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Abstract

The sky is a major component of the appearance of a

photograph, and its color and tone can strongly influence

the mood of a picture. In nighttime photography, the sky can

also suffer from noise and color artifacts. For this reason,

there is a strong desire to process the sky in isolation from

the rest of the scene to achieve an optimal look. In this

work, we propose an automated method, which can run

as a part of a camera pipeline, for creating accurate sky

alpha-masks and using them to improve the appearance of

the sky. Our method performs end-to-end sky optimization

in less than half a second per image on a mobile device.

We introduce a method for creating an accurate sky-mask

dataset that is based on partially annotated images that are

inpainted and refined by our modified weighted guided filter.

We use this dataset to train a neural network for semantic

sky segmentation. Due to the compute and power constraints

of mobile devices, sky segmentation is performed at a low

image resolution. Our modified weighted guided filter is used

for edge-aware upsampling to resize the alpha-mask to a

higher resolution. With this detailed mask we automatically

apply post-processing steps to the sky in isolation, such

as automatic spatially varying white-balance, brightness

adjustments, contrast enhancement, and noise reduction.

1. Introduction

Professional photographers generally invest time post-

processing the appearance of the sky, as it significantly af-

fects how humans perceive the photograph’s time of day,

and the relative appearance of the non-sky foreground of the

scene. Photographers will often manually segment the sky

and use that segmentation to adjust the sky’s brightness, con-

trast, color, and noise properties. This editing is particularly

necessary in night-time scenes, wherein the camera receives

little light and therefore produces images with significant

noise. Noise in the sky can look particularly unattractive

and noticeable because the sky is typically textureless. Ad-

ditionally, night-time scenes may contain a foreground that

is illuminated by a nearby light source, while the sky is illu-

minated by scattered sunlight or by distant terrestrial lights

reflected off of clouds. This means that the standard practice

of using a single illuminant estimate for white balance [1]

is physically incorrect, and results in an unnatural tint of

either the sky or of the foreground. This motivates our use

of sky segmentation for performing spatially-varying white

balance, which ameliorates this issue.

We address the task of semantically segmenting the sky

using machine learning. Because of the inherent difficulty of

manually annotating a pixel-level alpha for a high-detailed

sky mask, we propose an algorithmic approach for transform-

ing approximate binary segmentation masks into accurate

alpha mattes, and use this approach to improve the training

data for training our model.

Our goal is to produce the sky-optimized images with a

latency below one second on a mobile device with limited

memory and compute resources. These constraints prohibit

the use of large models, and therefore, we use the approach

of MorphNet [3] to shrink the model size while retaining

high segmentation accuracy.

To reduce the latency and memory overhead of sky seg-

mentation inference we reduce the size of the input image.

This approach results in an output mask that is also at a

reduced resolution compared to the original image. To en-

able high-quality image editing, this low-resolution mask is

upsampled in an edge-ware way. With this high-resolution

sky mask, we are able to apply various effects to the full-

resolution image. Correctly performing automatic noise re-

duction and white balancing require an awareness of various

scene properties, such as the noise level, exposure time, and

illumination color, which we address in this paper.

In this work, we propose a method for semantic sky seg-

mentation and editing that can be done on mobile devices as

part of the camera pipeline. The overall framework of our

approach is illustrated in Figure 1. Our contributions are:

1. A method for refining the coarse sky segmentation masks
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Figure 1: Our method for sky-aware processing and examples. (a) We first create a dataset for sky segmentation and train a

neural network to predict an alpha map of the sky. Next, we optimize the network architecture using the approach of MorphNet

[3]. The network is then integrated into a camera pipeline which runs inference in low resolution. Next, we run a variation of

guided upsampling, to obtain a high-resolution mask. Last, we perform editing such as tonemapping, contrast enhancement,

noise reduction and spatially varying auto white balance to improve the appearance of the sky and the entire image. (b) and

(c) show images captured in low light, without and with sky-aware processing. (d) Zoomed-in regions of the original images

(green) and sky-processed images (magenta).

of existing datasets into accurate alpha masks. We per-

formed a user study to evaluate the quality of the refined

masks and show quantitative results on the ADE20K

dataset [24].

2. A method for creating accurate sky alpha masks at high

resolution, using a neural network and weighted guided

upsampling.

