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Abstract

Super Resolution is the problem of recovering a high-

resolution image from a single or multiple low-resolution

images of the same scene. It is an ill-posed problem since

high frequency visual details of the scene are completely

lost in low-resolution images. To overcome this, many

machine learning approaches have been proposed aiming

at training a model to recover the lost details in the new

scenes. Such approaches include the recent successful ef-

fort in utilizing deep learning techniques to solve super res-

olution problem. As proven, data itself plays a significant

role in the machine learning process especially deep learn-

ing approaches which are data hungry. Therefore, to solve

the problem, the process of gathering data and its formation

could be equally as vital as the machine learning technique

used. Herein, we are proposing a new data acquisition

technique for gathering real image data set which could be

used as an input for super resolution, noise cancellation and

quality enhancement techniques. We use a beam-splitter to

capture the same scene by a low resolution camera and a

high resolution camera. Since we also release the raw im-

ages, this large-scale dataset could be used for other tasks

such as ISP generation. Unlike current small-scale dataset

used for these tasks, our proposed dataset includes 11,421

pairs of low-resolution high-resolution images of diverse

scenes. To our knowledge this is the most complete dataset

for super resolution, ISP and image quality enhancement.

The benchmarking result shows how the new dataset can

be successfully used to significantly improve the quality of

real-world image super resolution.

1. Introduction

Super Resolution (SR) is the problem of recovering

high-resolution (HR) image from a single or multiple low-

resolution (LR) images of the same scene. In this paper we

are focusing on single-image SR which uses a single LR im-

age as input. It is an ill-posed problem as the high frequency

visual details of the scene are lost in the LR image while

Figure 1. Super Resolution Process on an image from ImagePairs

dataset using bicubic, SRGAN [39] and EDSR [42] methods.

the HR image is being recovered. Therefore, the SR tech-

niques are proven to be restrictive for usage in the practical

applications [2]. SR could be used for many different ap-

plications such as satellite and aerial imaging [58], medical

image processing [75], infrared imaging [78], improvement

of text, sign and license plate [3], and finger prints [12].

Figure 1 shows an example of single-image SR process

where the recovered HR image is 4 times larger that its LR

input image. We show the result of different super resolu-

tion techniques in this figure. If the technique fails to re-

cover adequate detail from the LR input, the output will be

blurry without sharp edges.

The SR problem has been studied comprehensively in

the past [59, 48] and many machine learning techniques has

been proposed to solve this problem. Examples would in-

clude Bayesian [61], steering kernel regression [73], adap-

tive Wiener filter [26], neighbor embedding [22, 6], match-

ing [57] and example-based [21] methods.

Deep learning techniques have been proven a success in

many areas of computer vision. This involves application

of deep learning techniques by the lead image restoration

researcher to solve SR [27, 38, 35, 68, 45, 44, 24, 15]. Be-

cause of the nature of deep the learning networks, being a



multi-layered feature extraction cascade [14], more data is

required in order to train these complex methods [51].

As proven, the input data itself plays a significant role

in the machine learning processes [4, 79], especially deep

learning approaches which are data hungry. Hence, the pro-

cess of gathering data and its formation may be equally as

vital to solving the machine learning problem as the tech-

nique used. The sole purpose of SR is not to upscale or to

increase the number of pixels in an image, but to increase

the quality of it as closely to an image with the target reso-

lution as possible. An example would be capturing a photo

using a cellphone with a 5MP front facing camera and a

20MP rear facing camera where a 2X SR technique applied

to the front facing camera will make it 20MP . This is an at-

tempt to increase the number of pixel from 5MP to 20MP

while expecting an increase in the the quality the output im-

age similar to that of the high quality rear facing camera. An

example is presented in Fig. 1, where the same scene was

photographed with a 5MP camera and 20.1MP camera in

the same lighting condition. The same part of the image was

cropped to show the nature of the difference in the quality

of the images (ground truth vs. bicubic). This shows that

maintaining the 20MP quality of the SR technique output

requires SR, noise cancellation, image sharpening and even

color correction to some extend while the-state-of-the-art

methods such as SRGAN [39] and EDSR [42] fail to do so

as seen in Fig. 1. We believe that the main reason for fail-

ure of these methods is lack of realistic training data that we

focus on this paper.

