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Abstract

Recently Convolutional Neural Networks (CNN) have
been used to reconstruct hyperspectral information from
RGB images, and this spectral reconstruction problem (SR)
can often be solved with good (low) error. However, little
attention has been paid on whether these models’ behav-
ior can adhere to physics. We show that the leading CNN
method introduces unexpected ‘colorimetric errors’, which
means the recovered spectra do not reproduce ground-truth
RGBs, and sometimes this discrepancy can be large. The
problem is further compounded by exposure change. In-
deed, most CNN models over-fit to fixed exposure and we
demonstrate that this can result in poor performance when
exposure varies.

In this paper we show how CNN learning can be ex-
tended so that the physical plausibility of SR is enforced.
Remarkably, our physically plausible CNN solutions ad-
vance both spectral and colorimetric performance of the
original network, while the application of data augmenta-
tion trades off the network performance for model stability
against varying exposure.

1. Introduction

Hyperspectral imaging devices are developed to cap-
ture high resolution radiance spectra at every pixel in an
image, namely the hyperspectral images. These images
often record additional scene information that are ‘invis-
ible’ to human eyes and consumer RGB cameras (where
the spectral information is recorded with only 3 intensity
values per pixel), which has been found useful in numer-
ous computer vision applications including remote sensing
[40, 12, 20, 39, 11], anomaly detection [24] and medical
imaging [44, 45], as well as computer graphics applications
such as scene relighting [26] and digital art archiving [43].

Recent development in hyperspectral technology seeks
faster image capturing speed compared to the conventional
scanning-based techniques [19, 21]. Several attempts have
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Figure 1: Physically plausible spectral reconstruction (top)
and non-plausible spectral reconstruction (bottom).

been made for real-time multi-channel capturing [9, 42, 32,

]. However, these devices are complicated and/or bulky
that limits their usefulness. Other designs deploy novel
optical components with specialized post-processing algo-
rithms [13, 18, 6, 17, 28, 34, 47]. But, these devices trade
off spatial resolution and/or light sensitivity.

Spectral reconstruction (SR) is an alternative approach
to recording hyperspectral information, where hyperspec-
tral images are recovered from RGB images [31, 3, 27, 25,

, 16,8,27,23, 4,1, 16, 35, 5]. The idea is not as naive
as it might first appear. Indeed, we are expecting an RGB,
which has just 3 numbers, to recover much more than 3 de-
grees of freedom in spectra. Fortunately, in natural scenes
significant portion of spectral variation is covered by its
color appearance (i.e. the RGBs) [10], which makes it pos-
sible for learning approaches to give rather accurate spec-
tral approximations. Recent approaches, leading by Convo-
lutional Neural Networks (CNN), utilize the images’ high-
level contents to further enhance the recovery accuracy.

A key concern of this paper is the physical plausibility
of the SR algorithms. In reality, the RGB colors are physi-



cally related to spectra: using the spectral sensitivities of an
RGB camera, the RGBs can be accurately reproduced from
the spectra. We argue that a physically plausible SR must
recover spectra that can also reproduce (following the un-
derlying physical conversion and explicit image processing
pipeline) the exact ground-truth RGBs. Unfortunately, we
do not see any deep-network-based SR explicitly ensures
the compliance to this reality. Indeed, as we shall show in
this paper, the reproduced RGBs can be quite far from the
actual ones. This implies that the modern SR solutions ig-
nore the known physical relation between actual spectra and
RGBs, and yet giving some predictions that clearly contra-
dict the physics - put bluntly, these algorithms provide the
estimations of spectra which must be the wrong answers.
Therefore, we re-consider the usage of this physical prior as
in some early works [2, 46, 48, 7, 30] to further bound the
spectral accuracy of a CNN model.