3. A series of sky editing effects that can be achieved us-

ing the high-resolution sky masks: sky darkening, con-

trast enhancement, noise reduction, and auto white bal-

ance, which automatically improve the appearance of

photographs, especially those captured in low light.

4. A modification to Fast Fourier Color Constancy (FFCC)

[1] to achieve spatially varying auto white balance.

5. A complete computational photography system for per-

forming sky segmentation and optimization on a mobile

device in under half a second.

2. Related Work

In this section, we review prior work on sky-aware im-

age processing. Prior work on mask refinement strategies is

discussed in Section 3.1.

Tao et al. [20] created an interactive search system for

skies with certain attributes and demonstrated its use for

editing the appearance of skies. Owing to an interest in

automatically segmenting the skies for a wide variety of ap-

plications, Mihail et al. [12] created a dataset for evaluating

sky segmentation in various conditions, and reviewed meth-

ods for sky segmentation. Place et al. [7] built on their prior

work and evaluated the performance of a neural network,

RefineNet [10], for the segmentation task. Tsai et al. [22]

used a refined sky mask to replace the sky in a photograph

to give it a more interesting appearance. They utilize a fully

convolutional network [11] for scene parsing, followed by

sky refinement with a two-class conditional random field.

In addition to segmenting and replacing the skies, Tsai et

al. created a method for automatically selecting suitable

sky-replacement candidates based on semantic features, and

render these skies onto the target image using a per-pixel

transfer process. Unlike that work, we are not aiming to

completely replace the appearance of the sky, instead, we are

interested in improving the appearance of the image while

producing an image that is closer to what was perceived

during capture. This is achieved by applying spatially vary-

ing white balance, noise reduction and tonemapping. The

method described by [22] was not optimized for processing

on mobile devices, for example, scene parsing alone takes

12 seconds on a desktop GPU, however [4] proposed a sky

replacement algorithm for video which can achieve nearly

real-time performance on mobile devices. [4] use a relatively

small segmentation network and do not incorporate a refine-

ment step in their performance measurements. Their results

are visually pleasing for video, but are not shown for higher

resolution (12 megapixel) photographs.

3. Proposed Method

3.1. Mask refinement

In this section we describe a guided-filter-based mask

refinement method, which is used twice by our approach:

First, for creating an accurate sky segmentation dataset, with-

out tedious pixel-level manual annotations, and second, for

refining the inferred low resolution sky mask, prior to using

it for photo editing. An outline of this procedure can be seen

in Figure 2.



The modified guided filter The guided filter [5] is a clas-

sic technique for edge-aware filtering, which generally ex-

hibits improved performance and speed compared to the

related techniques of anisotropic [15] or bilateral [21, 13]

filtering and joint bilateral upsampling [6]. The guided filter

has been shown to be a closed-form partial solution to the

matting Laplacian [8], which motivates our use of it here for

producing alpha mattes from sky masks. The guided filter

works by approximating the input image to be filtered (in

our case, an alpha mask) as a locally affine function of the

reference image (in our case, an RGB image). This is done

by solving a linear least squares problem at each pixel in

the image. In this work we present several modifications

to the guided filter, which have several advantages over the

traditional formulation, as listed below. The full algorithm

appears in the supplement.

1. Our filter takes as input a per-pixel confidence map, and

accordingly solves a weighted least squares system at

every pixel. This allows our filter to process masks where

some values are missing, which is critical for creating

high resolution alpha-masks efficiently.
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Figure 2: The input to our mask refinement process is an

input RGB image (a) and a coarse binary sky mask (b),

shown here with nearest-neighbor upsampling. Applying our

confidence map function (c) to the mask values produces

a per-pixel confidence (d), which is used as input to our

modified guided filter (with s = 64) to produce the edge-

aware alpha matte in (e). Using a non-weighted guided filter

produces mattes with less separation between the foreground

and the sky (f), and using a small spatial kernel (s = 16)

produces an inaccurate mask (g), for example, the mask does

not accurately segment the cables of the bridge.

.

2. We use a (weighted) bilinear downsample to compute

the local expectations that are required for the guided

filter computation and a smooth upsampling procedure to

produce smooth artifact-free outputs (see supplement for

more details).

