
 
 
 
 

 
 

 
Abstract 

 
During the past years, deep convolutional neural networks 
have achieved impressive success in image denoising. In 
this paper, we propose a densely self-guided wavelet 
network (DSWN) for real world image denoising. The basic 
structure of DSWN is a top-down self-guidance 
architecture which is able to efficiently incorporate multi-
scale information and extract good local features to recover 
clean images. Moreover, such a structure requires a 
smaller number of parameters and enables us to achieve 
better effectiveness than Unet structure. To avoid 
information loss and achieve a better receptive field size, 
we embed wavelet transform into DSWN. In addition, we 
apply densely residual learning to convolution blocks to 
enhance the feature extraction capability of the proposed 
network. At the full resolution level of DSWN, we adopt a 
double branch structure to generate the final output. One 
branch of them tends to pay attention to dark areas and the 
other performs better on bright areas. Such a double 
branch strategy is able to handle the noise at different 
exposures. The proposed network is validated by BSD68, 
Kodak24 and SIDD+ benchmark. Additional experimental 
results show that the proposed network outperforms most 
state-of-the-art image denoising solutions. 
 

1. Introduction 
Image denoising is a fundamental task in low-level 

vision and an important pre-processing step in many other 
vision tasks. Traditional methods [1] usually address image 
denoising by domain transform [2], non-local algorithm [3], 
Markov Random Fields (MRFs) [4], etc. However, these 
methods need to manually set parameters and refer a 
complex optimization problem for the testing stage. 
With the rapid development of deep learning technology, 
numerous advanced approaches [5-7] have been developed 
and achieve impressive success. By involving the strategy 
of residual learning and adding batch normalization (BN) 
and ReLU activate function into deep architectures, 
DnCNN [8] is proposed to handle Gaussian blind denoising 
and achieves a much higher peak signal to noise ratio 

 
Figure 1: Example denoising results of a conventional 
method and the proposed method (σ = 30). 
(PSNR) than conventional state-of-the-art approaches [9]. 
For the pursuit of highly accurate denoising results, some 
follow-up works have been proposed to remove additive 
white Gaussian noise (AWGN) [10, 11]. To involve multi-
scale information, some most advanced end-to-end 
methods [12-14] apply Unet [15] as their basic structure and 
add some dense residual block in each level. Although these 
methods obtain competitive performance on benchmark 
datasets, their heavy computation and memory footprint 
hinder their application. 

To seek a better trade-off between denoising 
performance and the consumption of computational 
resources, self-guided neural network (SGN) [16] is 
proposed for image denoising task by a top-down guidance 
strategy. SGN generates multi-resolution inputs with the 
PixelUnShuffle [17] before any convolutional operation. 
Large-scale contextual information extracted at low 
resolution is gradually propagated into the higher resolution 
sub-networks to guide the feature extraction processes at 
these scales. Using such a structure, SGN is able to achieve 
a better denoising performance than Unet with less runtime 
and GPU memory. 

Inspired by SGN, we proposed a densely self-guided 
wavelet network (DSWN) (as shown in Figure 2) which is 
able to improve performance of SGN (Figure 1) and require 
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less runtime than the state-of-the-art densely networks 
based on Unet structure [13]. In DSWN, we embed densely 
connected residual block (DCR) [13] (as shown in Figure 3) 
in each level. To achieve a better performance, we adopt 
more DCR blocks with skip connections at the full 
resolution level. We involve discrete wavelet 
transformation (DWT) and inverse discrete wavelet 
transform (IDWT) into DSWN to replace the shuffling 
operation in SGN. The motivation is that DWT / IDWT is 
able to not only avoid information loss and enlarge 
receptive field with better tradeoff between efficiency and 
restoration performance. In addition, wavelet has been 
applied to denoising task in traditional methods [2]. 
Utilizing wavelet transform to incorporate multi-scale 
information makes it possible for the network to have time-
frequency analysis capabilities. At the full resolution level, 
we design a double branch structure including a residual 
learning branch and an end-to-end learning branch. Such a 
structure is able to help our network to deal with the 
denoising task at different exposures. Our main 
contributions are summarized as follows: 

 We design a densely self-guided wavelet network 
which outperforms conventional methods and is 
more efficient than most state-of-the-art denoising 
networks with dense blocks. 