In Figure 1 we illustrate our problem definition. In the
top diagram, a physically plausible SR recovers a radiance
spectra (i.e. a spectral power distribution (), see the right
side of the image) from an RGB (the red point on the left
in RGB space). Now we reintegrate the spectra with the
camera’s spectral sensitivities - just like taking a picture of
this spectrum - which gives a reproduced RGB. In this case
the input RGB and the reproduced counterpart are the same.

The diagram in the bottom half of Figure 1 shows a spec-
tral recovery which produces incorrect color when reinte-
grated with the camera sensitivities. This ‘physically non-
plausible SR’ is the norm (and is a feature exhibited by all
deep-network solutions we are aware of).

In Figure 2 we show a pictorial example. Two recon-
structed spectra in the bottom-right panel - red and purple
dotted curves - have the same spectral difference from the
ground-truth (blue solid curve). Integrating with the color
matching functions of SRGB displays (the top-right panel),
the purple curve reproduces the background color exactly as
the original painting on the left. In contrary, the red curve
reproduces the image in the middle, which shows severe
background color shift. This teaches that the level of spec-
tral error does not determine colorimetric error, and the un-
certainty can be significant.

Yet another physical reality addressed in this paper is ex-
posure invariance. Clearly, if the light intensity in the scene
changes, both the physically measured spectra (hyperspec-
tral images) and the linear RGB images (commonly con-
sidered as the ground-truth RGBs) will be linearly scaled.
However, Lin and Finlayson [29] showed that the CNN-
based ‘state-of-the-art’ models were trained for a confined
exposure condition and they perform poorly when a differ-
ent exposure setting is tested.

Overall, this paper makes three main contributions:

e We evaluate one of the state-of-the-art CNN-based mod-
els [5, 35] to gauge the extent that it delivers physically
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Figure 2: Background color reproduction from two spectra
(the purple and red curves in the bottom-right panel).

plausible spectral recovery, either in the sense of repro-
ducing the input RGBs or being resilient to a varying ex-
posure.

e We propose a novel framework which ensures exact color
reproduction in CNN-based SR that further improves the
model’s spectral recovery performance.

e We deploy a data augmentation process that maintains
model stability over different exposure settings.

2. Related Work

Hyperspectral imaging. There exist technologies
where hyperspectral images can be directly captured, and
these include using a prism-mask system [9], multiple cam-
eras [41, 32] and faced reflectors [38]. However, the prac-
tical applciation of these devices is limited by their com-
plex configurations and/or their physical bulkiness. Alter-
nately, in compressive imaging, a scene’s spectral informa-
tion is encoded in alternative forms on the sensed 2-D im-
ages. But, there is the overhead of decompressing the sig-
nal. Examples include multi-spectral color filter array [13],
coded aperture [6, 17, 18], diffractive gratings [28], digital
micro-mirror device [34] and most recently random printed
mask [47]. Other problems inherent in compressive sensing
are the need for specialized optics and the inherent trade-off
between the number of sensors and/or light sensitivity and
the spatial resolution.

Spectral reconstruction (SR). Rather than building new
hardware for capturing hyperspectral images, spectral re-
construction attempts to map RGB images to their spectral
counterparts. Shallow-learned methods - of which sparse
coding is the best example [4, |] - have the advantage of
model simplicity and quick training. However, these mod-
els is effectively implementing a ‘one-to-one’ lookup table,
which contradicts the fact that many (in fact infinite) spectra
can reproduce the same RGB.

In the CNN approach the implementation complexity is
much higher as so the hardware requirements but the re-



construction is richer. The promise of these methods is
that, in an intermediate representation, they might identify
scene contents which are associated with the target spectra
and then effectively use these information in the recovery
process. Indeed, it is well known that faces, chlorophyl
(in foliage) and daylights have very characteristic shapes
(amongst other scene features). Of the current develop-
ments, deep neural networks [3, 25, 36, 16, 35] provide the
leading performance in spectral reconstruction.

