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Abstract

This paper proposes an unsupervised single-image

Super-Resolution(SR) model using cycleGAN and domain

discriminator to solve the problem of SR with unknown

degradation using unpaired dataset. In previous ap-

proaches, paired dataset is required for training with as-

sumed levels of image degradation. In real world SR appli-

cations, however, training sets are typically not of low and

high resolution image pairs, but only low resolution images

with unknown degradation are provided as inputs. To ad-

dress the problem, we introduce a cycle-in-cycle GAN based

unsupervised learning model using an unpaired dataset.

In addition, we combine several losses attributed to im-

age contents, such as pixel-wise loss, VGG feature loss and

SSIM loss, for stable learning and performance improve-

ment. We also propose a domain discriminator, which con-

sists of noise discriminator, texture discriminator and color

discriminator, to guide generated images to follow target

domain distribution rather than source domain. We vali-

date effectiveness of our model in quantitative and qualita-

tive experiments using NTIRE2020 real-world SR challenge

dataset.

1. Introduction

Many deep learning based Single-Image Super-

Resolution(SISR) methods have recently achieved

outstanding performance improvement not only

in Peak Signal to Noise Ratio(PSNR)-based

evaluation[3, 10, 9, 12, 26, 13, 2] but also perceptual

image quality evaluation[12, 22]. These methods require

high-quality High-Resolution(HR) image and its down-

sampled Low-Resolution(LR) image pairs for training

in supervised learning manner. However, in real-world

scenarios, only unpaired LR images are given. Since

supervised training is not possible, an alternative approach

would be desirable. In addition, real world images are

often degraded by noise, requiring further processing for

Figure 1. ×4 super resolution results for ”0878” in the validation

set of the NTIRE 2020 Real World Super-Resolution Challenge

Track 1 dataset. Our proposed method successfully reconstructs a

clean result with texture details compared to state-of-the-art mod-

els.

enhanced images. AIM2019 Real-image SR Challenge[16]

has been designed specifically to tackle these difficult

issues in SR tasks.

Along the same motivation, NTIRE2020 Real World

Super-Resolution(SR) Challenge[17] provided a dataset,

which consists of degraded HR images and un-paired high

quality HR images. The dataset also included two smaller

sets of LR images grouped as validation and test. The cause

of degradation on these images is unknown. Since the chal-

lenge is focused on perceptual image quality, the aim of the

challenge is to reconstruct visually pleasing images and not

necessarily focused on quantitative metrics.



Since Dong et al.[3] proposed a SR method using Con-

volutional Neural Networks(CNN), numerous supervised

learning based SR approaches[3, 10, 9, 12, 26, 13, 2]

have been proposed. Super Resolution Convolution Neu-

ral Networks(SRCNN)[3] introduced an end-to-end deep

learning approach using CNN networks. In SRCNN, it’s

been shown that performance improvement can be achieved

with deeper layers. However, these improvements are incre-

mental as deeper layers would result vanishing/exploding

gradients or overfitting. To avoid these limitations, Very

Deep Super Resolution(VDSR)[9] was proposed as a

residual-learning method. With the residual connection pro-

posed by He et al.[6], deeper networks can be trained ac-

curately. Additionally, other approaches[26, 22] presented

improved feature extraction blocks, such as Residual Dense

Block(RDB) or Residual-in-Residual Dense Block(RRDB),

which exploits skip-connection structures to allow larger re-

ceptive fields and to avoid overfitting.

Despite some successes among these supervised learning

based methods, particularly in terms of high PSNR or other

quantitative metrics, a major drawback is that the SR images

constructed are often not realistic in fine details and may

leave blurred impressions perceptually. Moreover, these

methods do not tackle the problem of artifacts created in the

SR process from the noise in input images. As SR process

inevitably involves upsampling, learning based upsampling

methods often produce checkerboard patterns[23].

Therefore, we propose an unsupervised single image

super-resolution model using a cycleGAN[28] and a do-

main discriminator to tackle these three issues and to solve

the tasks of NTIRE2020 Real-world Image SR Challenge.

