the

background is sharper. Regarding K-ZSSR, due to wrong

processing of the noise, the result produces unnecessary tex-

ture details. If we zoom in, this result is unacceptable and

cannot be considered as an HR image. When dealing with

some solid backgrounds, the advantages of our method are

more obvious. As can be seen from the third image, the

noise under the eaves has been eliminated, leaving only the

important low-frequency features.

Compared with existing methods, our RealSR produces

few noise and artifacts, indicating that the noise estimated



Team PSNR↑ SSIM↑ LPIPS↓ MOS↓

Impressionism (ours), winner 24.67 (16) 0.683 (13) 0.232 (1) 2.195

Samsung-SLSI-MSL 25.59 (12) 0.727 (9) 0.252 (2) 2.425

BOE-IOT-AIBD 26.71 (4) 0.761 (4) 0.280 (4) 2.495

MSMers 23.20 (18) 0.651 (17) 0.272 (3) 2.530

KU-ISPL 26.23 (6) 0.747 (7) 0.327 (8) 2.695

InnoPeak-SR 26.54 (5) 0.746 (8) 0.302 (5) 2.740

ITS425 27.08 (2) 0.779 (1) 0.325 (6) 2.770

MLP-SR 24.87 (15) 0.681 (14) 0.325 (7) 2.905

Webbzhou 26.10 (9) 0.764 (3) 0.341 (9) -

SR-DL 25.67 (11) 0.718 (10) 0.364 (10) -

TeamAY 27.09 (1) 0.773 (2) 0.369 (11) -

BIGFEATURE-CAMERA 26.18 (7) 0.750 (6) 0.372 (12) -

BMIPL-UNIST-YH-1 26.73 (3) 0.752 (5) 0.379 (13) -

SVNIT1-A 21.22 (19) 0.576 (19) 0.397 (14) -

KU-ISPL2 25.27 (14) 0.680 (15) 0.460 (15) -

SuperT 25.79 (10) 0.699 (12) 0.469 (16) -

GDUT-wp 26.11 (8) 0.706 (11) 0.496 (17) -

SVNIT1-B 24.21 (17) 0.617 (18) 0.562 (18) -

SVNIT2 25.39 (13) 0.674 (16) 0.615 (19) -

Bicubic 25.48 (-) 0.680 (-) 0.612 (-) 3.050

ESRGAN Supervised 24.74 (-) 0.695 (-) 0.207 (-) 2.300

Table 2. Quantitative results for the NTIRE 2020 Challenge on

Real-World Image Super-Resolution: Track 1. The number in

() indicates ranking of each metric. Note that the Mean Opinion

Score (MOS) metric is measured according to human study.

by noise injection is closer to the real noise. Our RealSR

results are more clear with no ambiguity compared with

EDSR, ESRGAN and ZSSR. This reason is that their meth-

ods are all trained on bicubic data without estimating blurry

kernel from real images. In addition, we use perceptual loss

that pays more attention to the visual characteristics of the

image. Compared with EDSR using pixel-loss, our results

have more clear details. What’s more, the cost of training a

new ZSSR or K-ZSSR model is much higher than inference,

while our method costs only forward time during inference.

4.5. NTIRE 2020 Challenge

Our RealSR is the winner of NTIRE 2020 Challenge

on both tracks of Real-World Super-Resolution [26], where

Track 1 is synthetic corrupted data via image processing ar-

tifacts and Track 2 is real data of smartphone images. The

data provided by each track includes two domains. One is

source domain dataset containing noise and blur, and the

other is defined clean HR target dataset. The task is to en-

large the resolution of LR image by 4 times, and keep the

clarity and sharpness of the generated SR image consistent

with the given target dataset. Since there is no given pair

of data for training, participants need to use these two sets

of images to construct training data. We applied the pro-

posed method and achieved the best results on both tracks

as shown in Tables 2 and 3. Note that the final decision is

based on human study, i.e., Mean Opinion Score (MOS) for

Track 1 and Mean Opinion Rank (MOR) for Track 2 [26].

Our method outperforms other approaches by a large mar-

gin, and generates SR images with superior sharpness and

clarity.

4.6. Ablation Study

In order to further verify the necessity of estimating ker-

nel, injecting noise during the degradation process, and the

patch discriminator during SR training, we conduct abla-

tion experiments on the DPED dataset. We first introduce

the settings of each experiment.

• Bicubic: Under this setting, we adopt bicubic kernel

to downsample HR images, and then directly use these

paired data to train SR model. Without kernel estima-

tion and noise injection, this setting keeps other param-

eters as default, which can be understood as fine-tuning

ESRGAN on the real dataset to verify its robustness.