Physical plausibility. Some of the early models can al-
ready provide accurate color reproduction (but are gener-
ally believed to perform poorer in spectral recovery com-
paring to the recent CNN methods). This includes color-
difference-weighted PCA [2], linear regression with colori-
metric correction [46] and the colorimetrically constrained
iterative optimizations [48, 7] and Bayesian inference [30].

In the recent NTIRE Challenge on Spectral Reconstruc-
tion from RGB Images in 2018 (hereinafter abbreviated as
NTIRE18) [5], all 12 leading entries out of 73 attendants
(on the ‘Clean Track’) involve the implementation of deep
neural networks. However, none of these methods explicitly
ensure the spectra can reproduce the input RGBs.

As for the issue of exposure invariance, we remark that
in many learning-based computer vision tasks, the model
stability over intensity change are considered; that is, the
model are ensured to work well even as the scene exposure
changes. However, Lin and Finlayson [29] demonstrated
that the leading SR models in NTIRE18 perform poorly
when different exposure settings are considered, and this
has raised an issue that many modern developments of SR
may not work in the wild where exposure can vary.

3. Physically Plausible Spectral Reconstruction

At each pixel of a hyperspectral image, a high-resolution
radiance spectrum is recorded. For training the SR model
we simulate the ground-truth linear RGBs by calculating
the inner products between the measured radiance spectra
and the spectral sensitivities of a given RGB camera:

pr=_ sc(Nr(\), (1a)

AEQ

where £ = 1,2,3 refer to the red, green and blue chan-
nels of the RGB image, px, sx(A) and r(\) are respectively
the k*" camera response, the k" camera’s spectral sensitiv-
ity function and the radiance’s spectral power distribution,
A denotes the wavelength dimension, and {2 is the visible
range. Of course for this inner-product model (as oppose
to an integral) of image formation to work, we must sam-
ple the spectra at a sufficient resolution across the visible
spectrum. Let us vectorize Equation (1a):

p=S'r, (1b)

where p = (p1, p2, p3)" is the 3-dimensional RGB vector, r
is the n-dimensional radiance spectra with n to be the num-
ber of spectral bands, and S = (s, 85, 84) is an n X 3 matrix
with its columns to be the three camera’s spectral sensitiv-
ity functions. In all simulations we report later in this pa-
per, we assume the visible range runs from 400 through 700
nanometers, and the spectra are sampled every 10 nanome-
ters; hence n = 31 (this is the common assumption made in
most studies, including in the NTIRE18S).

Note that in this paper we only consider the linear RGBs
derived by Equation (la) and (1b). This setting aligns
with the ‘Clean Track’ of NTIREI1S rather than the ‘Real-
world Track’ where the camera’s spectral sensitivities are
unknown and the RGBs are non-linearly rendered. Our in-
tention is to, without further complicating the problem, dis-
cuss and manipulate the intrinsic properties of an SR model.

In the ordinary SR framework, a radiance spectrum r is
recovered from its RGB camera response p: the algorithm
searches for the best estimate of r within the entire spectral
space (i.e. R™) that statistically minimizes the distance er-
ror between the estimation and the ground-truth. However,
this framework does not ensure that the recovered r must
reproduce p - the algorithm may find a solution which is
spectrally close to the ground-truth but reproduces distant
color (as per the example we showed in Figure 2).

Let us now develop a method to ‘constrain’ the algorithm
only to search for the estimated radiance within the set of
spectra that reproduce the correct input RGB. For this pur-
pose, we propose a ‘plausible set’ concept, which is defined
as the set of all spectra that reproduce a given RGB.

The derivation of our plausible set is analogous to, but
simpler than, the metamer set in [ 15, 30]: their focus was on
the reflectances instead of our case on the radiance spectra.

3.1. The Plausible Set

Given known camera’s spectral sensitivity functions S,
the plausible set P is defined as:

P(p;S) = {r

STr= p} . 2)

Geometrically, the outcome of an inner product is only
affected by the parts of the two vectors that are ‘parallel’
to each other, whereas the ‘perpendicular’ part do not con-
tribute to the inner product. Given this view, with respect to
the constraint STr = p we can separate r into two parts: the
part that is spanned by the column vectors of S which con-
tributes to p, and the part lies in the null-space of S which
yields zero projection.