To produce more realistic and detailed images, we first de-

velop a cycleGAN style multi-stage learning model based

on the structure of the Cycle-in-cycle Generative Adversar-

ial Networks(CinCGAN)[24] and Enhanced Super Resolu-

tion Generative Adversarial Networks(ESRGAN)[22]. Ad-

ditionally, we define a content loss by combining a pixel-

wise loss, a VGG features loss and a Structural Similar-

ity(SSIM) loss. For the checkerboard pattern issue, we

modify ESRGAN’s up-sampling structure to take advan-

tages of bilinear interpolation and transposed convolution.

For mitigating the input noise created artifacts, we propose

a novel discriminator, named domain discriminator, to re-

move artifacts and preserve color information and texture

details. The proposed model is validated using NTIRE2020

Real World Image SR Challenge Track 1 and Track 2

datasets. Our model is able to generate visually more re-

alistic images compared to state-of-the-art approaches.

The main contributions of this paper are:

• We propose a novel and effective cycle-in-cycle GAN

based structure to remove image processing artifacts

coming from noise in LR images.

• We introduce a new content loss, which consists of L1

loss, VGG feature loss and SSIM loss, to produce more

realistic and detailed SR images.

• We propose a novel upsampling method for mitigating

checkerboard effects with improved learning stability

and enhanced perceptual quality.

• We present a domain discriminator effective in trans-

forming images from a source domain to a target do-

main.

These proposed elements have been shown efficacious in

removing artifacts, reconstructing texture details, and pre-

serving color of the source domain image. We demonstrate

the visual improvement of the proposed method by an em-

pirical study.

2. Related work

First we investigated some approaches that adopt Gen-

erative Adversarial Networks(GAN)[5] to improve percep-

tual image quality[12, 22, 21]. Super Resolution Generative

Adversarial Networks(SRGAN)[12] introduced a domain

transfer model between low and high resolution domains

based on a GAN model. ESRGAN[22], which is based on

SRGAN, introduced a novel loss function for improving the

discriminator to generate more realistic images. Although

quantitative scores of these GAN-based models are not bet-

ter than non-GAN models based on CNN, they generated

more perceptually realistic images. Since these approaches

require a paired dataset to train generator and discriminator,

they are not suitable for the task here.

To handle the un-paired dataset for the given su-

per resolution task, we explored unsupervised learning

approaches[28, 7, 24, 19, 4]. CycleGAN[28] proposed un-

paired image-to-image translation with cycle consistency

loss. Although it achieved successful results in style trans-

fer of images, such as horse to zebra, the transferred im-

ages sometimes contain artifacts. Park et al.[19] introduced

multi-discriminator learning with CycleGAN for image en-

hancement task in underwater images. WESPE[7] intro-

duced adversarial color and texture discriminators for image

enhancement using a Gaussian blur kernel and grayscale

images to focus on color distribution and texture of the im-

age separately. While it is not an SR method, we adopt

these discriminators as our input images contain noise and

require image enhancement in the SR task. CinCGAN[24]

proposed an unsupervised cycle-in-cycle network to solve

a blind SR problem and a denoising problem at the same

time. However, they only used pixel-wise loss for content

loss, hence, the performance was limited to texture recov-

ery.

SR and in several other applications of GAN recently

reported some impressive performances of their GAN mod-



els by incorporating additional roles of discriminators [25,

1, 8, 22]. RankSRGAN[25] defined ranker module using

Siamese-like architecture to generate visually pleasing im-

ages. Self-supervised GAN[1] proposed a discriminator

with rotation-based self-supervision. Their discriminator

classifies not only the image is real or fake but also the ro-

tation degree of the image. RaGAN[8] and ESRGAN[22]

introduced a relativistic discriminator to enhance effects of

the adversarial loss. Similarly, we define a new role of a

discriminator by having it determine if an image is closer to

the target domain or to the source domain. A loss function

computed from this new role of the discriminator has been

shown effective in the SR task.