A more complex version of this task could be Image Sig-

nal Processing (ISP) pipeline with various stages includ-

ing denoising [8, 74], demosaicing [40], gamma correction,

white balancing [63, 64] and so on. ISP pipeline has to be

tuned by camera experts for a relatively long time before

it can be used in the commercial cameras. Domain knowl-

edge such as optics, mechanics of the cameras, electron-

ics and human perception of colors and contrast are neces-

sary in this tuning process. Replacing this highly skilled

and tedious tuning process with a deep neural network is

a recent research direction in computational photography

[52, 50, 41, 32]. Current datasets [69, 1] widely used for

training SR models increase the number of pixel without

taking the quality of the image into consideration. The new

data acquisition technique proposed herein may be used for

SR, noise cancellation and quality enhancement techniques.

A dataset of 11,421 pairs of LR-HR images is presented

which was used to solve the SR problem. We use a beam-

splitter to capture the same scene by two cameras: LR and

HR. The proposed device can capture the same scene by

two cameras, there still have a different perspective due to

the different focal lenses, but we solve it by local align-

ment technique. Since we also release the raw images, this

large-scale dataset could be used for other tasks such as ISP

generation. To our knowledge, this is the most complete

dataset for SR, ISP and image quality enhancement with

far more real LR-HR images compared to existing dataset

for SR and ISP task. This dataset is more than 10× larger

than current SR dataset while it includes real LR-HR pairs

and more than 2× larger than current ISP dataset (except

[32] which is a concurrent work) while it includes diverse

scenes. The benchmark result shows how the new dataset

can be successfully used to significantly improve the qual-

ity of real-world image super resolution.

2. Related Works

In recent years, the core of image SR methods has shifted

towards machine learning, mainly the machine learning

techniques and the datasets. Herein, a brief description is

given on the single image SR methods and learning-based

ISP methods as well as their common datasets. There are

also multiple image SR methods [61, 7, 19, 15] which are

not the main focus of this paper. More comprehensive SR

methods descriptions may be found in [59, 48].

2.1. SR methods

Interpolation based: The early SR methods are known

as interpolation based methods where new pixels are esti-

mated by interpolating given pixels. This is the easiest way

to updates the image resolution. Examples include Nearest

Neighbor interpolation, Bilinear interpolation and Bicubic

interpolation which uses 1, 4 and 16 neighbor pixels respec-

tively to compute the value of new pixels. These methods

are wildly in use in image resizing.

Patch based: More recent SR methods rely on machine

learning techniques to learn the relation between patches of

HR image and patches of LR images. These methods are re-

ferred to as patch-based methods in some literature [69, 66]

and Exemplar-based in other [21, 23]. Unlike the first class

of methods, these methods need training data in order to

train their models. These training data are usually pairs

or corresponding LR and HR images. The training dataset

is further discussed in subsection 2.3. Depending on the

source of a training patch, the corresponding method for

patch based SR may be categorized into two main cate-

gories: external or internal.

External methods the external method uses a variety

of learning algorithms to learn the LR-HR mapping from a

large database of LR-HR image pairs. These include near-

est neighbor [21], kernel ridge regression [36], sparse cod-

ing [70] and convolutional neural networks [15].

Internal Methods the internal method on the other hand

assumes that patches of a natural image recurs within and

across scales of the same image [5]. Therefore, it makes

an attempt to search for a HR patch within a LR image

with different scales. Glasner et al. [23] united the classical

and example-based SR by exploiting the patch recurrence



Data Set Size Main purpose HR Resolution LR generation Raw

Set5 [6], Set14 [77], Urban100 [28] 5/14/100 SR 512× 512 down-sample HR No

The Berkeley segmentation [46] 200 Segmentation 481× 321 down-sample HR No

DIV2K [1] 1000 SR 2048× 1080 down-sample HR No

See-In-the-Dark (SID) [11] 5094 Low-Light 4240× 2832 - Yes

Samsung S7 [52] 110 ISP 4032× 3024 - Yes

RealSR [10] 595 SR 3500× 700 Real Yes

Zurich RAW to RGB [32] 48043 ISP 448× 448 Real Yes

ImagePairs (Proposed) 11421 SR 3504× 2332 Real Yes

Table 1. Compression between proposed dataset to current datasets used for its task.

within and across image scales. Freedman and Fattal [20]

gained computational speed-up by showing that self-similar

patches can often be found in limited spatial neighborhoods.