3. Owing to our use of downsampling, the linear solver at

the core of the guided filter, only needs to be evaluated

on n/s2 pixels, where n is the number of pixels and s is

our downsampling factor. This approach resembles the

”fast guided filter” [5].

4. We use an LDL-decomposition based solver to solve the

set of linear systems. This produces more stable outputs

than the conventional approach of explicitly inverting a

matrix, and is faster than the approach of invoking a direct

linear solver.

5. We parameterize the regularization in the (weighted) least

squares solver within our filter as independent smooth-

ness terms on the luma and chroma of the reference image,

which gives us finer control over the output of the filter.

Confidence calibration The choice of the confidence map

used by our modified guided filter is critical to the quality

of our edge-aware smooth sky masks. We use different ap-

proaches for computing this confidence for the two uses of

mask refinement: one for pre-processing our training data,

and one for post-processing the output of our neural network.

When pre-processing our training data, we use a confidence

trimap, where a value of cdet indicates certainty and is used

for pixels which were manually annotated. cinpaint is for

pixels inpainted as skies by the density estimation algorithm

(described in Section 3.2). cundet indicates uncertainty of

the mask values and is assigned to pixels which were not

annotated nor inpainted.

When post-processing the inferred sky mask from our

neural network within our camera pipeline, we must adopt

a different approach, as we do not have ground-truth user

annotations. Our model emits a continuous per-pixel proba-

bility, where low values correspond to “not sky”, high values

(closer to 1) correspond to “sky”, and intermediate values

indicate uncertainty. Accordingly, we define our per-pixel

confidence measure Ci a as a function of each per-pixel

probability pi:

Ci =
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Where ℓ = 0.3, h = 0.5, b = 0.8, ǫ = 0.01, and bias(·)
is Schlick’s bias curve [18]. This function is visualized in

Figure 2c. This confidence is not symmetric with respect to



pi = 0.5, and therefore encodes a preference towards the

sky label, which is done so as to ensure that sky pixels are

not ignored by our filter.

Choosing the guided filter downsampling factor The

choice of the downsampling factor used by the filter has

a significant impact on both the guided filter’s speed and spa-

tial support. The downsampling factor used when creating

our training dataset is relatively small (s = 8), because the

image is annotated at full resolution and the initial annota-

tions and subsequent inpainting produce good predictions

except around rough edges. In this case, the guided filter just

serves to smooth the boundaries of the mask according to the

reference image. Because this step is performed before train-

ing and not on-device, the slower speed caused by this small

spatial support is not problematic. However, when we apply

our guided filter variant to the output of our neural network

within our camera pipeline, we use a larger downsampling

factor (s = 64). This significantly accelerates inference, and

also results in improved mask quality: Because the sky mask

is inferred at low resolution, small regions of the sky may

not be detected as such (e.g. in between leaves of trees). To

obtain correct sky-mask values in these regions, we need the

spatial support of the filter to be large enough to allow the

signal from these correctly detected sky regions to propa-

gate to those regions where detection failed. As shown in

Figure 2g, using a small spatial kernel negatively affects the

quality of our output.

3.2. Dataset creation

Creating an accurate sky segmentation dataset is challeng-

ing because semantic segmentation datasets rely on manual

annotations provided by humans. The ground-truth masks

in common segmentation datasets are often coarse and in-

accurate: the shape of the sky may be poorly approximated

by a small number of control points, or may omit “holes” in

other objects through which the sky is visible. As a result, se-

mantic segmentation models trained on these datasets do not

produce accurate enough outputs to be used for our image

enhancement task. Indeed, even using the ground-truth sky

mask provided by these datasets is generally not sufficient

for our task, as we will demonstrate. It is unrealistic to rely

on human annotators to produce the high degree of quality

we require for our task, especially at the scale required for

training modern deep neural networks. Furthermore, in or-

der to correctly compute the sky mask in the presence of

translucent objects, we require that our training data indicate

the partial transparency of the foreground. Therefore, the

masks should not be a per-pixel binary mask, but should

instead be continuous. In this section, we describe how we

create a diverse dataset for sky segmentation in which the

annotated masks are highly detailed and include continuous

alpha values. In Section 4, we show how dataset refinement

improves the results of the segmentation model. All of the

results in the paper were produced by a model trained on our

dataset, unless mentioned otherwise.