 We replace PixelShuffle by wavelet transform to 
perform scale transformation and achieve a higher 
PSNR and preserve more details. 

 We propose a double branch structure at the full 
resolution level. The residual learning branch tends 
to reserve more details in bright areas and end-to-
end learning branch is able to supplement the dark 
area information and further improve denoising 
performance. 

2. Related works 
In this section, we briefly introduce some works related 

to our research. First, we review some deep learning based 
denoising networks. Then, we discuss some previous works 
for incorporation of multi-scale information. 

2.1. Deep Neural Networks for Image Denoising 

In recent years, researches have shown that deep learning 
technologies outperform traditional methods on image 
denoising by extracting more suitable image features [6]. 
Mao et. al. designed a convolutional encoder-decoder 
network with symmetric skip connections to perform image 
denoising [18]. By introducing a memory block to 
explicitly mine persistent memory through an adaptive 
learning process, MemNet [11] is able to learn multi-level 
representations of the current state under different receptive 
fields. By involving the strategy of residual learning and 
adding batch normalization and ReLU activate function 
into deep architectures, DnCNN [8] is proposed to handle 

Gaussian blend denoising. Using a tunable noise level map 
as the input, FFDNet [19] is able to handle a wide range of 
noise levels and remove spatially variant noise. 
Considering both Poisson-Gaussian model and in-camera 
processing pipeline, CBDNet [7] further improved the blind 
denoising ability by embedding a noise estimation network. 
To overcome the lack of paired training data, Chen et. al 
[20] simulated noise samples by a Generative Adversarial 
Network (GAN) and Noise2Noise [5] proposed a 
restoration learning strategy without any clean data. Finally, 
Zhang et al. [21] proposed a residual dense network (RDN) 
that uses both residual learning and dense connection as its 
basic structure, maximizing feature reuse and achieving a 
significant improvement in the performance of Gaussian 
noise image denoising. 

2.2. Incorporation of multi-scale information 

To extract multi-scale information for image denoising 
and single image super resolution (SISR) tasks, 
PixelShuffle and wavelet transform have been proposed to 
replace pooling and interpolation to avoid information loss. 
With self-guidance strategy and PixelShuffle, SGN [16] 
greatly improved the memory and runtime efficiency. Bae 
et al. proposed a wavelet residual network (WavResNet) 
[22] for image denoising and SISR and find wavelet 
subbands benefits learning convolutional neural network 
(CNN). Similarly, a deep wavelet super-resolution (DWSR) 
method [23] is propose to recover missing details on 
subbands. Both WavResNet and DWSR only consider 
single level wavelet decomposition. Multi-level wavelet 
transform is considered by MWCNN [24] to achieve better 
receptive field size and avoid down-sampling information 
loss by embedding wavelet transform into CNN 
architecture. MWCNN owns more power to model both 
spatial context and inter-subband dependency by 
embedding DWT and IDWT to CNN. In this paper, our 
proposed network adopts the same method as MWCNN to 
incorporate multi-scale information with a totally different 
architecture from MWCNN. 

3. Densely Self-guided Wavelet Network (DSWN) 
In this section, we firstly introduce the overall network 

structure and then introduce the details of DSWN. 

3.1. Overall Structure of DSWN 

Our proposed denoising network is shown in Figure 2. A 
top down self-guidance architecture is used to better exploit 
image multi-scale information. Information extracted at 
low resolution is gradually propagated into the higher 
resolution sub-networks to guide the feature extraction 
processes. Instead of PixelShuffle and PixelUnShuffle, 
DWT and IDWT are used to generate multi-scale inputs. 
Before any convolution operation, DSWN uses wavelet 
transform to transform the input image to three smaller  



 
 
 
 

 
 

 
Figure 2: An illustration of our proposed network 

 
Figure 3: Diagram of densely connected residual (DCR) 
block. 
scales. At the full resolution layer, we adopt a double 
branch structure consists of a residual learning branch and 
an end-to-end learning branch. In the rest of this paper, we 
simply refer to these two branches as residual branch and 
end2end branch. For our network, we observed that the 
residual branch focuses on bright areas and the end2end 
branch focuses on dark areas. Therefore, we use both of 
these two branches at the full resolution level to further 
improve the performance, especially when the network 
needs to work on noisy images with different ISO at the 
same time. In addition, we find batch normalization is 
harmful for the denoising performance and do not use any 
normalization layer in this network. For each level, we add 
densely connected residual (DCR) [13] one or two blocks 
as shown in Figure 3. 