Yang et al. [69] refined this notion further to seek self-

similar patches in extremely localized neighborhoods, and

performed first-order regression. Michaeli and Irani [47]

used self-similarity to jointly recover the blur kernel and the

HR image. Singh et al. [28] used the self-similarity princi-

ple for super-resolving noisy images.

With the success of convolution neural networks, many

internal patch-based SR methods were proposed which out-

perform the prior methods. As an example, SRGAN [39]

used a generative adversarial network (GAN) [25] for this

task that trained by perceptual loss function consisting of an

adversarial loss and a content loss. The residual dense net-

works (RDN) [76] exploited the hierarchical features from

all the convolutional layers. EDSR [42] did a performance

improvement by removing unnecessary modules in conven-

tional residual networks. WDSR [71] introduced a linear

low-rank convolution in order to further widen activation

without computational overhead.

2.2. ISP Methods

Image Signal Processing (ISP) pipeline is a method used

to convert an raw image into a digital form in order to get

an enhanced image. This consists of various stages includ-

ing denoising [8, 74], demosaicing [40], gamma correction,

white balancing [62, 16] and so on. Currently, this pipeline

has to be tuned by camera experts for a long period of time

for each new camera. Replacing the expert-tuned ISP with

a fully automatic method has been done with few recent

methods approach by training an end-to-end deep neural

network [52, 50, 41]. Schwartz et al. [52] released a data

set, named Samsung S7 data set, contains RAW and RGB

image pairs with both short and medium exposures. They

design a network that first processes the image locally then

globally. Ratnasingam [50] replicates the steps of a full ISP

with a group of sub networks and achieves the-state-of-the-

art result by training and testing on a set of synthetic images.

Liang et al. [41] used 4 sequential u-nets in order to solve

this problem. They claimed that the same network can be

used for en-lighting extreme low light images.

2.3. SR and ISP Datasets

SR dataset includes pairs of HR and LR images. Most

existing datasets generate an LR image from the corre-

sponding HR image by sub-sampling the image using var-

ious settings. Here the HR images are also called ground

truth as the final goal of SR methods is to retrieve them

from LR images. Therefore, SR dataset includes sets of HR

images or ground truths and settings to generate LR image

from HR images. Here is a list of common SR datasets:

1. The Berkeley segmentation dataset [46] is one of the

first datasets used for single image SR [56, 20, 23]. It

includes 200 professional photographic style images of

481× 321 pixels with a diverse content.

2. Yang et. al. [69] proposed a benchmark for sin-

gle image SR which includes The Berkeley segmen-

tation dataset as well as a second set containing

29 undistorted high-quality images from the LIVE1

dataset [54] , ranging from 720 × 480 to 768 × 512
pixels. Huang et. al. [27] added 100 urban high res-

olution images from flicker100 with a variety of real-

world structures to this benchmark, in order to focus

more on man made object.

3. DIV2K dataset [1] has introduced a new challenge for

single image SR. This database include 1000 images

of diverse contents with train/test/validation split as

90/10/10.

4. RealSR dataset [10] captured images of the same scene

using fixed DSLR cameras with different focal lengths.

The focal length changes can capture finer details of

the scene. This way, HR and LR image pairs on dif-

ferent scales can be collected with a registration algo-

rithm. This dataset includes 595 LR/HR pairs of in-

door and outdoor scenes.

There are also few standard benchmark datasets,

Set5 [6], Set14 [77], and Urban100 [28] commonly used

for performance comparison. These datasets include 5 ,14

and 100 images, respectively. Apart from RealSR [10], all

other datasets do not include LR images so the LR image

should generate synthetically from corresponding HR im-

age. There are several ways to generate LR test images



from HR images (the ground truth) [53, 60, 55] such that

the generated LR test images may be numerically different.