Define S as the vector space spanned by the columns of
S, called the camera subspace, then an arbitrary spectrum:

reR" =8 Null(S) 3)



(recall n is the number of spectral bands). We can further
decompose any given r into two components: rl € S and
r* € Null(S), such that

r=rl4rt )

subject to
STl =p (52)
S'rt=0. (5b)

Theorem 1. All members of a given P(p;S) share the
same r!l component.

Proof. Consider an arbitrary r € 7P(p;S), its rl
component can be derived directly via subspace projection.
The projection matrix onto S is written as:

PS =S§(STS)7!sT, (6)

such that
rl = PSr =8(8"S)"'S"r. (7)

Next, the intrinsic constraint of P(p;S) is STr = p (see
Equation (2)), which gives

rl =8(8TS)"'p. (8)
As S and p are known factors of P(B; S), rll is therefore
fixed (theorem proved).

Given Theorem 1 and Equation (4), we can further infer
that among all members of a given plausible set P(p;S),
only their r* components defer them from each other. Since
no additional constraint is placed on r* other than r'- €
Null(S), we get

P(p;S) =S(S'S) ' p & Null(S) . )

Now Null(S) can be further represented by the linear com-
binations of its orthogonal basis. Define a basis matrix N
whose columns are the orthogonal basis vectors of Null(S).
This N matrix (i.e. the orthogonal basis) can be obtained
via singular value decomposition (SVD) on the null-space
projection matrix PN =1, —P5{,,isthen xn
identity matrix). Note that there should be n — 3 linearly-
independent basis vectors that are perpendicular to all 3 col-
umn vectors of S (i.e. the camera’s spectral sensitivities) in
the spectral space R™, therefore the rank of PN is n — 3 and
Nisn x (n—3).

Finally, given the calculated null-space basis matrix N,
we reach the following definition of our plausible set:

P(p;S) = {S(STS)1p+ Na ‘ ac R”S} . (10)

We call this a vector the null-space coefficients, and each
one of a’s corresponds to one r in P (i.e. r and « is one-
to-one).

This way of isolating the constrained constant r/l while
leaving r' decided by an unbounded factor o in R" 3 (i.e.
r+ = Na) is the key to implementing our physically plau-
sible SR based on CNN. Indeed, the existing CNN solutions
are designed to search for spectral approximations in an un-
bounded vector space. In the next part of this section, we
are going to introduce our physically plausible SR via ‘null-
space coefficients reconstruction’.

3.2. Reconstructing the Null-space Coefficients

Let us denote r, and r, as respectively the ground-truth

and reconstructed spectra. The ground-truth RGB p, can

be calculated by Equation (1b), and naturally r, is a mem-
ber of P(Bgt; S). Then, we would like to search for r,.. in

r,.. belong to the same

P(Bgt; S), which implies that r, and r.
plausible set so that r,.. is physically plausible.

Since r and « is one-to-one, given r, we can find the
corresponding v, (we shall explain the calculation later).
Next, we re-train the SR algorithm; but instead of the origi-
nal search on Iy, We NOW expect the SR model to search for
the approximation of the null-space coefficients . De-
note this modified SR as ¥(-) : R? — R"~3, which gives

V(p,) = Qe ~ Qi (an

the reconstructed spectrum r,., which is ensured to be a

member of P( Py S), is then derived by

T = S(STS)—1£gl + N(\Il(pgt)) . (12)

Note that now the SR model ¥ is trained to map RGBs to
the lower-dimensional a’s; corresponding to the CNN’s ar-
chitecture, we only need to change the spectral dimension
in the output layer from n ton — 3.