Obtaining images for the dataset The images in our

dataset were independently collected and include a variety

of scenes, with different times of day (daytime, nighttime,

sunrise, sunset), different weather conditions (clear, cloudy,

foggy), challenging compositions (the sky can be seen be-

hind trees, bridges, sculptures), reflective objects (reflective

buildings and water), and astrophotography images. We have

found that when a sky segmentation model is trained mostly

on images with skies, it sometimes incorrectly classifies

other uniform objects as being sky, such as indoor walls. We

therefore used Google Images to mine for images which are

similar to our false positives and added them to the training

dataset. In total, our dataset includes ∼120,000 images.

Refined and Inpainted Annotations Here we show a

method for efficiently creating an accurate continuous-value

alpha mask of the sky. We start with coarse manual anno-

tations dividing the image into three sections: “sky”, “not

sky” and “undetermined”. The annotations were made by

human annotators who clicked to create polygons of the

three different sections. The “sky” section includes skies

and objects in the skies, such as clouds, the moon and stars.

The “not sky” section was annotated such that it does not

include any skies or partially transparent foregrounds. The

mined negative images of uniform sky-like surfaces are of

indoor scenes and are therefore globally annotated as “not

sky”. The “undetermined” label is used for any pixel that

is not annotated by the previous two labels, such as bound-

aries between trees and the sky (Figure 3b). This region may

contain both “sky” and “not sky” pixels that would be im-

practical to manually annotate, or that contain transparency

and therefore require a non-binary alpha value. These “un-

determined” areas are inpainted by using density estimation

[14], as described below.

Density estimation uses the distribution of RGB values

of the annotated “sky” pixels to inpaint the pixels in the

“undetermined” section. Here we take advantage of the lim-

ited variability of RGB values in the skies. We calculate

the probability that each “undetermined” pixel belongs to

the “sky” pixels using Equation 5 of the supplement. All

“undetermined” pixels with a probability pi greater than a

threshold pc = 0.6 are re-labeled as being “sky”, while those

with probabilities below that threshold are re-labeled as “not

sky” and assigned a low confidence of cundet (as described

in Section 3.1). We then apply our modified weighted guided

filter to the mask.



(a) Input image (b) Annotated image (c) Following guided filter 
refinement, without inpainting

(d) Following inpainting, 
without refinement

(e) Following inpainting and 
guided filter refinement 

(f) Top: zoom-in of (d). 
Bottom: zoom-in of (e)

Figure 3: Our method for annotating the sky segmentation

dataset. (a) An RGB input image. (b) Rough partial

annotations, created manually. Blue and red represent the

“sky” and the “not sky” sections, respectively, and the

“undetermined” section is not marked. (c) The manual

annotations of (b) following the weighted guided filter

refinement process without inpainting. In this case all the

undetermined pixels are labeled as “not sky” and are given

confidence values of cundet = 0.5. (d) The manual

annotations following density estimation inpainting. The

mask is binary. (e) The mask of (d) following refinement

with the weighted guided filter. This mask is detailed and

includes continuous values, as can be seen in the zoomed-in

crops in (f).

3.3. Model architecture

At the core of our model is a UNet [17] neural network

that takes as input an RGB image and predicts as output the

per-pixel likelihood that each pixel is the sky. The specific

model we build upon is a three-stage UNet model that was

previously used for portrait segmentation on mobile devices

[23]. To optimize the performance of the network and re-

duce its size we used the MorphNet method [3]. MorphNet

balances the model’s loss and its resource constraints, in

terms of model size, to discover architectures that are more

efficient. It does that by relaxing the discrete model parame-

terization into a continuous formulation that allows for the

model structure to be learned jointly along with its weights

during training. We follow the previously-described 2-step

approach of first shrinking and then expanding the model.

Our criteria during meta-optimization was to improve the

evaluation metric while reducing the size of the model. Fol-

lowing this optimization step, we obtain a model that is more

accurate (the IoU0.5 increases from 0.9186 to 0.9237) and

27% smaller (see the supplement for more detail). Next, we

quantize all model weights from 32-bit to 16-bit floating

point, which further reduces the model size by half with a

negligible quality gap. The final size of our model is 3.7 MB.

3.4. Sky optimization

Low light photography presents specific challenges

which, if not addressed, degrades the appearance of the skies.

