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Abstract

Attentive neural networks for image restoration are in

the spotlight because they got remarkable results both qual-

itatively and quantitatively. Networks attentive in RGB

channels were effective in fields such as single image super-

resolution and RAW to RGB mapping. In addition, networks

attentive in positions of pixels were used in image denois-

ing. However, networks attentive in positions of pixels, so

called spatial attention or pixel attention algorithm, were

not as effective in image restoration because the number of

pixels in patches of an image is so many that the weights by

sigmoid function are insignificant. Also, networks attentive

in positions of pixels were mainly used in high-level vision

such as image classification and image captioning where

there is no need to restore an image itself.

In this paper, we propose a demoiréing network attentive

in channel, color, and concatenation, named C3Net. The

proposed algorithm uses residual blocks attentive in RGB

channels to take advantage of channel attention algorithm.

In addition, we introduce a L1 color loss for demoiréing

to solve moiré patterns caused by color-striped patterns.

Also, we transferred multi-scale information by concatena-

tion, not multiplying with the insignificant weights by sig-

moid function. As a result, our proposed C3Net showed

state-of-the-art results in the benchmark dataset on NTIRE

2020 demoiréing challenge.

1. Introduction

Moiré patterns are irregular patterns that is formed when

a striped or gridded pattern and its displaced version over-

lap. The displacement of patterns can be the case that the

two patterns are not identical; one of the patterns may be

moved horizontally, vertically or rotated. In addition, de-

pending on the media displaying those patterns, the printed

dots by a printer or the shape of the light sensors in pho-

tographing equipment can raise moiré patterns.
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Figure 1. Moiré patterns made by a stripped backrest of a chair and

a rotating fan (shot with Galaxy S6).

Consequently, the displacement of patterns creates

moiré patterns with frequencies present in neither of the

original patterns. These patterns were used for measuring

3-D objects which have shadow moiré patterns [3, 18],

sensor for slope movement sensing [15, 30] or even

designing [31] because the displacement happens not only

in 2-D environment but also in 3-D. Moiré patterns vary

from not only where the object with the patterns is but also

the position where the object is photographed.

However, in terms of image restoration, moiré patterns

can make people who see the patterned images dizzy and

degrade the perfomance of images such as peak signal-

to-noise ratio (PSNR) and structural similarity (SSIM).

To solve these problems, Abraham [1] proposed detecting

moiré patterns using multi-level wavelet decomposition and

deep learning. Also, algorithms to reduce moiré patterns

were proposed according to the media where the images

come from. Sasaki et al. [24, 25] pointed out that color

moiré patterns on the 3D image can be visual obstacles

for viewers and solved it by optical wobbling device or

lens shift method in hardware. Hauke et al. [10] tried

reconstructing image with moiré patterns using acquired

phase-stepping data and discrete Fourier transform [28]

and showed good results in X-ray image.

Nowadays, removing moiré patterns are achieved using

deep learning because restoring image which has irregular

moiré patterns with only hardware or functions is limited.

For trained datasets, deep convolutional neural networks

(CNN) show remarkable results. Grundhöfer et al. [9]



also tried demoiréing in photographs using CNN with L1

loss, SSIM loss and L2 regularization. Sun et al. [27]

used CNN under conditions of diverse resolutions and

added all and successfully removed moiré patterns in

photographs. Benchmarking CNN under conditions of

diverse resolutions, Gao et al. [8] proposed Multi-Scale

Feature Enhance (MSFE) and Feature Enhancing Branch

(FEB) where Low-level feature and upscaled High-level

feature are multiplied. He et al. [11] proposed MopNet

which uses U-net [23] structure in Multi-scale Aggregation

and Channel-wise Target Edge Predictor. MopNet also

utilized Attribute-aware Classifier to categorize the types

of moiré patterns and the information of the types of

patterns consequently helped to demoiré. Yue et al. [42]

proposed a convolutional neural Network with Additive

and Multiplicative modules (AMNet) which has a U-net

structure and uses residual learning [12] and atrous spatial

pyramid pooling (ASPP) [6]. AMNet also benchmarked

channel attention [45] in its Channel-wise Multiplicative

block to pay attention to color moiré patterns. Yue et al.

also compared the results depending on the combination of

loss such as MSE loss, adversarial loss [19], and perceptual

loss [14].