3.2. Detail Structure of DSWN 

The top level of DSWN works on the smallest spatial 
resolution to extract large scale information. The top sub-
network contains two Conv+PReLU layers (the orange box 
in Figure 2) and a DCR block (the red box in Figure 2). The 
DCR block simultaneously applies dense connectivity and 

residual learning to remove the noise of input images 
accurately and solve the vanishing-gradient problem. 

At the middle two levels, 1×1 Convolutional kernel 
layers are used to merge information extracted from 
different resolution. The network structure of the middle 
sub-networks is similar to the structure of the top sub-
network. As for the full resolution level, we add more DCR 
blocks with skip connections to enhance the feature 
extraction capability of DSWN after merging information 
from all the scales. For the residual branch, DSWN has a 
global residual connection between the input image and the 
final estimation. We add a Tanh activation function at the 
end of the end2end branch. The final output is the simple 
average result of the residual branch and the end2end 
branch. By adding gradient loss, our network is able to 
achieve better retention of details without reducing PSNR. 
In order to ensure the fairness of the comparative 
experiment, in the experimental part of this paper, our 
network only uses L1 loss for training. 

4. Experimental Results 
In this section, we first introduce the training details and 

then provide experimental results on different datasets. We 
compare DSWN with several state-of-the-art denoising 
approaches. 

4.1. Experimental Setting 

DIV2K [25] training and validation datasets provide an 
adequate amount of high quality images. Most state-of-the-
art image denoising solutions select the DIV2K as their 
training dataset [12, 16]. To train our DSWN model, we  



 
 
 
 

 
 

 
Figure 4: Denoising results of the conventional methods and the proposed method on BSD68 dataset (σ = 50). 

 
Figure 5: Denoising results of the conventional methods and the proposed method on BSD68 dataset (σ = 30). 

Table 1: RGB image denoising results on BSD68 dataset. 

Method Noisy CBM3D [26] DnCNN [8] FFDNet [19] IRCNN 
[27] SGN [16] DHDN [13] DSWN 

Noise Level PSNR (dB) 

σ = 10 28.30 35.89 36.12 36.14 36.06 35.97 36.45 36.91 

σ = 30 19.03 29.72 30.32 30.31 30.22 30.36 30.41 30.72 

σ = 50 14.91 27.36 27.92 26.96 27.86 28.01 28.02 28.29 

Noise Level SSIM 

σ = 10 0.7114 0.9507 0.9536 0.9540 0.9533 0.9544 0.9572 0.9578 

σ = 30 0.3363 0.8432 0.8611 0.8603 0.8607 0.8684 0.8639 0.8751 

σ = 50 0..1993 0.7622 0.7882 0.7881 0.7889 0.8011 0.7961 0.8081 

also use DIV2K dataset as training and validation dataset 
for AWGN task. The training dataset consists of 800 high 
quality images. The resolution of each of these images is 
1920 × 1080. The DIV2K validation dataset consists of 100 
images; the quality of each image is similar to that of the 
training dataset. For the testing datasets, we use the BSD68 
[28] and dataset Kodak dataset [29] which are used by some 
recent denoising networks [30]. The Kodak dataset consists 
of 24 images, each of which has a resolution of 768×512. 
The BSD68 dataset consists of 68 images, each of which 

has a resolution of 321 × 481. As for real noise removal task, 
we conduct experiments on Smartphone Image Denoising 
Dataset (SIDD) benchmark [31]. The SIDD training dataset 
consists of 320 images from 10 scenes under different 
lighting conditions using five representative smartphone 
cameras. The test dataset is SIDD+ dataset [32] which is 
generated by NTIRE 2020 Real Image Denoising 
Challenge with a similar procedure as the SIDD benchmark. 
Compared with the SIDD validation dataset, the SIDD+ 
dataset contains more details. 