So far, the idea behind our physically plausible SR
framework has been established. Still, to train a CNN model
the ground-truth labels are necessary, which means we are
yet to calculate o, from r, in order to train W.

In Equation (6) we calculated the projection matrix PS
which projects r onto the column space of S that derives
rll. Likewise, we can also derive r' by projecting r onto
the column space of the null-space basis IN. The null-space
projection matrix PN = I,,,, — PS can be alternatively
written as:

PN =N(N'N)"INT, (13)

such that

ry =PNr, =N(N'N) 'N'r,, . (14)
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Figure 3: The training (left) and reconstruction scheme (right) of our physically plausible spectral reconstruction.

Since r* = Na, we get

Na,, = N((NTN)lNTrgt> . (15)

Finally, since the columns of N are linearly-independent
basis vectors, « and r is one-to-one, which gives
o, = (N'N)"'N'r,, . (16)
Figure 3 summarizes our physically plausible SR frame-
work. In the training stage (on the left side of the fig-
ure), the SR model is trained to map the RGB image to the
null-space coefficients image. In the reconstruction stage
(on the right), the camera-subspace projection r!l is calcu-
lated directly from the input RGB p while the SR algorithm
only concerns the recovery of the null-space coefficients a,
which subsequently decides the null-space projection r.
As the color reproductions of a spectrum (with the underly-
ing RGB camera’s spectral sensitivities S) only depend on
their ! (see Equation (5a) and (5b)), the reconstructed hy-
perspectral image is ensured to reproduce exactly the input
RGB image. In the next section we are going to integrate
this framework with a CNN-based SR model.

4. Implementation

We built our models based on the HSCNN-R architec-
ture, which was the 2™¢ place entry of the NTIRE1S [5, 35]
(whose performance is similar to the 1% place HSCNN-D
model; we used the 2"? place architecture simply because
it was simpler in our development environment). As illus-
trated in Figure 4, the HSCNN-R model adopts a deep resid-
ual learning framework [22]. Each of the residual blocks is
constructed with two convolutional layers and one ReLU
layer. The model also adopts a global residual learning
structure. All convolutional kernels are set to 3 x 3. On
training and reconstruction, the network maps 50 x 50 RGB
image patches to the corresponding 31-channel hyperspec-
tral image patches. According to one of the reported set-
tings in [35], we set the filter numbers in each layer to be
256 and the network depth to be 20.

In this paper, we aim for two improvements on HSCNN-
R: (1) ensuring exact color reproduction and (2) enhanc-
ing the robustness against exposure change. For the former,
we integrated our physically plausible framework shown in
Figure 3 with HSCNN-R, and for the latter, we adopted a
data augmentation process. To study the effects of both im-
provements, 3 new models listed in Table 1 were trained.

Physically Data
Model Plausible | Augmentation
HSCNN-R? \Y
HSCNN-R* \%
HSCNN-R”? \ \

Table 1: List of our new models

4.1. Physically Plausible HSCNN-R

In the original HSCNN-R model, the output layer cor-
responds to a 50 x 50 hyperspectral image patch with 31
spectral dimensions. To accommodate our physically plau-
sible framework in HSCNN-R? and HSCNN-R??, we re-
duced the spectral dimension from 31 to 28 in the output
layer for recovering the null-space coefficients image (c is
(n — 3)-dimensional with n = 31).

Unlike the original hyperspectral data which only con-
tains positive values, the null-space coefficients ¢ allow
negative entries, and this is not permitted for the ReLU out-
put layer of the HSCNN-R architecture. As a result, it is
necessary to apply an offset to the ground-truth a such that
the negative values are prevented.

In our implementation, we found that empirically the
entries of the ground-truth o range between —1 and 1.
Hence, in the training stage of HSCNN-R” we adopted a

re-centering:

1

while in the reconstruction stage we center c back from &.
As we will mention later the HSCNN-RP? model requires a
different re-centering function due to the implementation of
the additional data augmentation process.