One common way to achieve this is to generate a LR image

in a Gaussian blur kernel to down-sample the HR image us-

ing a noise term [33, 36, 69]. The parameter for this task

will be s as scale factor, α for Gaussian kernel and ǫ for

noise factor. There are other datasets dedicated to image en-

hancements such as MIT5K [9] and DPED [29]. MIT5K [9]

includes 5,000 photographs taken with SLR cameras, each

image retouched by professionals to achieve visually pleas-

ing renditions. DPED [29, 30] consists of photos taken syn-

chronously in the wild by three smartphones and one DSLR

camera. The smartphone images were aligned with DSLR

images to extract 100 × 100 patches for CNN training in-

cluding 139K, 160K and 162K pairs for each settings. This

dataset was used in a challenge on image enhancement [30]

as well as a challenge on RAW to RGB Mapping [31].

There are not many publicly available ISP dataset which

requires raw image as well as generated image from that.

Here we describe two datasets that were used for ISP.

1. See-In-the-Dark (SID): proposed by Chen et al. [11],

is a Raw-RGB dataset captured in extreme low-light

where each short-exposure raw image is paired with its

long-exposure RGB counterpart for training and test-

ing [72]. Images in this dataset were captured using

two cameras: Sony α7SII and Fujifilm X-T2, each

subset contains about 2500 images, with about 20%
as test set. The raw format of Sony subset is the tra-

ditional 4-channel Bayer pattern that of Fuji subset is

XTrans format with 9 channels. Beside raw and RGB

data, their exposure times are provided alongside.

2. Samsung S7: captured by Schwartz et al. [52],

contains 110 different RAW-RGB pairs, with

train/test/validation split of 90/10/10. Different to the

SID dataset, this one does not provide related camera

properties such as the exposure time associated with

the image pairs. The raw format here is also the

traditional 4-channel Bayer pattern.

3. Zurich RAW to RGB: is a concurrent work proposed

by Ignatov et al. [32] where 20 thousands photos were

collected using a smartphone capturing RAW photos

and a professional high-end DSLR camera. The cap-

tured RAW–RGB image (RAW from smartphone and

RGB from DSLR) pairs are aligned using the same

procedure as in [29]. The patches of size 448 × 448
were extracted from pairs, resulting in 48,043 RAW-

RGB image pairs as a dataset for training ISP.

Current SR methods as well as learning based ISP meth-

ods are mainly focused on their learning process as men-

tioned before. Different machine learning techniques have

been applied to these problems and recent efforts have

involved training different deep neural network models.

Camera Low-resolution High-resolution

Image sensor format 1/4” 1/2.4”

pixel size 1.4µm 1.12µm
Resolution 5MP 20.1MP

FOV (H,V) 64◦, 50.3◦ 68.2◦, 50.9◦

Lens focal length 2.9mm 4.418mm

Focus fixed-focus auto-focus

Table 2. Camera Specifications.

Comparing to datasets for popular computer vision tasks

such as image classification [13], detection [18, 43], seg-

mentation [43], video classification [34] and sign language

recognition [65], there is an obvious lack of large realistic

dataset for SR and ISP tasks despite of the potential to pro-

duce significant result by neural network techniques. Ta-

ble 1 shows all these datasets currently used for SR and

ISP tasks and their specification compared to our proposed

dataset ImagePairs. Our proposed dataset is not only at least

10 times larger than other SR datasets and 2 times from

other ISP datasets (except [32] which is a concurrent work),

but also has real LR-HR images and includes raw images

which could be used for other tasks.

3. Data Acquisition

3.1. Hardware Design

The high resolution camera used had a 20.1MP ,

1/2.4” format CMOS image sensor supporting 5344(H) ×
3752(V ) frame capture, 1.12µm pixel size, and lens focal

length of f = 4.418mm (F/1.94), providing a 68.2◦×50.9◦

field of view (FOV). The camera also featured bidirectional

auto-focus (open loop VCM) and 2-axis optical image sta-

bilization (closed loop VCM) capability.