 
 
 
 

 
 

Table 2: RGB image denoising results on Kodak24 dataset. 

Method Noisy CBM3D [26] DnCNN [8] FFDNet [19] IRCNN 
[27] SGN [16] DHDN [13] DSWN 

Noise Level PSNR (dB) 

σ = 10 28.24 36.57 36.58 36.80 36.70 36.64 37.33 37.35 

σ = 30 18.93 30.89 31.28 31.39 31.24 31.70 31.95 33.08 

σ = 50 14.87 28.62 28.94 29.10 28.92 29.42 29.67 29.97 

Noise Level SSIM 

σ = 10 0.6607 0.9432 0.9446 0.9462 0.9448 0.9455 0.9508 0.9488 

σ = 30 0.2755 0.8459 0.8579 0.8596 0.8581 0.8599 0.8736 0.8794 

σ = 50 0.1557 0.7772 0.7915 0.7949 0.7939 0.7949 0.8160 0.8241 

 
Figure 6: Denoising results of the conventional methods and the proposed method on Kodak24 dataset ( ). 

When training our model, we randomly crop 256 × 256 
patches from the training images. The input patches of the 
proposed network are randomly flipped and rotated for data 
augmentation. The parameters of network are Xavier 
initialized [33]. We train the whole network for 300 epochs 
overall. The learning rate is initialized as 1e−4 at the first 
200 epochs and reduce to 5e−5 in the next 50 epochs. We 
finetune our model at the last 50 epochs with a 1e−5 
learning rate. For optimization, we use Adam optimizer [34] 
with β1 = 0.5, β2 = 0.999 and batch size equals to 1. We use 
L1 loss which is a PSNR-oriented optimization in the 
training process [35]. The experiments are implemented 
using a NVIDIA RTX 2080Ti GPU.  

4.2. Performance comparison 

We compare our proposed network with several state-of-
the-art image denoising solutions: CBM3D [9], DnCNN [8], 
FFDNet [19], IRCNN [27], SGN [16] and DHDN [13], 
where DHDN is more complex than DSWN. To compare 
the performance, we determined the peak-signal-noise-ratio 

(PSNR) [36] and structural similarity (SSIM) [37] as the 
objective measurements. Table 1 lists the average PSNR of 
the compared methods and the proposed method for sRGB 
images in BSD68 dataset. Figure 4 and Figure 5 show some 
example results in BSD68 dataset with different noise 
levels. From Table 1, we can see that our DSWN shows the 
best PSNR and SSIM in all the noise levels. DHDN is the 
second best method. It adopts twice as many DCR blocks 
as DSWN and is harder to train. Although DHDN adopts 
more DCR block in its network architecture, DSWN is still 
able to achieve a PSNR which is about 1.37 higher than 
DHDN on average. Figure 4 and Figure 5 show some detail 
results of DnCNN, SGN and DSWN, where DnCNN is a 
classical denoising network and SGN has a similar structure 
to DSWN. We can see all the three denoising networks are 
able to achieve a obvious improvement compared with 
noisy images. DSWN is better than DnCNN and SGN in 
some details such as the texture details of the statue in 
Figure 4 and the beard of the tiger in Figure 5. Our proposed 
method is able to handle different noise levels and reserve 
more details at the same time. 



 
 
 
 

 
 

 
Figure 7: Denoising results of the conventional methods and the proposed method on Kodak24 dataset ( ). 

 
Figure 8: NTIRE 2020 real image denoising challenge results of DSWN on validation dataset of SIDD+ with unspecified 

noise. 
Table 2 shows DSWN outperforms the compared 

methods in most cases. From Figure 6 and Figure 7, we can 
conclude a similar conclusion to the BSD68 dataset. At a 
higher noise level, denoising networks tend to smooth the 
noise image too much, because the network is difficult to 
distinguish true details from noise. DSWN can better 
preserve details at high noise levels, such as eyelashes and 
window textures. 