The rest of the hyperparameters of HSCNN-RP were
kept the same as the original HSCNN-R model [35]. Our

a7
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Figure 4: The HSCNN-R architecture [35]. ‘C’ means 3 x 3 convolution and ‘R’ refers to ReL.U activation.

HSCNN-R? is expected to provide absolute color repro-
duction. However, as demonstrated in [29], the origi-
nal HSCNN-R model is not robust against scene exposure
change, and this implies HSCNN-R? may also deliver poor
performance when a different testing exposure is applied.

4.2. Intensity-scaling Data Augmentation

We created the augmented data by simulating ‘brighter’
and ‘dimmer’ RGB images from the ground-truth hyper-
spectral images. Instead of generating all the augmented
data before training the model, we decided to draw different
scaling constants in real time: all input image patches (and
the same patch in different training epochs) were scaled dif-
ferently, in which way the network is ensured to see ade-
quate intensity variations from the data.

Furthermore, we investigated the proper random distri-
bution from which the scaling constants should be drawn.
Presumably, we hope to implement a trained SR algorithm
on an RGB camera. We notice that the standard exposure
settings of a camera (i.e. the aperture size and shutter speed)
follow geometric progressions; more precisely, the avail-
able diameters of the aperture normally follows a sequen-
tial scaling change by /2, and the shutter speed is adjusted
by a factor of 2 between adjacent modes. To ensure that the
trained SR model performs equally well in all these settings,
we propose to draw the scaling constants ¢ from a uniform
distribution on a log scale:

logg § ~ Uniform(—1,1) . (18)
In our implementation, we set 5 = 10 such that the scaling
factor ¢ is bounded by 15, 10].

We trained HSCNN-R? which only adopts the intensity-
scaling data augmentation but not the physically plausible
framework, and all hyperparameters were kept the same as
provided in [35]. On the other hand, to train the HSCNN-
RP? model (implemented with both the physically plausi-
ble framework and data augmentation), similar to the case
of HSCNN-RP, we need to apply an offset on the ground-
truth null-space coefficients. Due to the intensity scaling,
the range of « is extended to [—10, 10] (since 8 = 10), so
the required re-centering function becomes:

- 1
a = %(QJr 10) .

Additionally, to make the model converge efficiently, we set

19)

the adaptive learning rate to follow a polynomial decay with
the power of 25 (instead of the original 1.5 in [35]).

5. Experiment
5.1. Experimental Setup

The aim of the experiment is to compare the three
new models listed in Table 1 with the original HSCNN-
R. In addition, we evaluated two shallow-learned models
(non-network solutions) as our comparing benchmarks: the
generic linear regression (LR) [23] and the leading sparse
coding SR (A+) [1].

We trained all models based on the ICVL hyperspec-
tral database (201 images) [4], where we randomly split the
database into 100 images for training, 50 for validation and
50 for evaluation. The CIE 1964 color matching functions
[14] were selected as the spectral sensitivity functions of the
RGB camera (so the simulated ground-truth RGBs are the
CIEXYZ color coordinates).

Our experiment concerns the performances of the mod-
els in terms of (1) spectral recovery (2) color reproduction
(using the original and different RGB cameras) and (3) both
performances under different exposure settings. Accord-
ingly we selected the following error metrics:

e Spectral difference: Mean Relative Absolute Error

1
MRAE = —
n

LA

(20)

r

8t 1

e Color difference: CIE 1976 color difference

AB = \[(Li — L) + (a3 — aie)® + (b5 — biec)® 2D

In Equation (20), respectively r, and r,. refers to the
ground-truth and reconstructed radiance spectra, and n is
the number of spectral bands. The division is component-
wise and the L1 norm is calculated.

Equation (21) shows the definition of the CIE 1976
color difference formula [33], where (Ly,ag,by) and
(Lk,, ak., br.) are the CIELAB color coordinates of the
ground-truth and reconstructed RGB colors, respectively.
The transformation between CIEXYZ and CIELAB re-
quires the normalization by the ‘white point’ coordinates
(i.e. the illumination color) [37], for which we hand-crafted
the white points of each images by selecting the RGB of the
brightest achromatic pixel.