The lower resolution fixed-focus camera used had a sim-

ilar FOV with approximately half the angular pixel resolu-

tion. it also featured a 5MP , 1/4” format CMOS image

sensor supporting 2588× 1944 frame capture, 1.4µm pixel

Figure 2. Opto-mechanical layout of dual camera combiner, show-

ing high resolution camera (transmission path) and low resolution

camera (reflective path) optically aligned at nodal points.



size, and lens focal length f = 2.9mm (F/2.4), providing a

64◦(H)x50.3◦(V ) FOV. Table 3.1 shows the specifications

for these cameras.

In order to simultaneously capture frames on both cam-

eras with a common perspective, the FOVs of both cameras

are combined using a Thorlabs BS013 50/50 non-polarizing

beam-splitter cube. They are then aligned such that point-

ing angle of the optical axes are at far distance and entrance

pupils at each camera (nodes)are at near distance. The high

resolution camera, placed behind the combiner cube in the

transmission optical path, is mounted on a Thorlabs K6XS

6-axis stage so that the x and y position of the entrance

pupil is centered with the cube and the z position in close

proximity. The tip and tilt of camera image center field

pointing angle is aligned with a target at distance while rota-

tion about camera optical axis is aligned by matching pixel

row(s) with a horizontal line target. Fig. 2 illustrates the

opto-mechanical layout of the dual camera combiner. The

low resolution camera is placed behind the combiner cube

in the lateral 90◦ folded optical path and also mounted on

a 6-axis stage. It is then aligned in x, y and z such that

entrance pupil optically overlaps that of the high resolution

camera. The tip/tilt pointing angle as well as camera ro-

tation about optical axis may be adjusted so as to achieve

similar scene capture. In order to refine the overlap toward

pixel accuracy, a live capture tool displays the absolute dif-

ference of camera frame image content between cameras

such that center pointing and rotation leveling may be ad-

justed with high sensitivity. Any spatial and angular off-

sets may be substantially nulled by mechanically locking

the camera in position. The unused combiner optical path is

painted with carbon black to limit image contrast loss due

to scatter. The opto-mechanical layout of dual camera com-

biner is illustrated at figure 4.

The proposed device can capture the same scene by two

different cameras. The two cameras have a difference in

Figure 3. The data acquisition device install on a tripod while the

trolley is used for outdoor manoeuvre.

Figure 4. Two camera setup

perspective due to the different focal lenses which was

solved by a local alignment technique described in sec-

tion 4. Furthermore, the two camera sensors get half of

the light because of 50/50 split with poorer image quality

mainly on low-resolution camera.

3.2. Software Design

A data capturing software was developed to connect

to both cameras, allowing them to synchronize with each

other. The software may capture photo from both cameras at

the same time as well as adjusting camera parameters such

as gain, exposure and lens position for the HR camera. The

raw data was stored for each camera, allowing later use of

the arbitrary ISP. For each camera, all the meta data was

stored on a file including the image category selected by the

photographer. Figures 3 shows the data acquisition device

installed on a tripod while the trolley is used for outdoor

maneuvering.

4. ImagePairs Dataset

The dataset was called ImagePairs as it includs pairs of

images of the exact scene using two different cameras. Im-

ages are either LR or HR where the HR image is twice

as big in each dimensions as the corresponding LR image;

all LR images are 1752 × 1166 pixels and HR images are

3504×2332 pixels. Unlike other real world datasets, we do

not use zooming levels or scaling factor to increase the num-

ber of pairs so each pair corresponds to a separate scene.

This means that we captures 11,421 distinct scenes with the

device which generates 11,421 image pairs.

For each image pair, the meta data such as gain, expo-

sure, lens position and scene categories were stored. Each

image pair was assigned to a category which may later be

used for training purposes. These categories include Doc-

ument, Board, Office, Face, Car, Tree, Sky, Object, Night

and Outdoor. The pairs are later divided in two sets of train

and test, each including 8591 and 2830 image pairs, respec-

tively. The two cameras have a difference in perspective

due to the different focal lenses. Therefore, in order to gen-

erate pairs corresponding to each other in pixel level, the

following steps were applied: (1) ISP (2) image undistor-

tion (3) pair alignment (4) margin cropping. Figure 6 illus-

trates diverse samples from proposed dataset after the final

alignments. In order to show the accuracy of pixel-by-pixel



Figure 5. Undistorted image of HR at right and LR at left.

alignment, each sample image is divided by half horizon-

tally to show LR at left and HR at right in Fig. 6.