Shortly, to remove moiré patterns and restore the

original images, conventional algorithms focused on three

factors: channel-wise attention, customized loss, and multi-

scaled information. However, MopNet and AMNet used

channel-wise attention only partly. Also, most conventional

algorithms used L1 loss suitable for image restoration [49].

In addition, most conventional algorithms are multi-path

networks or benchmark U-net for getting the types of moiré

patterns in multi-scaled information.

In this paper, we propose a demoiréing network attentive

in channel, color, and concatenation, named C3Net. The

proposed C3Net tried to complement three factors to

facilitate better results. First, C3Net uses residual blocks

which consist of convolutional layers and channel attention

all over the network. Second, we introduce L1 color loss

which is an addition of conventional L1 loss and L1 loss of

U and V channels. Lastly, we put a U-net on a block for

multi-scaled information and concatenated the multi-scaled

information to feature maps followed by residual blocks.

2. Related works

2.1. How to pay attention to moiré patterns

Attentive neural networks, whose outputs depend on the

weights of RGB channels, were first introduced in natural

language processing (NLP) such as machine translation [4]

and text classification [35, 50]. The purpose of the atten-

tion algorithm in those networks was to calculate weights

among words in a sentence and reflect the weights on the

outputs of networks. As a result, many networks showed

good results in NLP.

Nowadays, attentive neural networks utilizing images

are in the spotlight. As attentive neural networks for NLP

calculated weights among words in a sentence, attentive

neural networks utilizing images calculated weights among

channels in an image. In single image super-resolution

(SISR), Zhang et al. [45] introduced this algorithm named

channel attention and got better results than any other state-

of-the-art algorithms. Also, to solve color-related problem,

Uhm et al. [32] proposed W-Net which is a set of two U-net

differently trained. W-net used channel-attentional convolu-

tion (CA-Convs) block that consists of three sets of a convo-

lutional layer and a LeakyReLU layer and channel attention

module and mapped raw image to RGB image successfully.

Attention to positions of pixels of an image, so called

spatial attention or pixel attention algorithm, is also a

method to give more weights to pixels of the image for

desired results. After extracting feature maps, the feature

maps pass sigmoid function and are mapped in a range be-

tween 0 and 1. Multiplying those weights informs the whole

network of how to learn to get better results. Zhang et

al. [46] used sigmoid function to feature maps which passed

encoder-decoder-shaped mask branch and multiplied the

spatial attention maps to feature maps which passed trunk

branch with simplified residual blocks [20].

In image captioning, Chen et al. [5] made multi-layers

feature maps with good quality by multiplying channel-

wise attention weights and spatial attention weights. In im-

age classification, Park et al. [22] introduced bottleneck at-

tention module (BAM) which makes its own BAM attention

maps by adding channel attention maps and spatial attention

maps. Woo et al. [36] also used a module named convolu-

tional block attention module (CBAM) which makes refined

feature maps utilizing channel attention module and spatial

attention module. The point that the input feature maps of

modules were refined by average pooling and maxpooling

also helped the network for learning.

In this paper, C3Net only uses channel attention mod-

ule in each residual block all over the proposed algorithm,

which is different from MopNet [11] and AMNet [42].

The most important reason is that removing moiré patterns

is a color-related problem, so the information helpful for

demoiréing is likely in RGB channels.

Also, spatial attention module can confuse demoiréing

network because the datasets by NTIRE 2020 Demoiréing

Challenge [40] are from repeated color-striped patterns such

as electronic displays and clothes different from those by

AIM 2019 Challenge on Image Demoiréing [41]. There-

fore, the weights from spatial attention algorithm become

insignificant.



2.2. Color­related loss

When approaching color-related problem, loss for back-

propagation was a core factor in image restoration. In case

of image colorization, Zhang et al. [44] made the network

learn a probability distribution over possible colors using

multinomial cross entropy loss. Zhang et al. classified pix-

els into 313 colors, calculated multinomial cross entropy

loss, and combined the loss with MSE Loss. In addition, ap-

plying image downscaling in channel-wise, Kim et al. [16]

utilized an autoencoder and used a fused L1 loss compar-

ing output with ground truth (GT) both in YUV space of

colored pair and Y space of grayscaled pair. One loss is

from GT in YUV space and task-aware upscaled image to

YUV space, and the other loss is from grayscaled image and

task-aware downscaled image to Y space. Kim et al. also

adjusted the weights between two losses and showed great

colorized results by adding two losses.