Original exposure (£ = 1) Half exposure (£ = 0.5) Double exposure (£ = 2)
Model MRAE (x107) AFE MRAE (x107) AFE MRAE (x107) AFE
Mean | 99.9pt || Mean | 99.9pt || Mean | 99.9pt || Mean | 99.9pt || Mean | 99.9pt || Mean | 99.9pt

LR [23] 6.39 23.07 0.10 1.75 6.39 23.07 0.10 1.75 6.39 23.07 0.10 1.75
A+[1] 3.79 23.26 0.02 1.51 3.79 23.26 0.02 1.51 3.79 23.26 0.02 1.51
HSCNN-R [35] 1.76 12.94 0.15 3.29 15.68 | 47.77 0.47 343 6.38 19.56 0.29 6.61
HSCNN-R? 1.74 15.12 0.00 0.00 15.84 | 45.30 0.00 0.00 6.44 20.07 0.00 0.00
HSCNN-R? 2.95 17.24 0.29 4.77 2.95 17.32 0.28 4.71 2.94 17.20 0.29 4.83
HSCNN-RP? 2.73 21.52 0.00 0.00 2.83 20.75 0.00 0.00 2.70 22.69 0.00 0.00

Table 2: The averaged mean and 99.9 percentile hyperspectral image reconstruction errors in MRAE and A E' under original,
half and double exposure settings. Best results are shown in red.

AF (SONY IMX135), Original exposure

Physically Non-Plausible Physically Plausible

Model Mean | 99.9pt Model Mean | 99.9pt
HSCNN-R 0.41 | 14.64 || HSCNN-R? 0.38 | 15.12
HSCNN-R? || 0.60 | 17.88 | HSCNN-RP? || 0.45 | 16.44

Table 3: Color reproduction error in AE under an alterna-
tive ‘SONY IMX135’ camera sensitivities.

We tested all models under 3 exposure settings: the origi-
nal, half and double exposure (respectively £ = 1, 0.5 and 2).
For each testing exposure, we uniformly scaled-up all test-
ing images with the same scaling constant, and the recov-
ered hyperspectral images were compared with the ground-
truth hyperspectral images scaled by the same constant.

5.2. Result and Discussion

The performance statistics shown in Table 2 are the av-
eraged MRAE and AF of the mean and 99.9 percentile er-
rors of individual testing images (the image dimension is
around 1300 x 1392). Hereafter we refer the averaged 99.9
percentile errors to as the ‘worst-case’ performance.

First, compared to the shallow-learned linear regression
(LR) and sparse coding (A+) model, the original HSCNN-R
shows great advantage in spectral accuracy (MRAE) under
original testing exposure (i.e. the training and testing expo-
sures are the same). However, HSCNN-R introduces higher
worst-case colorimetric error (AF), and as per the exam-
ples of visual comparisons on rendered images provided in
Figure 3-8 of our supplementary material, this color dis-
crepancy can be very perceivable. This tells that HSCNN-R
can (and commonly do) recover spectra that are clearly not
physically plausible. Also, in the aspect of exposure invari-
ance, LR and A+ retain their performance as the testing ex-
posure is halved and doubled; nevertheless, the HSCNN-R
model performs considerably worse when the testing expo-
sure changes. Indeed, under half testing exposure HSCNN-
R even performs far worse than the generic LR.

Next, the implementation of our physically plausible
framework on HSCNN-R? and HSCNN-R?? ensures zero
AFE and further improves the spectral recovery performance
of their non-physically plausible counterparts, respectively

HSCNN-R and HSCNN-R?. This is shown by the minute
decrease in mean MRAE from HSCNN-R to HSCNN-R?
and from HSCNN-R? to HSCNN-RP4, However, the con-
verse increase in the worst-case MRAE for these physically
plausible models indicates possible trade-offs between dif-
ferent parts of the images.