Specifically, low light images often have a low signal-to-

noise ratio, multiple illumination sources, and a high dy-

namic range, which may cause the skies to appear too noisy

and have an unnatural color. Additionally, a side-effect of

brightening the foreground in low-light photographs is over

brightening the skies and creating a night-into-day effect.

Therefore, it is beneficial to separately tune tone, noise re-

duction and color for the skies, which ultimately improves

the image quality of the entire photograph.

Sky darkening and contrast enhancement Tonemap-

ping is a technique used in image processing to map one set

of colors or brightness values to another. We use a tonemap-

ping curve to darken the skies in low light images. We apply

tonemapping on the V channel following HSV decompo-

sition [19]. The shape of our tonemapping curve is a bias

curve, bias(v; bd), as shown in Equation 2 and Figure 4a.

In bias(v; bd), v is the pixel value, which after the HSV de-

composition is in a range of [0, 1], and bd is a parameter that

controls the amount of darkening. When bd = 0.5, the out-

put of the tonemapping curve is identical to its input (dashed

line in Figure 4a). As bd decreases, the output decreases

in the mid-range, meaning that the skies become darker. In

order to automatically choose the “right” tone of the sky, the

parameter bd , which indicates the amount in which the sky

will be darkened, is calibrated per image as a function of the

sky brightness and the brightness of the scene. The “right”

amount of darkening is highly subjective, as we are aiming to

reproduce the feel of the scene as it was captured. To achieve

this, we tagged hundreds of photos at various conditions.

We binned and averaged these tags to learn a 2-dimensional

look-up table that maps the brightness of the scene and the

sky to the amount of sky darkening, as represented by bd .

A subsequent tonemapping curve is used to enhance the

contrast of images with certain characteristics. Specifically,

contrast enhancement is targeted towards astrophotography

and is designed to boost the appearance of stars and other ce-

lestial objects, such as the Milky Way. The contrast enhance-

ment curve, shown in Figure 4c and Equation 3, also takes as

input the pixel value vi. It leaves the very low-brightness pix-

els unchanged and uses a bias curve to enhance the contrast

of the mid-brightness pixels:

vo =

{

vi if vi < tc

(1− tc) bias
(

vi−tc
1−tc

; bc

)

+ tc if vi ≥ tc
(3)



The parameters bc and tc indicate the intensity and the range

of contrast enhancement. We calibrate bc as a function of

the exposure time and the noise in the image, in order to

avoid enhancing the contrast of noise. We labeled tens of

photos and performed binning and averaging of the tags to

determine a 2-dimensional mapping from the exposure time

and signal-to-noise to bc . The threshold, tc , determines the

range of pixels which remain unchanged and pixels which

will be contrast-enhanced. We have empirically found that a

value of tc = 0.085 yields a pleasing contrast enhancement

of the stars and the Milky Way. After tonemapping, the

resulting pixel values and the original pixels values are alpha

blended using the sky mask as the weight.

Sky denoising The appearance of the sky tends to be much

more regular and predictable in terms of its image content

compared to other parts of the scene. This allows us to tune

a denoising algorithm for the sky that more aggressively

removes noise from smooth regions, while preserving high-

frequency details such as stars and mid-frequency details

such as clouds. We do this by tuning the frequency response

of the spatial luma denoising algorithm of [9], which uses

a pyramid based bilateral denoise algorithm with four lev-

els. In order to optimize noise reduction for the skies, we

increase the amount of denoising at the two higher levels

(low resolution noise) up to 2.5×. We only slightly increase

the denoising strength, up to 5%, in the two lowest levels

(highest resolution). The amount in which we increase the

denoising strength in the skies is a function of the signal-

to-noise ratio of the image and was calibrated by labeling

tens of low-light images. We use the sky mask to indicate

where to use these modified denoising parameters, and in

the foreground we use the same denoising parameters as

in [9]. We combine the separately denoised foreground and

sky using an adjusted sky mask as an alpha in a weighted

average. In order to protect the details in the foreground, we

adjust the sky mask by clamping to 0 the mask values below

a threshold, td = 0.8, and scaling the remaining mask val-

ues between 0 and 1. Figure 4e shows an example in which

noise reduction increases in the sky while the foreground

and the high-frequency stars remain unchanged. Additional

examples and a comparison to an end-to-end neural network

[2] are in the supplement.