In case of RAW to RGB mapping, W-Net used their

own color loss which measures the cosine distance between

RGB space of predicted image and GT. Uhm et al. defined

three values of RGB space of predicted image and GT to

each 3-D vector and calculated the cosine distance by di-

vide the inner product of the vectors into the product of the

sizes of the vectors. Many conventional algorithms tried to

analyze the color space depending on the tasks related to

color such as image colorization, RAW to RGB mapping,

and demoiréing where Yang et al. [37] made a successful

approach by splitting the channels of image into RGB or

YUV each to apply layer decomposition on polyphase com-

ponents (LDPC).

In our proposed algorithm, we include color loss term us-

ing L1 loss terms of U and V channels. While conventional

L1 loss term of RGB channels helps the network keep the

content of the original image, color loss helps the network

to restore color-related values whose information is concen-

trated in U and V channels.

2.3. Concatenation of multi­scaled information

Facilitating better results in image restoration using

multi-scaled information was first introduced in U-net [23].

The core idea of U-net is to downscale feature maps, pro-

cess convolutional layers, concatenate feature maps before

downscaling to upscaled feature maps. These contributions

make the result show better by multi-scaled information.

Conventional algorithms take the advantage of overall U-

net in image restoration such as image denoising [21], RAW

to RGB Mapping [32], and demoiréing [42].

Multi-scaled information is also well used in multi-path

networks. In case of U-net, downscaled feature maps are

concatenated on their way upscaling subsequently. How-

ever, in case of multi-path networks, the process progresses

with the feature maps downscaled. After that, diversely

downscaled and processed feature maps gather by residual

learning [12] or concatenation. Cheng et al. [7] proposed

Multi-scale convolutional network with Dynamic feature

encoding for image DeMoiréing (MDDM). MDDM also

used adaptive instance normalization (AdaIN), channel at-

tention module, and non-local block [34] in each branch

to get good multi-scaled and attentive in channel-wise fea-

ture maps. Downscaling the feature maps from x2 to x32,

MDDM not only got multi-scaled information, but also de-

tected diverse types of moiré patterns to restore.

Several networks use U-net as a part of networks for

multi-scaled information. Wang et al. [33] introduced soft

mask branch and the branch downscales and upscales the

feature maps by maxpooling and interpolation for image

classification. In image denoising, Zhang et al. [46] also

use mask branch which downscales and upscales the fea-

ture maps by convolutional layers and calculate the weights

among pixels of an image, which is named spatial attention.

In a different way, Yu et al. [39] used U-net as a block and

adopted repeated structure of proposed block. At the same

time, the content of the image was kept by residual learning.

In C3Net, we set each block with trunk branch and mask

branch. Trunk branch conveys the information of the input

image using residual blocks with channel attention mod-

ules. Mask branch yields multi-scaled information using a

U-net in a block. While Zhang et al. [46] used spatial atten-

tion algorithm and multiplied outputs from trunk branch and

those from mask branch, C3Net concatenate outputs from

trunk branch and those from mask branch to use diverse in-

formation to keep not only the content of original image, but

also multi-scaled information. In addition, C3Net concate-

nates outputs from each residual blocks or attention blocks

in parallel and outputs from trunk branch and those from

mask branch again while Yu et al. [39] conveyed the con-

tent of original image using only residual learning and ex-

tract multi-scaled feature maps from U-net-based down-up

blocks (DUBs) in series. Concatenating many times and in

parallel makes C3Net get at moiré patterns and restore the

degraded images.

3. Proposed algorithm

3.1. The architecture of the proposed algorithm

Figure 2 shows the entire proposed algorithm, named

C3Net for demoiréing in Track 1: Single Image. Keeping

the number of channels of feature maps 64, the feature maps

pass Attention Via Concatenation blocks (AVCblocks).