3. Proposed Method

In this challenge, a set of LR images with unknown

degradation and a set of clean HR images are given. We

define the noisy LR images as x and the clean HR images

as z. The problem is to train a function F to transform

x as x̂ = F (x) such that x̂ belongs to the same target

domain as z. Training F in a single step is too hard and

it’s been known that such an attempt may result noisy pat-

terns. We, therefore, separate the problem into two parts:

a domain transfer for noise removal and another domain

transfer from LR to SR. In the domain transfer noise re-

moval, G1 learns the mapping from the noisy source do-

main to the target clean domain of LR images. In the super-

resolution part, SR learns the mapping from the LR space

to the HR space. Therefore, the function F can be defined

as F (x) = SR(G1(x)).
The overall architecture is shown in Fig.2. The model

consists of three generators G1, G2 and G3, one SR model

and three discriminators DN , DY and DC .

We first train the generators G1, G2 and the discrimina-

tors DN , DY , DC in a cycleGAN setting in order to train

the domain transfer mapping function G1 for noise removal.

Secondly, we construct an upsampling module that com-

bines a bilinear interpolation upsampling and a transposed

convolution upsampling to solve the checkerboard effects

and to enforce learning stability. We use an HR image z

in target domain and its bicubically downsampled image

z
′ = B(z) for pre-training. The SR model is trained by a

pixel-wise L1 loss. Finally, the generators G1, G2, G3, the

discriminators DN , DY , DC and SR are trained with in a

modified cycleGAN architecture for generating more real-

istic and detailed SR images.

3.1. Domain Transfer from noisy LR to clean LR
images

We first develope a domain transfer model G1 for de-

noising and effective image enhancement. We employ

the CinCGAN[24] architecture and WESPE[7] discrimina-

tors to solve the problem. The detailed network architec-

ture of generators and discriminators, which are based on

CinCGAN[24], is presented in Fig.2. We essentially modi-

fied the number of blocks and normalization strategy, aimed

at effective domain transfer learning. We employ the net-

work structure in G1 and G2 with skip-connections and

residual blocks for denoising. The input and the output of

G1 are an LR image in source domain and an LR image

in target domain, respectively. The input and the output of

G2 are an LR image in target domain and an LR image in

source domain, respectively. We do not use batch normal-

ization because our batch size is small. We also do not use

instance normalization because it tends to follow style infor-

mation of the target domain excessively. Instead, we use a

batch-instance normalization[18] for discriminator because

it has an advantage of capturing style and content informa-

tion from the images.

In [27], combining several loss functions, such as L1

loss and SSIM loss, enhances training stability and helps

the network achieve performance improvement. We em-

ploy pixel-wise content loss, VGG19 feature loss[20] and

SSIM loss for perceptual quality improvement and preserv-

ing edge presence. The final content loss is defined as fol-

lows:

Content(a, b) =
1

N

N∑

i

||ai − bi||1

+
1

N

N∑

i

||φ(ai)− φ(bi)||
2
2

+ 2− SSIM(a, b) (1)

where φ denotes the features before activation function ex-

tracted from the VGG19 networks. Using Equation (1), the

final cycle consistency loss for LR images is defined as:

Lcyc
LRx = Content(G2(G1(x)), x) (2)

Lcyc
LR

z′ = Content(G1(G2(z
′)), z′) (3)

LLR
cyc = LLRx

cyc + LLR
z′

cyc (4)

We also use an identity loss to improve color presence

performance.

LLR
idt = Content(G1(z

′), z) (5)

The three discriminators DN , DY , DC help the genera-

tors and the SR model achieve learning the accurate map-

ping function from the source domain to the target domain.