• Noise: This setting is to add noise injection on the ba-

sis of bicubic. Because the kernel estimation method

is not used, this setting can be observed to verify the

validity of the kernel estimation when compared with

the proposed complete method.

• Kernel: This setting only uses the kernel estimation

method, but no explicit noise is added, so it can be used

to observe the effect of noise injection on the result.

• VGG-128: As discussed in Section 3.5, this setting

uses the default VGG-128 discriminator.

• Patch: This setting uses a lighter patch discriminator,

which is compared with the previous four settings to

verify our conclusion.

Next, we demonstrate three comparative analysis to verify

the effectiveness of the three proposed components.

Effect of the Kernel Estimation It can be seen from Fig-

ure 5 that the generated results ‘Patch’ are more clear com-

pared with ‘Noise’. This proves that the kernel estimation is

important to SR training, which helps SR models produce

sharper edges.

Effect of the Noise Injection In this comparative experi-

ment, we set noise injection as an option to verify if noise

injection is necessary. It can be seen from Figure 5 that

without explicit noise injection, the results of ‘Kernel’ have

a lot of artifacts, which are very similar to the ESRGAN

results trained on clean data. The injected noise is consis-

tent with the original noise distribution, thus ensuring SR

models robust to noise during testing.

Effect of the Patch Discriminator On real data, we

use patch discriminator to replace VGG-128. Comparing

‘Patch’ with ‘VGG-128’, we show that the VGG-128 dis-

criminator with excessively large receptive field will cause



Team NIQE↓ BRISQUE↓ PIQE↓ NRQM↑ PI↓ IQA-Rank↓ MOR↓

Impressionism (ours), winner 5.00 (1) 24.4 (1) 17.6 (2) 6.50 (1) 4.25 (1) 3.958 1.54 (1)

AITA-Noah-A 5.63 (4) 33.8 (5) 29.7 (8) 4.23 (8) 5.70 (6) 7.720 3.04 (2)

ITS425 8.95 (18) 52.5 (18) 88.6 (18) 3.08 (18) 7.94 (18) 14.984 3.30 (3)

AITA-Noah-B 8.18 (17) 50.1 (12) 88.0 (17) 3.23 (15) 7.47 (17) 13.386 3.57 (4)

Webbzhou 7.88 (15) 51.1 (15) 87.8 (16) 3.27 (14) 7.30 (15) 12.612 4.44 (5)

Relbmag-Eht 5.58 (3) 33.1 (3) 12.5 (1) 6.22 (2) 4.68 (2) 4.060 -

MSMers 5.43 (2) 38.2 (7) 20.5 (3) 5.22 (5) 5.10 (3) 5.420 -

MLP-SR 6.45 (8) 30.6 (2) 29.0 (6) 6.12 (3) 5.17 (4) 5.926 -

SR-DL 6.11 (5) 33.5 (4) 29.4 (7) 5.24 (4) 5.43 (5) 6.272 -

InnoPeak-SR 7.42 (13) 39.3 (8) 21.5 (4) 5.12 (6) 6.15 (9) 7.716 -

QCAM 6.21 (6) 44.2 (9) 49.6 (9) 4.10 (10) 6.05 (8) 8.304 -

SuperT 6.94 (10) 50.2 (13) 75.1 (11) 4.23 (9) 6.35 (10) 9.612 -

KU-ISPL 6.79 (9) 45.1 (10) 61.6 (10) 3.60 (13) 6.59 (12) 10.152 -

BMIPL-UNIST-YH-1 7.03 (12) 50.2 (14) 81.5 (13) 3.70 (12) 6.66 (13) 12.218 -

BIGFEATURE-CAMERA 7.45 (14) 49.2 (11) 87.1 (14) 3.23 (16) 7.11 (14) 13.784 -

Bicubic 7.97 (16) 52.0 (17) 87.2 (15) 3.16 (17) 7.40 (16) 14.532 6.04 (6)

RRDB 7.01 (11) 51.3 (16) 76.0 (12) 4.06 (11) 6.48 (11) 10.042 6.06 (7)

Table 3. Quantitative results for NTIRE 2020 Challenge on Real-World Image Super-Resolution: Track 2. The number in () indi-

cates ranking of each metric. Several no-reference based image quality assessment (IQA) is used to provide computed evaluation. The

NIQE [29], BRISQUE [28], and PIQE [37] metric is calculated using their corresponding MATLAB implementations. NRQM [27] is a

learned IQA score. Moreover, PI [16] and IQA-Rank indicate summary of the other computed IQA metrics. Note that the final ranking is

based on Mean Opinion Rank (MOR).