Also, the feature maps are concatenated every time the maps

pass one block, which is first introduced global feature fu-

sion (GFF) by Zhang et al. [47, 48]. The architecture of

an AVCblock in Figure 3 is similar to residual non-local

attention block (RNAB) [46]; however, the difference from

RNAB is that both branches, trunk branch and mask branch,

are reinforced by GFF. Also, in case of trunk branch, we



Figure 2. The architecture of C3Net.

Figure 3. The architecture of Attention Via Concatenation block

(AVCblock).

connected residual blocks (ResBlocks) with channel atten-

tion module in parallel to extract diverse features into fea-

ture maps. In case of mask branch, we connected atten-

tive blocks (AttBlocks) in parallel for the same purpose.

ResBlock has a fused structure of residual blocks from Yu

et al [38] impressed by Lim et al. [20] and channel atten-

tion module [45]. AttBlock in Figure 4 is a U-net [23]

of Resblocks, downscaling convolutional layer with activa-

tion function, parametric ReLU (PReLU) [13] and upscal-

ing subpixel layer [26] with activation function PReLU. In

Figure 3, the number of ResBlocks for each AVCblock, r, is

2 and the number of AttBlocks for each AVCblock, a, is 1

for preventing C3Net from retaining too much parameters.

As the number of blocks and parameters of C3Net in-

crease, the loss is easy to overshoot, so we applied residual

scaling by Lim et al. [20] and the scaling factor is 0.2. In

addition, residual learning [12] is applied to the outputs of

trunk branch and mask branch for the same purpose.

3.2. L1 color loss for demoiréing

In image restoration, it is well-known that L1 loss is suit-

able for the quality of the results [49]. However, color-

related term should be included to focus on removing

moiré patterns. Therefore, we propose L1 color loss for

demoiréing.

L1 = ‖ ŷRGB − yRGB ‖1 (1)

Lcolor = ‖ ŷU − yU ‖1 + ‖ ŷU − yU ‖1 (2)

In case of conventional L1 loss, the loss is calculated

using RGB channels of an image. We introduce color loss

term calculated using U and V channels of the image. While

RGB channels include color-related information each, YUV

channels include color-related information only in U and

V channels; therefore, it is easier to focus on color-related

problem. We set the weights of two losses same and the

final loss can be written as (3):

Lfinal =
L1 + Lcolor

2
(3)

3.3. Particularities for Track 2: Burst

The most difficult challenge in Track 2 is that input im-

ages have zero pixels and random moiré patterns. Orig-

inally, the four vertices of images are fixed because im-

ages in the datasets from NTIRE 2020 Demoiréing Chal-

lenge [40] are square whose length of one side is 128. How-

ever, in Track 2, the four vertices of images are not fixed, so



Figure 4. The architecture of an attentive block (AttBlock).

Figure 5. The analysis on the datasets for Track 2 from point of

view (left) and linear transformation by matrix (right).

the images seem to be rotated and seen not from the front

side where we see. It can be guessed that the images are

linearly transformed to make images from different and ran-

dom point of view. For Track 2, it is important for C3Net to

utilize information from different point of view fully. The

example and analysis of the datasets are in Figure 5. The

circles represent approximate distance from the image pho-

tographed from front side. The arrows whose length also

represents approximate distance point out the image pho-

tographed from front side from the position where the dis-

torted image photographed.

Training CNN, randomly zero pixels hinder learning be-

cause the weights in filters of convolutional layers splash

where the value of pixels is zero. To solve the problem, we

applied chroma key which means an algorithm to fuse two

images or videos in the same screen. The method is primar-

ily used when one of the images or videos has monochro-

matic background. In this paper, we preprocess input im-

ages using chroma key with threshold value set to 50. We

set the threshold value because zero value makes the image

have exposed boundaries. The entire C3Net for Track 2:

Burst (C3Net-Burst) is on Figure 6.

The AVCblock for Track 2: Burst (AVC-B block) in

Figure 7 is different from that for Track 1: Single Image

because the number of input images is 7 times more than

that of Track 1. Therefore, the number of AVCblocks is

reduced to process C3Net and there is no need to use ad-

ditional residual learning and residual scaling. In addition,

we used global maxpooling [2] in every AVC-B block for

getting the best features among 7 images.