We propose a special discriminator, named ”domain dis-

criminator”, which is different from the standard discrim-

inator in SRGAN. The domain discriminator predicts with

a probability that a generated image is in source domain or

target domain instead of playing the usual role of classify-

ing whether the image is real or fake. Therefore, the source



Figure 2. The proposed training model architecture, where G1, G2 and G3 are generators and SR is super resolution networks. DN , DY

and DC are discriminator for noise, texture and color, respectively. Initially, G1, G2 and DN , DY , DC are trained by domain transfer

learning for LR image. Secondly, SR model is trained by supervised learning. Finally, The overall network architecture is tuned by the

domain transfer learning.

domain image can be used as the prior information for the

discriminator. The basic concept of the domain discrimina-

tor is depicted in Fig. 3. Following Goodfellow et al.[5]

Figure 3. Concept of the proposed domain discriminator.

we apply the adversarial min-max framework to the domain

discriminator concept as follows:

min
θG

max
θD

Ex∼ptrain(x)[log(1−D(x))]+

Ex∼pG(x)[log(1−D(G1(x)))]+

Ez∼ptrain(z)[log(D(z))] (6)

where x is source domain image, z is target domain image.

When a source domain image is passed through the discrim-

inator, it is classified as ”0”. Likewise, target domain image

is classified to ”1”. With this arrangement, the generator

can learn to create solutions that are classified to 1, which

subsequently follows the target domain images.

DN essentially assesses the level of noise present and

general image quality. The adversarial loss of DN is defined

by:

LLR
GANN

= −
∑

i

log(1−DN (G1(x))) (7)

where x is the source domain image and G1(x) is the gen-

erated image. We also use an adversarial texture loss and an

adversarial color loss, which were proposed by WESPE[7].

In WESPE, the author asserted that image texture quality

and image color quality can be measured by DY and DC ,

respectively. The adversarial loss of DY and DC are defined



as:

LLR
GANY

= −
∑

i

log(1−DY (G1(x)g)) (8)

LLR
GANC

= −
∑

i

log(1−DC(G1(x)b)) (9)

where a subscript g is grayscale image and a subscript b

is Gaussian blurred image. The shape of Gaussian kernel

is the same as WESPE. Our full objective function for LR

image is:

LLR
GAN = ω1L

LR
GANN

+ ω2L
LR
GANY

+ ω3L
LR
GANC

(10)

LLR = LLR
idt + λ1L

LR
cyc + λ2L

LR
GAN (11)

Figure 4. The model structure of generator and discriminator. β

is residual scaling. The stride of the second and third layer of G1

and G2 is 1, but the stride of G3 is 2 because of downsampling.

3.2. SuperResolution Learning

In this stage, the SR model is pre-trained in a super-

vised manner. We employ ESRGAN[22] structure to the

SR model because ESRGAN achieves good qualitative re-

sults in perceptual-driven approaches. However, a trans-

posed convolution upsampling module of the ESRGAN of-

ten results checkerboard effects. Therefore, we modify the

up-sampling module that combines a bilinear interpolation

module and a transposed convolution module. Since the in-

terpolation with normal convolution has benefits of learning

stability and removing checkerboard pattern artifacts[15],

we add an interpolation based method and transposed con-

volution with residual scaling to take advantage of both. We

found this to be beneficial for enhanced perceptual qual-

ity. Furthermore, following [15]’s results, our final output

forms SR images upon going through the final convolution

layer with an activation process. The architecture of the SR

model is shown in Fig. 5.

The SR model is pre-trained with target domain data for

training stability. The loss function computed from L1 loss

between SR images SR(z′) and HR images z is defined as:

LSR =
1

N

N∑

i

||SR(z′i)− zi||1 (12)

Figure 5. The model structure of SR model and the proposed up-

sampling module. β is residual scaling. 15 RRDB modules are

used for residual connection module. We introduce an upsampling

module that contains bilinear upsampling and transposed convolu-

tion.