Dual auto white balance A conventional image process-

ing pipeline is often constrained by the assumption of a

single global white balance: pipelines assume that all pix-

els are lit by one single illuminant, and attempt to estimate

and remove that one illuminant. This can produce subop-

timal results in scenes with mixed illuminants, which is

often the case for images of the night sky, which is far in

the background and is often illuminated differently from

the foreground. We observe that conventional global white

(a) Darkening curve

(c) Contrast enhancement 
curve

(b) Images before (left, green) and after (right, magenta) sky darkening

(d) An astrophotography image before (left, green) and after            
(right, magenta) contrast enhancement
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(e) An astrophotography image before (left, green) and after (right, magenta) sky denoise

Figure 4: Sky tonemapping and denoise. (a) The tonemap-

ping curve we used to darken the sky to reduce the night-into-

day effect of low-light imaging. The curvature is determined

by a bd which we calibrate according to the brightness of

the sky and the scene. (b) Examples of original (left) and

sky-darkened images (right). Notice that only the sky bright-

ness is changed while the foreground remains the same. (c)

The tonemapping curve used for contrast enhancement. (d)

A photograph of the Milky Way before (left) and after sky

contrast enhancement (right). (e) The sky mask allows us to

tune the denoising algorithm to improve the appearance of

the sky without affecting details in the foreground. The mid-

frequency noise blotches are removed while the high resolu-

tion details of the stars are retained. Readers are encouraged

to zoom-in to see the difference in noise characteristics.

balance algorithms often prioritize the color fidelity of the

foreground over background, which can compromise image

quality for the sky region. Figure 5a demonstrates the global

white balance of [1, 9], which prioritizes the color of the

person over the color of the sky, thereby causing the sky to

look magenta. If this global white balance algorithm were

to instead produce the gains that correct for the color of the

sky and apply those gains globally, as shown in Figure 5b,

the subject’s skin would appear unnaturally blue. By using

sky segmentation, we are able to produce two distinct white

balance estimates, which we can use to separately correct

the colors of the foreground and of the sky, as shown in

Figure 5c.

Our dual white balance algorithm is built upon the Fast

Fourier Color Constancy (FFCC) model [1] using a modified

loss function for low-light images [9]. Unlike past work, we
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Figure 5: (a-c) Conventional white balance algorithms as-

sume a single global illuminant color, but in night-time pho-

tographs, often the sky is lit differently than the foreground.

Prioritizing the foreground produces a natural looking face

but a magenta sky (a), while prioritizing the sky corrects

the background but makes the subject look blue (b). With

sky segmentation we are able to estimate two distinct white

balance gains, which are applied according to our estimated

sky mask (c). (d) A system diagram of our spatially varying

auto white balance system, based on FFCC [1]. Using the

sky mask, we provide additional log-chroma histograms and

log-brightness estimates to FFCC that isolate the color distri-

bution of the sky. This FFCC sky model is trained separately

on the dataset that optimizes the color of the sky, and we

additionally train the standard model of [1] to take the entire

image as input and optimize for the color of the foreground.

The final rendition blends the sky and the foreground with

their separate white balance gains according to our predicted

sky mask to result in a spatially-varying white balance.

calculate two distinct auto white balance (AWB) gains: one

for the foreground, and one for the background, using the sky

mask. This is done by modifying FFCC to allow it to reason

about the chroma distribution of the sky independently from

the foreground during training (Figure 5d), which results in

two models: one for the entire scene and another just for the

sky. These two models were trained on two datasets, one

that was tagged to optimize the colors of the entire scene,

prioritizing people and foreground objects, and another that

was tagged to optimize only the color of the sky. The input

for training the former model is the entire image, while the

input for training the sky model includes both the entire

image and a version of the image in which only the sky is

visible. These two models, and the sky mask, are then used in

the camera pipeline to separately calculate the white balance

gains for the entire scene and for the sky. We apply the white

balance gains to the image using the sky mask estimated by

our model as the alpha in a weighted average, resulting in a

final composition where the foreground and sky have been

independently white balanced.