ISP : The original images were stored in the raw format.

The first step was to convert the raw data to color images,

using a full-stack powerful ISP for both LR and HR. Since

we have access to the raw data, the ISP can be replaced

with a different one or a simple linear one to ignore the non-

linearity in the pipeline.

Image Undistortion : CMOS cameras introduce a lot

of distortion to images. Two major distortions are radial

distortion and tangential distortion. In radial distortion,

straight lines will appear curved while in the tangential dis-

tortion the lens is not aligned perfectly parallel to the imag-

ing plane. To overcome these distortions in both LR and

HR images, we calibrated both cameras by capturing sev-

eral checkerboard images. These images were later used

to solve a simple model for radial and tangential distor-

tions [49]. Figure 4 shows the un-distorted image for both

LR and HR images.

Alignment : We use two steps in order to align the LR

and HR images. First we try to globally match two images

using image registration technique specifically homography

transformation. Although now HR and LR image are glob-

ally aligned but they may not be aligned pixel by pixel due

to some geometry constrains. So as the second step, we

use a 10 by 10 grid for LR image and do a local search to

find the best match on HR image for that grid. Lastly, we

use matching position for grids on HR image to warp the

LR image so that the LR and HR are globally and locally

matched to each other.

Margin Crop : Although the images were aligned glob-

ally and locally, the borders are not as aligned as we ex-

pected, possibly due to differences in the camera specifi-

cations. Therefore, 10% of border from each image was

removed, resulting in a change in the resolution of both LR

and HR images; 1752×1166 pixels and 3504×2332 pixels

respectively. For each image (LR or HR) we also stored

meta data which is analogue gain, digital gain, exposure

time, lens position and scene category. The scene category

which is selected by the photographer includes Office, Doc-

ument, Tree, Outside, Toy, Sky, Sign, Art, Building, Night,

etc. Figure 7 illustrates the frequency of each categories for

ImagePairs train/test sets.

At this point, the ImagePairs consists of a large dataset

Figure 6. Sample images from ImagePairs dataset. Each image

divided by half horizontally to show LR (left) and HR (right).

of HR-LR images, allowing the easy application of patch-

base algorithms. Random patches can pick from LR and

the corresponding HR patches. Since the correspondence is

pixel by pixel, there is no need to search for similar patches

in different scales. Additionally, the ground truth (HR) has

4 times more pixels, is sharper and less noisy compared to

the LR images, hence an increased image quality.

5. Experimental Results

5.1. Realistic Super Resolution

Before running a benchmark for state-of-the-art SR

methods, we need to see their performance when trained

on current SR datasets. As mentioned before, a real LR im-

age usually has many other artifacts as it is captured with a

weaker camera. We train a basic generative adveral network

(GAN) model which includes 10 convolution layers for gen-

erator and a U-Net with 10 convolution/deconvolution for

discriminator network with the proposed dataset. The sole

reason of this experiment is to see if current state-of-the-

art methods trained on synthetic images can outperform

Figure 7. Frequency of ImagePairs train/test categories.



Bicubic RDN [76] SRGAN [39] EDSR [42] WDSR [71] Proposed

Figure 8. Qualitative compassion of the-state-of-the-art super resolution methods train on DIV2K [1] dataset set compare to simple network

trained on ImagePairs dataset. The first two images are from ImagePairs test set and the next two are external images.

our simple method training on real images or not. Fig-

ure 8 shows the performance of this method compared to

the super resolution methods: SRGAN [39], EDSR [42],

WDSR [71] and RDN [76] trained on DIV2K dataset [1].

The first two images are from ImagePairs test set and the

next two images are from real-world LR images from the

internet. As expected, these methods only increase the pixel

and do not effect image artifacts like noise and color tem-

perature. Our method trained on ImagePairs dataset does

well for images from the dataset and real-world LR images.