LR                                       Bicubic         Noise          Kernel       VGG-128     Patch
Figure 5. Qualitative results on DPED dataset compared with ‘Bicubic’, ‘Noise’, ‘Kernel’, ‘VGG-128’ and ‘Patch’. The red and

yellow area is cropped from different results and enlarged for visual convenient.

unreal textures, which are partially in conflict with the orig-

inal image. In contrast, the patch discriminator restores im-

portant edge features, and avoids unpleasant artifacts thus

generating more realistic details.

5. Conclusion

In this paper, we propose a novel degradation frame-

work RealSR based on kernel estimation and noise injec-

tion. By using different combinations of degradation (e.g.,

blur and noise), we acquire LR images that share a common

domain with real images. With those domain-consistent

data, we then train a real image super-resolution GAN with

a patch discriminator, which can produce HR results with

better perception. Experiments on both synthetic noise data

and real-world images show our RealSR outperforms the

state-of-the-art methods, resulting in lower noise and bet-

ter visual quality. Furthermore, our RealSR is also the

winner of NTIRE 2020 Challenge on both tracks of Real-

World Super-Resolution, which significantly outperforms

other approaches by large margins in human perception.



References

[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops, pages 126–135, 2017.

[2] Simon Baker and Takeo Kanade. Limits on super-resolution

and how to break them. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 24(9):1167–1183, 2002.

[3] Sefi Bell-Kligler, Assaf Shocher, and Michal Irani. Blind

super-resolution kernel estimation using an internal-gan. In

Advances in Neural Information Processing Systems, pages

284–293, 2019.

[4] Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei

Zhang. Toward real-world single image super-resolution: A

new benchmark and a new model. In Proceedings of the

IEEE International Conference on Computer Vision, pages

3086–3095, 2019.

[5] Chang Chen, Zhiwei Xiong, Xinmei Tian, Zheng-Jun Zha,

and Feng Wu. Camera lens super-resolution. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1652–1660, 2019.

[6] Jingwen Chen, Jiawei Chen, Hongyang Chao, and Ming

Yang. Image blind denoising with generative adversarial net-

work based noise modeling. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 3155–3164, 2018.

[7] Yu Chen, Ying Tai, Xiaoming Liu, Chunhua Shen, and Jian

Yang. Fsrnet: End-to-end learning face super-resolution with

facial priors. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018.

[8] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and

Lei Zhang. Second-order attention network for single im-

age super-resolution. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 11065–

11074, 2019.

[9] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Image super-resolution using deep convolutional net-

works. IEEE transactions on pattern analysis and machine

intelligence, 38(2):295–307, 2015.

[10] Manuel Fritsche, Shuhang Gu, and Radu Timofte. Frequency

separation for real-world super-resolution. arXiv preprint

arXiv:1911.07850, 2019.

[11] Jinjin Gu, Hannan Lu, Wangmeng Zuo, and Chao Dong.

Blind super-resolution with iterative kernel correction. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1604–1613, 2019.

[12] Muhammad Haris, Gregory Shakhnarovich, and Norimichi

Ukita. Deep back-projection networks for super-resolution.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1664–1673, 2018.

[13] Xiangyu He, Zitao Mo, Peisong Wang, Yang Liu, Mingyuan

Yang, and Jian Cheng. Ode-inspired network design for sin-

gle image super-resolution. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1732–1741, 2019.

[14] Xuecai Hu, Haoyuan Mu, Xiangyu Zhang, Zilei Wang, Tie-

niu Tan, and Jian Sun. Meta-sr: a magnification-arbitrary

network for super-resolution. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1575–1584, 2019.

[15] Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth

Vanhoey, and Luc Van Gool. Dslr-quality photos on mobile

devices with deep convolutional networks. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 3277–3285, 2017.

[16] Andrey Ignatov, Radu Timofte, Thang Van Vu, Tung

Minh Luu, Trung X Pham, Cao Van Nguyen, Yongwoo Kim,

Jae-Seok Choi, Munchurl Kim, Jie Huang, et al. Pirm chal-

lenge on perceptual image enhancement on smartphones:

Report. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 0–0, 2018.

[17] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1125–1134,

2017.

[18] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

European conference on computer vision, pages 694–711.

Springer, 2016.

[19] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate

image super-resolution using very deep convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1646–1654, 2016.

[20] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-

Hsuan Yang. Deep laplacian pyramid networks for fast and

accurate super-resolution. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

624–632, 2017.

[21] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4681–4690,

2017.

[22] Zhen Li, Jinglei Yang, Zheng Liu, Xiaomin Yang, Gwang-

gil Jeon, and Wei Wu. Feedback network for image super-

resolution. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 3867–3876,

2019.