4. Experimental Results

Here we show how the refinement of the annotated masks

in the training dataset improves the sky masks inferred by the

segmentation model, and that the quality of the mask can be

further improved by weighted guided upsampling. In order to

do this, we first establish, with a user study, that non-refined

annotations can be qualitatively improved by refinement, and

specifically by the process that we developed and describe

in Section 3.2. These results, which generally demonstrate

the significance of dataset refinement, are shown on a public

dataset, ADE20K [24], and a baseline UNet model, for the

purpose of reproducibility.

4.1. Establishing a refined skysegmentation dataset

The ADE20K dataset [24] has binary mask annotations

for various labels, including “sky”. We refine this dataset

with two different methods: 1) using the guided filter only

(ADE20K+GF), and 2) using density estimation inpainting

and the guided filter (ADE20K+DE+GF). Additional details,

such as the steps for creating these datasets and example

images, are in the supplement.

To empirically determine which sky masks are more

accurate, we conducted a user study in which the users

were asked to choose their preferred mask from a pair of

masks from either the raw ADE20k dataset, ADE20K+GF

or ADE20K+DE+GF. To show the accuracy of the masks,

we apply a sky darkening algorithm that blends a black

image with the original image according to the sky mask.

The 21 participants of the study preferred the masks of

ADE20K+DE+GF in 82.6% of the cases, when compared

to raw ADE20K (more details on the results of the user

study are in the supplement). Therefore, we conclude that

the masks refined by our DE+GF algorithm are more accu-

rate than the raw ADE20K annotations, and we will evaluate

sky segmentation using the refined masks as the ground truth

in the next section. Note that current public sky segmentation

datasets consist of binary masks. As shown by our user study,

binary masks produce worse image quality when used for

sky-aware effects. Therefore, the results of an evaluation on

these binary datasets would not be a meaningful indicator

for our intended task.

4.2. Model evaluation

After establishing that the ADE20K+DE+GF dataset is

more accurate compared to the raw annotations, we pro-

ceed by evaluating models trained on differently refined

datasets on this new ground truth. We trained three neural

networks, all with a three-stage UNet architecture, on 1) the



Training Data Algorithm mIOU0.5 ↑ BL ↓ MCR0.5 ↓ RMSE ↓ MAE ↓ JSD ↓

ADE20K UNet + Bilinear Upsampling 0.926 0.0530 0.0151 0.0986 0.0174 .00753

ADE20K+GF UNet + Bilinear Upsampling 0.920 0.0511 0.0162 0.1051 0.0186 .00843

ADE20K+DE+GF UNet + Bilinear Upsampling 0.936 0.0498 0.0131 0.0910 0.0154 .00645

ADE20K UNet + Guided Filter Upsampling 0.933 0.0476 0.0137 0.0999 0.0258 .00993

ADE20K+GF UNet + Guided Filter Upsampling 0.922 0.0482 0.0159 0.1081 0.0270 .01092

ADE20K+DE+GF UNet + Guided Filter Upsampling 0.935 0.0465 0.0134 0.0972 0.0250 .00948

Table 1: Evaluation of the various models with ADE20K+DE+GF as the ground-truth.

raw ADE20K dataset, 2) the ADE20K+DE+GF dataset de-

scribed above, and 3) the ADE20K dataset refined using the

guided filter without inpainting (ADE20K+GF). To mimic

the processing of the camera pipeline, we downsample the

input images and ground truth masks during training to a

resolution of 256× 256. Evaluation is performed at full res-

olution, after upsampling by either a bilinear algorithm or

our weighted guided filter algorithm.

The evaluation metrics, which are described in the sup-

plement, are: the mean intersection-over-union (mIOU), mis-

classification rate (MCR), root mean square error (RMSE),

mean absolute error (MAE), boundary loss (BL), and Jensen-

Shannon Divergence (JSD). The results of the evaluation

are in Table 1 and show that the model that was trained on

the refined masks (DE+GF) performs better compared to

the models trained on the raw masks or the masks refined

only by the guided filter (GF, without DE inpainting). Even

following guided filter upsampling, training on the refined

dataset is beneficial, meaning that both refinement processes

are needed to produce optimal results and that guided filter

upsampling cannot entirely correct imperfect masks. Perhaps

surprisingly, the evaluation metrics are better in most cases

for the bilinear upsampled masks. This could be attributed

to the fact that upsampling and refinement are not a part

of our training pipeline. That said, when looking at the full

resolution images, the masks upsampled using the guided

filter have more detail and seem to better represent the image

(Figure 6). Importantly, guided filter upsampling performs

better on the BL metric, therefore, it appears that the BL met-

ric correlates with perceptual quality better than the other

metrics.