4. Experimental results

4.1. Training details

According to the requirements of New Trends in Image

Restoration and Enhancement workshop and challenges

on image and video restoration and enhancement (NTIRE

2020) Demoiréing Challenge [40], we used 10000 training

images, 500 validation images, and 500 testing images

whose patch size is all 128 x 128. In Track 1: Single Image,

we trained our proposed C3Net using 9000 training images.

In Track 2: Burst, we trained our proposed C3Net-Burst

using 9999 training sets of 7 burst images. When testing

the proposed network, we should set the height and width

of an image to multiples of four because of two times of

downscaling in U-net [23] structure. In case of datasets for

the challenge, the process can be skipped.



Figure 6. The architecture of C3Net-Burst.

Figure 7. The architecture of AVC-Burst block with global max-

pooling (AVC-B + GMP block).

We also trained flipped training images by

numpy.flipud() and numpy.fliplr(), which means that

the total number of training images quadruples. By training

flipped training images, the results can be improved using

self-ensemble. In comparison with the state-of-the-art in

Table 1, C3Net+ means C3Net with self-ensemble. We

trained the network using the datasets whose batch size is.

The optimizer we used is ADAM optimizer [17] whose

momentum is 0.9 and learning rate is 1e-4. The learning

rate halves every 10 epochs, same as about 10k iterations.

It took 2.5 hours per epoch and we trained the proposed

algorithm about 10 days. Finally, we set the loss to L1 loss

or L1 color loss and compare the results from L1 loss with

those from L1 color loss.

4.2. Comparison with the state­of­the­art

We compare results from our proposed C3Net with

moiré-patterned images, demoiréd images from Beyond

a gaussian denoiser: Residual learning of deep cnn for

image denoising (DnCNN) [43], Image Super-Resolution

via Deep Recursive Residual Network (DRRN) [29], Im-

age Super-Resolution Using Very Deep Residual Chan-

nel Attention Networks (RCAN) [45], and the prototypes

of C3Net whose performances are verified in the valida-

tion phase of the challenge. The conventional algorithms

were selected because the algorithms were designed for im-

age restoration and the performances are highly regarded.

For fair comparison, All the conventional algorithms were

trained in 9999 training images and validated in 500 valida-

tion images.

The performance of them is measured in PSNR and

SSIM by the validation server of the challenge. Bolded re-

sults are the best results. The PSNR results between con-

ventional algorithms, C3Net, and C3Net+ are shown in Ta-

ble 1. Block means the type of blocks the algorithm used.

Conventional algorithms used the block same as the refer-

ences except upscaling layers in algorithms for SISR such

as DRRN and RCAN.

DRRN shows better results than DnCNN because of

many parameters and deployment of convolutional layers

in close order. RCAN shows near results to C3Net and it

is assumed that the reason is that channel attention mod-

ule in RCAN worked. L1 color loss also helped the con-

ventional algorithms learn demoiréing. Except C3Net+, the

proposed algorithms used AVC-B block because AVCblock

is designed from AVC-B block to avoid overshooting and

applied additional residual learning [12] and residual scal-

ing [20]. N means the number of blocks and more blocks

make better results. Trying many experiments, we used L1

loss or L1 color loss. Provided that n is same, using L1

color loss makes better results in validation datasets. Based

on these results in Track 1, we set the loss of C3Net-Burst to

L1 color loss. Finally, we applied self-ensemble to C3Net+

and got 0.31 more PSNR in validation datasets. The quali-

tative comparison can be seen at Figure 8.



Figure 8. Demoiréing results of conventional algorithms, C3Net+ for Track 1, and C3Net-Burst for Track 2 in validation phase of NTIRE

2020 Demoiréing Challenge.

Track 1 Block n # of feature maps Loss Ensemble PSNR

DnCNN [42] [42] 64 L1 color - 28.06

DRRN [29] [29] 128 L1 color - 34.45

RCAN [44] [44] 64 L1 color - 40.25

C3Net AVC-B 7 64 L1 - 40.80

C3Net AVC-B 13 64 L1 color - 41.05

C3Net AVC 22 64 L1 - 40.99

C3Net+ AVC 22 64 L1 flip (×4) 41.30

Track 2 Block n # of feature maps Loss Ensemble PSNR

C3Net-Burst AVC-B + GMP 5 48 L1 color - 40.55
Table 1. PSNR (dB) comparison of conventional and proposed algorithms on demoiréing.