[23] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition workshops,

pages 136–144, 2017.

[24] Andreas Lugmayr, Martin Danelljan, and Radu Timofte. Un-

supervised learning for real-world super-resolution. In ICCV

Workshops, 2019.

[25] Andreas Lugmayr, Martin Danelljan, Radu Timofte, et al.

Aim 2019 challenge on real-world image super-resolution:

Methods and results. In ICCV Workshops, 2019.

[26] Andreas Lugmayr, Martin Danelljan, Radu Timofte, et al.

Ntire 2020 challenge on real-world image super-resolution:

Methods and results. CVPR Workshops, 2020.



[27] Chao Ma, Chih-Yuan Yang, Xiaokang Yang, and Ming-

Hsuan Yang. Learning a no-reference quality metric for

single-image super-resolution. Computer Vision and Image

Understanding, 158:1–16, 2017.

[28] A Mittal, AK Moorthy, and AC Bovik. Referenceless image

spatial quality evaluation engine. In 45th Asilomar Confer-

ence on Signals, Systems and Computers, volume 38, pages

53–54, 2011.

[29] Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Mak-

ing a “completely blind” image quality analyzer. IEEE Sig-

nal Processing Letters, 20(3):209–212, 2012.

[30] Jinshan Pan, Sifei Liu, Deqing Sun, Jiawei Zhang, Yang Liu,

Jimmy Ren, Zechao Li, Jinhui Tang, Huchuan Lu, Yu-Wing

Tai, et al. Learning dual convolutional neural networks for

low-level vision. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 3070–3079,

2018.

[31] Yajun Qiu, Ruxin Wang, Dapeng Tao, and Jun Cheng.

Embedded block residual network: A recursive restoration

model for single-image super-resolution. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 4180–4189, 2019.

[32] Assaf Shocher, Nadav Cohen, and Michal Irani. “zero-shot”

super-resolution using deep internal learning. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3118–3126, 2018.

[33] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[34] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-

resolution via deep recursive residual network. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017.

[35] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-

net: A persistent memory network for image restoration. In

Proceedings of the IEEE international conference on com-

puter vision, pages 4539–4547, 2017.

[36] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-

Hsuan Yang, and Lei Zhang. Ntire 2017 challenge on single

image super-resolution: Methods and results. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition workshops, pages 114–125, 2017.

[37] N Venkatanath, D Praneeth, Maruthi Chandrasekhar Bh,

Sumohana S Channappayya, and Swarup S Medasani. Blind

image quality evaluation using perception based features. In

2015 Twenty First National Conference on Communications

(NCC), pages 1–6. IEEE, 2015.

[38] Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy.

Recovering realistic texture in image super-resolution by

deep spatial feature transform. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pages 606–615, 2018.

[39] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,

Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-

hanced super-resolution generative adversarial networks. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 0–0, 2018.

[40] Xiangyu Xu, Yongrui Ma, and Wenxiu Sun. Towards real

scene super-resolution with raw images. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1723–1731, 2019.

[41] Xi Yin, Ying Tai, Yuge Huang, and Xiaoming Liu. Fan: Fea-

ture adaptation network for surveillance face recognition and

normalization. arXiv:1911.11680v1, 2019.

[42] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Deep plug-and-

play super-resolution for arbitrary blur kernels. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1671–1681, 2019.

[43] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 586–595, 2018.

[44] Wenlong Zhang, Yihao Liu, Chao Dong, and Yu Qiao.

Ranksrgan: Generative adversarial networks with ranker for

image super-resolution. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 3096–3105,

2019.

[45] Xuaner Zhang, Qifeng Chen, Ren Ng, and Vladlen Koltun.

Zoom to learn, learn to zoom. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 3762–3770, 2019.

[46] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng

Zhong, and Yun Fu. Image super-resolution using very deep

residual channel attention networks. In Proceedings of the

European Conference on Computer Vision (ECCV), pages

286–301, 2018.

[47] Zhifei Zhang, Zhaowen Wang, Zhe Lin, and Hairong Qi. Im-

age super-resolution by neural texture transfer. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 7982–7991, 2019.

[48] Haitian Zheng, Mengqi Ji, Haoqian Wang, Yebin Liu, and Lu

Fang. Crossnet: An end-to-end reference-based super reso-

lution network using cross-scale warping. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 88–104, 2018.

[49] Ruofan Zhou and Sabine Susstrunk. Kernel modeling super-

resolution on real low-resolution images. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 2433–2443, 2019.

[50] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Proceedings of the IEEE

international conference on computer vision, pages 2223–

2232, 2017.