3.3. Domain Transfer Learning for the Overall Net
work

In sections 3.1 and 3.2, the mapping function G1 and

SR are pre-trained because an end-to-end training strategy

is too hard. However, G1 is trained with only LR images

and SR is trained with bicubic downsampled images and

paired HR images. Since our final goal is estimating the tar-

get domain HR image from the source domain LR image,

a fine-tuning is needed for an optimized solution. There-

fore, the pre-trained models G1, G2, SR, DN , DY and DC

are loaded and fine-tuned with the loss from LR and HR im-

ages. Compared to section 3.1, we add one additional cycle,

which consists of G1, SR and G3 modules, to address do-

main transfer learning between source domain LR images

and target domain HR images. The cycle-consistency loss

and identity of second cycle are defined as:

LHRx

cyc = Content(SR(G1(x)), x) (13)

LHRz

cyc = Content(SR(G1(G3(z))), z) (14)

LHR
idt = Content(SR(G1(z

′)), z) (15)

The GAN loss of DN , DY and DC are added because the

discriminators deal with information from the HR images.



Figure 6. Super-resolution results of ”0802”, ”0842” and ”0896” in the validation set of the NTIRE2020 Real World SR challenge Track 1

with scale factor ×4. Our method is able to remove unknown noise and reconstruct detailed textures successfully.

Table 1. Quantitative results on NTIRE 2020 Real World SR challenge Track 1 validation dataset of the proposed model compared to

state-of-the-art methods.
Methods bicubic EDSR ESRGAN SRFBN ours

PSNR/SSIM 25.49/0.6721 25.36/0.6404 19.04/0.2423 25.37/0.6417 26.39/0.7329



The new GAN loss is:

LHR
GANN

= LLR
GANN

−
∑

i

log(1−DN (SR(G1(x))))

(16)

LHR
GANY

= LLR
GANN

−
∑

i

log(1−DY (SR(G1(x))g))

(17)

LHR
GANC

= LLR
GANN

−
∑

i

log(1−DC(SR(G1(x))b))

(18)

The final objective function is defined as :

LGAN = ω1L
HR
GANN

+ ω2L
HR
GANY

+ ω3L
HR
GANC

(19)

Lcyc = LLR
cyc + LHRx

cyc + LHRz

cyc (20)

Lidt = LLR
idt + LHR

idt (21)

Ltotal = Lidt + λ1Lcyc + λ2LGAN (22)

4. Experimental Results

In this section, we first introduce the dataset and the

training details. Next, the performance of the proposed

model is evaluated by comparing with several state of the

art SR methods. Finally, we perform an ablation study to

validate the proposed discriminators and the training model

structure.

4.1. Training Data

The dataset from NTIRE 2020 Real World SR challenge

is composed of 2650 training images in the source domain,

800 training images in the target domain, 100 validation im-

ages, and 100 testing images in Track 1. As described ear-

lier, the source domain HR images of the dataset are not

paired with the target domain HR images. Furthermore,

there are some unknown degradation in the source domain

HR images. The LR images are not provided for training

data. In Track 2, 5901 source domain training images in the

source domain, 800 training images in the target domain,

112 validation images, and 100 testing images are provided.

The source domain images are captured by a smartphone

containing color degradation and sensor noise.

We use all the training data in source domain and target

domain during training phase. We augment the dataset with

flipping and 90 degree rotation of images which are already

in the dataset. Our experiments are performed with a scaling

factor of × 4. We use a 56×56 size patch for LR images and

a 224 × 224 size patch for HR images. We conduct testing

on the provided 100 validation images in Track 1 and 100

testing images in Track 2. Note that Track 2 does not have

ground truth image.

Figure 7. Super-resolution results of ”00028” in the test set of

the NITRE2020 Real World SR challenge Track 2 with scale

factor ×4. Since other state-of-the-art methods are not trained

with smartphone image dataset, they produce large artifacts on the

smartphone images. In contrast, our method alleviates the artifacts

and improves perceptual quality.

4.2. Training Details

We divide our training process into three stages. Ini-

tially, we train generators G1, G2 and discriminators

DN , DY , DC for mapping LR images in a noisy domain

to LR images in a noise-free domain. We set the parame-

ters as ω1 = ω2 = ω3 = 1, λ1 = 1, λ2 = 0.01, respec-

tively. We train our model with an Adam optimizer[11]

with β1 = 0.5, β2 = 0.999, batch size 16 and a learning

rate of 1× 10−4. Since this process is pre-training, we train

our model 100000 iterations, which is not fully optimized.