4.3. Implementation details and performance

We integrated sky segmentation and processing into a

camera pipeline which is implemented on Android and relies

on the Camera2 API. The sky mask is inferred on an RGB

image which was downsampled to a resolution of 256× 256.

The computation of the segmentation mask is implemented

on a mobile GPU and requires 50 ms. The inferred mask

is upsampled using our modified weighted guided filter to

a quarter resolution of the image (1024 × 768). This step

was implemented in Halide [16] and has a latency of 190 ms.

Tonemapping and the white balance gains are applied at the
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Figure 6: Sky masks of the image shown on the left, com-

puted with models that were trained on different datasets: raw

ADE20K, ADE20K+GF, and ADE20K+DE+GF. The masks

are inferred at low resolution (256× 256) and then upsam-

pled by either bilinear upsampling or our modified weighted

guided filter upsampling. This example demonstrates that

the masks produced by the model that was trained on the

refined ADE20K+DE+GF are more accurate compared to

the other masks, even after guided filter upsampling. This

observation correlates well with Table 1. We observe that

guided filter upsampling produces more detailed masks com-

pared to bilinear upsampling, even though this quality is not

manifested by most of the evaluation metrics.

quarter resolution and have a latency of 47 ms. The mask is

bilinearly upsampled to full resolution (4032×3024) for sky

denoising. The latency for bilinear upsampling and image

composition, used for denoising, is 160 ms. Example results

are shown in Figure 1 and the supplement.

5. Conclusions

We have presented a method for creating accurate sky

masks and using them to adjust the appearance of the sky.

We have shown that refinement is beneficial for creating a

dataset for training a segmentation model and for upsam-

pling the mask following inference by that model. The sky

mask enables us to edit the skies within the camera pipeline

in under half of a second on a mobile device. The edits are

particularly beneficial in low light imaging, when the color

of the sky is affected by the global white balance and when

noise is significant. A variation of our sky optimization sys-

tem was launched on Google Pixel smartphones as part of

“Night Sight”.



References

[1] Jonathan T Barron and Yun-Ta Tsai. Fast fourier color con-

stancy. CVPR, 2017. 1, 2, 6, 7

[2] Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. Learn-

ing to see in the dark. CVPR, 2018. 6

[3] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu,

Tien-Ju Yang, and Edward Choi. Morphnet: Fast & sim-

ple resource-constrained structure learning of deep networks.

CVPR, 2018. 1, 2, 5

[4] Tavi Halperin, Harel Cain, Ofir Bibi, and Michael Werman.

Clear skies ahead: Towards real-time automatic sky replace-

ment in video. Computer Graphics Forum, 2019. 2

[5] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image

filtering. ECCV, 2010. 3

[6] Johannes Kopf, Michael F Cohen, Dani Lischinski, and Matt

Uyttendaele. Joint bilateral upsampling. In ACM Transactions

on Graphics (ToG), volume 26, page 96. ACM, 2007. 3

[7] Cecilia La Place, Aisha Urooj, and Ali Borji. Segmenting sky

pixels in images: Analysis and comparison. WACV, 2019. 2

[8] Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form

solution to natural image matting. TPAMI, 2007. 3

[9] Orly Liba, Kiran Murthy, Yun-Ta Tsai, Tim Brooks, Tianfan

Xue, Nikhil Karnad, Qiurui He, Jonathan T Barron, Dillon

Sharlet, Ryan Geiss, et al. Handheld mobile photography in

very low light. SIGGRAPH Asia, 2019. 6

[10] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian Reid.

Refinenet: Multi-path refinement networks for high-resolution

semantic segmentation. arXiv preprint arXiv:1611.06612,

2016. 2

[11] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. CVPR,

2015. 2

[12] Radu P Mihail, Scott Workman, Zach Bessinger, and Nathan

Jacobs. Sky segmentation in the wild: An empirical study. In

2016 IEEE Winter Conference on Applications of Computer

Vision (WACV), pages 1–6. IEEE, 2016. 2

[13] Sylvain Paris, Pierre Kornprobst, Jack Tumblin, Frédo Du-
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