4.3. NTIRE 2020 Demoiréing Challenge

The proposed algorithm was researched for NTIRE 2020

Demoiréing Challenge [40]. The challenge consists of two

tracks: Track 1 for single image and Track 2 for burst im-

ages. In case of Track 1: we used AVCblock with additional

residual learning and residual scaling, the number of blocks

is 22, and used L1 loss for stability. In case of Track 2: we

used AVC-B block with global maxpooling, the number of

blocks is 5, and used chroma key for removing zero pixels

and focusing on removing moiré patterns. In AVC-B block,

there is no residual learning and residual scaling because of

small number of AVC-B blocks.

In Table 2, our proposed algorithm ranked fourth among

18 entries in Track 1 and among 8 entries in Track 2.

Considering that few teams exhibited good results on both

tracks, C3Net can be assessed to demoiré admirably.

The key point of NTIRE 2020 Demoiréing Challenge be-

tween two tracks is to get better results by fully utilizing 7

burst images. In case of results in Table 2, the results are

best results to get from one GPU, NVIDIA Geforce RTX

2080Ti 11GB. Because the size of input images in Track

2 is 7 times more than Track 1, the model size is limited

for C3Net-Burst. Therefore, we posted the results under

the same conditions of the number of proposed blocks, the

number of feature maps, and loss for backpropagation in Ta-

ble 3. C3Net for Track 1 showed better results than RCAN

and C3Net-Burst for Track 2 showed better results than any

other three algorithms. Finally, the proposed algorithm ex-

hibited desired results that NTIRE 2020 Demoiréing Chal-

lenge required, which is the algorithm to remove random

moiré patterns using single image or 7 burst images fully.



Track 1: Single Image

Rank Team Model PSNR SSIM

1 1st 1st 42.14 0.99

2 2nd 2nd 41.95 0.99

3 3rd 3rd 41.84 0.99

4 Reboot C3Net+ 41.11 0.99

5 5th 5th 41.04 0.99

Track 2: Burst

Rank Team Model PSNR SSIM

1 1st 1st 41.95 0.99

2 2nd 2nd 41.88 0.99

3 3rd 3rd 40.64 0.99

4 Reboot C3Net-Burst 40.33 0.99

5 5th 5th 39.05 0.99
Table 2. PSNR (dB) and SSIM comparison of algorithms in testing

phase of NTIRE 2020 Demoiréing Challenge.

Algorithm Block PSNR

RCAN [44] 40.25

C3Net AVC-B 40.31

C3Net-Burst AVC-B + GMP 40.55
Table 3. PSNR (dB) comparison between tracks in validation

phase of NTIRE 2020 Demoiréing Challenge (n = 5, # of feature

maps = 48, Loss = L1 color).

5. Conclusion

Participating in the challenge, we propose an attentive

network for removing moiré patterns in channel, color,

and concatenation, named C3Net. By adding channel at-

tention module in all over the residual blocks, the pro-

posed network is attentive to channels and easy to solve

color-related problems such as moiré patterns. In addi-

tion, by introducing L1 color loss, we made a suitable

loss fusing L1 loss for image restoration and color loss

using U and V channels for color-related problems. We

also insist that changing the weights of two losses depend-

ing on the tasks in image restoration would bring differ-

ent results. Lastly, by adopting GFF, U-net in a block

and concatenating multi-scaled feature maps, the proposed

C3Net can learn diverse types of moiré patterns and han-

dle them. Self-ensemble by training flipped images is also

applied for the same purpose. C3Net ranked fourth in both

tracks of NTIRE 2020 Demoiréing Challenge [40]. We re-

searched C3Net under the limitations of both tracks and

it was possible for C3Net to solve color-related problem

and randomly zero pixels in burst images as well. With

some variations, the C3Net is expected to showed good re-

sults in image restoration and even in other fields related

to image. The code and trained models are included in

https://github.com/bmycheez/C3Net.
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