Next, we train the SR with a supervised learning strategy.

We also train our model with an Adam optimizer with a

batch size 8 and a learning rate of 1×10−4. At this point, we

train the model over 800000 iterations, until it converges.

Finally, we train the overall structure for mapping LR

images in the source domain to HR images in the target do-

main. We set the parameters as ω1 = ω2 = 2, ω3 = 1, λ1 =
0.5, λ2 = 5 × 10−4 for track 1 and ω1 = 1, ω2 = ω3 =



2, λ1 = 2, λ2 = 1 × 10−3 for track 2. We also use an

Adam optimizer with batch size 2. The learning rate is ini-

tialized as 1×10−4 and then it was decreased by a factor of

2 every 100000 iterations. We train the model over 300000

iterations until it converges. The network is trained on three

NVIDIA Titan Xp GPUs and the model is implemented us-

ing tensorflow.

4.3. Quantitative Evaluation Measures

In order to quantitatively compare the different ap-

proaches we use metrics such as PSNR and SSIM. PSNR is

calculated over all pixel values in RGB channels and SSIM

is measured by taking a mean of SSIM index over the RGB

channels.

4.4. Results

We demonstrate effectiveness of the proposed method

against state-of-the-art approaches for SISR: EDSR[14],

ESRGAN[22], SRFBN[13]. We use the publicly avail-

able code and optimized models provided by the authors.

Table 1 shows the average PSNR and SSIM values of

the NTIRE2020 validation set with the different methods.

Our method outperforms the previous methods in denoising

performance. The EDSR and SRFBN, which are PSNR-

oriented method, has almost the same PSNR and SSIM be-

cause the resultant images remain noisy. Especially, the

performance of ESRGAN, which is a perceptual quality-

oriented approach, is not better than the others. We ana-

lyze that the noise is enhanced because the ESRGAN model

recognized noise as a pattern of the image. Therefore, our

proposed model has a quantitative performance advantage

when an input image contains noise. The results of percep-

tual image quality in Track 1 and Track 2 are shown in Fig.6

and Fig.7, respectively. Our approach successfully over-

comes the unknown degradation problem and reconstructs

more realistic images.

4.5. Ablation Study

To validate the advantages of the discriminator, we im-

plemented a vanilla GAN discriminator, which classifies an

image to be real or fake, for comparison. The network struc-

ture is the same, but the minmax problem and GAN loss are

modified respectively as:

min
θG

max
θD

Ez′
∼ptrain(z)[log(DN (z))]+

Ex∼pG(x)[log(1−DN (G1(x)))] (23)

LGAN = −
∑

i

log(1−D(G1(x)))

−
∑

i

log(1−D(SR(G1(x)))) (24)

The quantitative results of the vanilla GAN and the pro-

posed method are summarized in Table 2. As shown by

the results, the proposed GAN loss model outperforms the

model with vanilla GAN loss in PSNR and SSIM both.

Table 2. Quantitative results of the ablation study on NTIRE 2020

Real World SR challenge Track 1 validation dataset, comparing

the proposed GAN loss model vs. vanilla GAN loss model

Methods proposed loss vanillaGAN loss

PSNR/SSIM 26.39/0.7329 25.73/0.6979

Moreover, the qualitative results are illustrated in Fig. 8.

The proposed method is shown to restore edge details of the

image clearly compared to the adversarial loss of the vanilla

GAN.

Figure 8. Super-resolution results of ”0828” in the validation set

of the NTIRE2020 Real World SR challenge Track 1 with scale

factor ×4. Our method is able to reconstruct texture details better

than the vanilla GAN based model.

5. Conclusion

Inspired by the recent successful domain transfer learn-

ing approaches, we proposed an unsupervised learning

method to solve the SISR problem with unknown degrada-

tion using an unpaired dataset. To avoid checkerboard arti-

facts while preserving details, we proposed an upsampling

module that combines bilinear interpolation and transposed

convolution. In addition, we developed a content loss using

several types of loss and introduced a domain discriminator

to improve quantitative and qualitative results. Compared to

the state-of-the-art approaches, our method generated more

realistic and visually pleasing images when input image was

corrupted by unknown degradation.