5.2. Super Resolution Benchmark

We trained three 2X super resolution methods on Im-

agePairs train set including SRGAN [39], EDSR [42] and

WDSR [71] by using their model implementation by [37,

17]. All SR methods trained using LR-HR rgb images and

we do not use raw images as input. We use same patch

size of 128 × 128 for HR images and batch size equal to

16 for all training. All methods are trained for 150K it-

erations. For evaluation, we run trained models on cen-

tered quarter of cropped images of Imagepairs test set. Ta-

ble 5.2 reports the peak signal-to-noise ratio (PSNR) and

the structural similarity (SSIM) [67] for trained model on

ImagePairs as well as model trained on DIV2K dataset with

similar parameters. As we discussed before, the PSNR and

SSIM for methods trained on DIV2K is comparable with

bicubic method. In some cases, they perform worst than

bicubic since noise could boost with some SR methods.

On the other hand, when we trained the same models with

proposed ImagePairs dataset, all methods outperform their

PNSR. SRGAN [39] and EDSR [42] is doing a good job in

noise cancellation and outperform at least 2 db for PSNR

and 0.6 on SSIM. On the other hand, SRGAN [39] which

is not optimized for PSNR, mainly focuses on color correc-

tion and not much on noise cancellation. Figure 9 illustrates

qualitative comparison of these methods trained on Image-

Pairs dataset. Needless to say, these models perform much

better on nose cancellation, color correction and super res-

olution compared to similar models trained on DIV2K.

5.3. ISP Benchmark

For ISP task, we consider LR images and their corre-

sponding raw images of ImagePairs train/test sets as the

raw HR images are too large. We trained DeepISPnet [52],

SIDnet [11] and GuidanceNet [41] on ImagePairs training

set which contains raw and LR images. All networks read



HR Bicubic WDSR [71] EDSR [42] SRGAN [39]

Figure 9. Qualitative comparison of the-state-of-the-art super resolution methods train on proposed dataset.

Raw DeepISP [52] SIDnet [11] GuidanceNet [41] Ground Truth

Figure 10. Qualitative comparisons of state-of-the-art ISP methods trained on ImagePairs dataset.

Model Train data PSNR (db) SSIM

Bicubic - 21.451 0.712

SRGAN [39] DIV2K 21.906 0.699

WDSR [71] DIV2K 21.299 0.697

EDSR [42] DIV2K 21.298 0.697

SRGAN [39] ImagePairs 22.161 0.673

WDSR [71] ImagePairs 23.805 0.767

EDSR [42] ImagePairs 23.845 0.764

Table 3. Comparisons of state-of-the-art single image super reso-

lution algorithms on ImagePairs data set.

RAW images and associated 4 camera properties: analogue

gain, digital gain, exposure time and lens position. Here,

the exposure time is in microsecond; the lens position is the

distance between the camera and the scene in centimeters.

GuidanceNet [41] is designed to use camera properties in

its bottleneck layers, but we modified DeepISPnet [52] and

SIDnet [11]. For DeepISPnet [52], we tile and concatenate

these features with the output of their local sub-network

and then feed it to the global sub-network for estimating

the quadratic transformation coefficients. For SIDnet [11],

we tile and concatenate these features with the input image.

Tables 5.3 reports the evaluation of these three models on

ImagePairs test set in term of PSNR and SSIM. This shows

Model PSNR (db) SSIM

DeepISP [52] 20.30 0.89

SIDnet [11] 23.08 0.90

GuidanceNet [41] 29.22 0.96

Table 4. Comparisons of ISP algorithms on ImagePairs dataset.

GuidanceNet [41] which properly used camera properties

outperform others. Figure 10 illustrates examples for each

of these models.

6. Conclusion

In this paper we proposed a new data acquisition tech-

nique which could be used as an input for SR, noise can-

cellation and quality enhancement techniques. We used a

beam-splitter to capture the same scene by a low resolution

camera and a high resolution camera. Unlike current small-

scale datasets used for these tasks, our proposed dataset in-

cludes 11,421 pairs of low-resolution and high-resolution

images of diverse scenes. Since we also release the raw im-

ages, this large-scale dataset could be used for other tasks

such as ISP generation. We trained state-of-the art methods

for SR and ISP tasks on this dataset and showed how the

new dataset can be successfully used to improve the quality

of real-world image super resolution significantly.
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