Lastly, the consideration of intensity-scaling data aug-
mentation seems to deteriorate spectral recovery. Indeed,
the MRAE of HSCNN-R? and HSCNN-RP? are higher than
the cases for HSCNN-R and HSCNN-R? under the original
testing exposure. However, they perform the best overall as
testing exposure changes, and this ensures their robustness
against varying exposure in real-world applications.

In Table 3 we present the color reproduction perfor-
mance using a different camera (and under original expo-
sure setting). Here, the hyperspectral images are still re-
constructed from the CIEXYZ color coordinates, but we re-
generated the RGB images by the spectral sensitivities of
an alternative camera - SONY IMX135. Remarkably, the
physically plausible HSCNN-R? and HSCNN-RP? models
provide superior performance compared to their physically
non-plausible counterparts. Especially for HSCNN-RP¢
whose worst-case MRAE (Table 2) is worse than HSCNN-
R?, and yet it out-performs HSCNN-R? by 8% in the worst-
case AFE in Table 3.

In Figure 5 and 6 we show respectively the MRAE and
AFE error maps of the spectral recovery on one example
image. We can clearly see in Figure 5 that under origi-
nal exposure (top row), the physically plausible HSCNN-
RP and HSCNN-RP? respectively improve HSCNN-R and
HSCNN-R in the upper part of the image. It is also evident
that HSCNN-R? and HSCNN-RP?, where intensity-scaling
data augmentation is adopted, shows constant performance
across different exposures, as opposed to the deterioration
introduced by HSCNN-R and HSCNN-R?. In Figure 6
we can see that non-physically plausible HSCNN-R and
HSCNN-R? are the least colorimetrically accurate models,
while our physically plausible HSCNN-R? and HSCNN-
RP¢ guaranteed absolute color accuracy for all spectra in
the image. We remark that the horizontal artifacts in the
error maps may come from the patch-wise reconstruction
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Figure 5: Visualization of spectral recovery errors by MRAE error maps. All models are tested under original exposure (top
row), half exposure (middle row) and double exposure (bottom row).
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Figure 6: Visualization of color reproduction errors by AE error maps. All models are tested under original exposure (top
row), half exposure (middle row) and double exposure (bottom row).

of the networks: we split the input image along the vertical
spatial dimension for limited GPU memory, and we did find
the gaps between the artifacts vary according to this setting.

6. Conclusion

Spectral reconstruction (SR) studies the mapping from
RGB to hyperspectral images, which is regarded as a
promising solution to low-cost, snapshot and high resolu-
tion hyperspectral camera. Recently, the leading models are
based on Convolutional Neural Networks (CNN), provid-
ing remarkable spectral recovery performance. However,
these models only aim to minimize the spectral recovery er-
rors without ensuring the physical plausibility of the output
spectra. Physical plausibility is defined as ensuring the re-
covered spectrum integrates (using the underlying camera
sensors) to the same RGB as it is recovered from (the input
RGB). Existing method, which do not have this property,

estimate RGBs which are significantly different from those
found in the original image.

In this paper we developed a physically plausible frame-
work for SR. Our insight is that all plausible spectra can
be represented by a fixed camera-subspace projection spec-
trum defined by a linear combination of camera spectral
sensitivities, and a null-space spectrum which do not con-
tribute to the color formation. Relative to this insight, the
spectral recovery problem sets out to reconstruct the null-
space coefficients from the RGB (instead of the original
RGB to radiance mapping), such that the physical plau-
sibility of the predicted radiance is guaranteed. We also
addressed the issue of exposure invariance in SR [29] by
implementing an intensity-scaling data augmentation to en-
sure the model robustness against intensity variations. By
imposing physical plausibility on CNN-based SR, our mod-
els out-perform the original network in spectral recovery as
well as cross-device color reproduction.
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