6. Acknowledgement

This material is based upon work supported by the Air
Force Office of Scientific Research under award number
FA2386-19-1-4001.



References

[1] Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, and

Neil Houlsby. Self-supervised gans via auxiliary rotation

loss. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 12154–12163, 2019.

[2] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and

Lei Zhang. Second-order attention network for single im-

age super-resolution. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 11065–

11074, 2019.

[3] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Image super-resolution using deep convolutional net-

works. IEEE transactions on pattern analysis and machine

intelligence, 38(2):295–307, 2015.

[4] Manuel Fritsche, Shuhang Gu, and Radu Timofte. Frequency

separation for real-world super-resolution. In ICCV Work-

shops, 2019.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[7] Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth

Vanhoey, and Luc Van Gool. Wespe: weakly supervised

photo enhancer for digital cameras. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion Workshops, pages 691–700, 2018.

[8] Alexia Jolicoeur-Martineau. The relativistic discriminator:

a key element missing from standard gan. arXiv preprint

arXiv:1807.00734, 2018.

[9] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate

image super-resolution using very deep convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1646–1654, 2016.

[10] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-

recursive convolutional network for image super-resolution.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1637–1645, 2016.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[12] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4681–4690,

2017.

[13] Zhen Li, Jinglei Yang, Zheng Liu, Xiaomin Yang, Gwang-

gil Jeon, and Wei Wu. Feedback network for image super-

resolution. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 3867–3876,

2019.

[14] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition workshops,

pages 136–144, 2017.

[15] Andreas Lugmayr, Martin Danelljan, and Radu Timofte. Un-

supervised learning for real-world super-resolution. In ICCV

Workshops, 2019.

[16] Andreas Lugmayr, Martin Danelljan, Radu Timofte, et al.

Aim 2019 challenge on real-world image super-resolution:

Methods and results. In ICCV Workshops, 2019.

[17] Andreas Lugmayr, Martin Danelljan, Radu Timofte, et al.

Ntire 2020 challenge on real-world image super-resolution:

Methods and results. CVPR Workshops, 2020.

[18] Hyeonseob Nam and Hyo-Eun Kim. Batch-instance nor-

malization for adaptively style-invariant neural networks. In

Advances in Neural Information Processing Systems, pages

2558–2567, 2018.

[19] Jaihyun Park, David K Han, and Hanseok Ko. Adaptive

weighted multi-discriminator cyclegan for underwater image

enhancement. Journal of Marine Science and Engineering,

7(7):200, 2019.

[20] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[21] Jae Woong Soh, Gu Yong Park, Junho Jo, and Nam Ik Cho.

Natural and realistic single image super-resolution with ex-

plicit natural manifold discrimination. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 8122–8131, 2019.

[22] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,

Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-

hanced super-resolution generative adversarial networks. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 0–0, 2018.

[23] Zhihao Wang, Jian Chen, and Steven CH Hoi. Deep learning

for image super-resolution: A survey. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2020.

[24] Yuan Yuan, Siyuan Liu, Jiawei Zhang, Yongbing Zhang,

Chao Dong, and Liang Lin. Unsupervised image super-

resolution using cycle-in-cycle generative adversarial net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops, pages 701–710,

2018.

[25] Wenlong Zhang, Yihao Liu, Chao Dong, and Yu Qiao.

Ranksrgan: Generative adversarial networks with ranker for

image super-resolution. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 3096–3105,

2019.

[26] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and

Yun Fu. Residual dense network for image super-resolution.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 2472–2481, 2018.

[27] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss

functions for image restoration with neural networks. IEEE

Transactions on computational imaging, 3(1):47–57, 2016.



[28] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Proceedings of the IEEE

international conference on computer vision, pages 2223–

2232, 2017.