4.3. NTIRE 2020 real image denoising challenge 

The proposed method is initially proposed to participate 
in NTIRE 2020 real image denoising challenge [32]. The 
purpose of the challenge is to remove unspecified noise 
from images. The training dataset is SIDD benchmark 
which includes images with various noise levels, dynamic 
ranges, and brightness. Such a noise model is more complex 
than the AWGN task. During the challenge, we tried several 
different solutions on SIDD benchmark dataset and finally 
fix DSWN as our final solution. Our network achieves a 
competitive PSNR on the testing dataset and is very 
efficient among all the solutions for this challenge. 

In this section, we first present denoising results 
generated by DSWN and some compared denoising 
networks. Then, we conduct some ablation studies on 
different network structures. In the section, we evaluate the 
proposed method on SIDD+ validation dataset which 
provided by the organizers of NTIRE 2020 real image 
denoising challenge. 

4.3.1 Performance comparison 

We compare our proposed network with several state-of-
the-art image denoising solutions state-of-the-art image 
denoising solutions: DnCNN [8], RED [10], MemNet [11], 
ResUnet [38], MWCNN [24] and SGN [16]. Table 3 shows 
the denoising performance of different methods. For real 
world denoising task, DSWN is able to improve the PSNR 
from 26.63 to 36.94 and improve the SSIM by 0.2952. As 
shown in Figure 8, our proposed network successfully 
removes unspecified noise from noisy images. DSWN not 
only perform well under proper exposure, but also shows 
excellent performance in underexposed scenes. For some 
scenes with strong noise and many details (such as text on 
a globe), DSWN is able to denoise without losing the sharp 
edges of the text. 

Table 3: Denoising results on SIDD+ validation dataset. 

Method Noisy DnCNN [8] ResUnet [38] RED [10]  MWCNN [24] MemNet [11] SGN [16] DSWN 

PSNR (dB) 26.63 34.03 34.01 27.35 35.87 32.28 35.51 36.94 
SSIM 0.6622 0.9139 0.9192 0.7331 0.9407 0.8669 0.9411 0.9574 



 
 
 
 

 
 

 
Figure 9: Denoising results of the conventional methods and DSWN on SIDD+ validation dataset. 

Figure 9 shows example results of the compared methods 
and DSWN. The denoised result of DSWN is better than 
other methods, especially at the edges of the hat, hair and 
eyebrows. Owing to the real images denoising task is more 
difficult than AWGN task, some of the compared methods 
only slightly improved the performance. 

In this challenge, we average eight output images of eight 
input images; these are generated by a combination of a flip 
and rotation of an input image. Using such an ensemble 
strategy, the PSNR of our method is able to be further 
improved by 0.1. 

4.3.2 Ablation Study 

Table 4: Ablation study on two branches of DSWN on 
SIDD+ validation dataset. 

Method 
Residual 
branch 
only 

End2End 
branch 
only 

Two 
Residual 
branches 

DSWN 

PSNR 
(dB) 36.67 36.44 36.86 36.94 

SSIM 0.9515 0.9466 0.9533 0.9574 
At the full resolution level of DSWN, we adopt a double 

branch structure: a residual branch and an end2end branch. 
At first, we tried such a scheme as an ensemble strategy. 
However, we observe an interesting phenomenon: the 
residual branch tends to ignore the dark areas and the 
end2end branch tends to highlight the dark details. As a 
result, these two branches collaborate to generate output 
images with appropriate colors as shown in Figure 10. To 
prove the effectiveness of the double branch structure, we 
conduct additional experiments as shown in Table 4. We 

can see DSWN is able to achieve better PSNR and SSIM 
than using any branch only. If we replace the end2end 
branch by another residual branch, our DSWN is still better. 
This demonstrates that the improvement is not only from 
the increase of network parameters. In addition, the results 
from the same two residual branches are similar (Figure 11). 

 
Figure 10: Schematic diagram of double branch learning 

of at the full resolution level (DSWN). 

 
Figure 10: Schematic diagram of double branch learning 
of at the full resolution level (Two Residual branches). 



 
 
 
 

 
 

 In addition, our proposed the main structure of DSWN is 
inspired by SGN. The most obvious structural difference 
between the two is the incorporation of multi-scale 
information. DSWN adopt DWT and IDWT to replace 
PixelShuffle and PixelUnShuffle in SGN. Both of them are 
no loss of information. In Table 5, we show the ablation 
study of these two methods. The results suggest that 
wavelet transform is better than PixelShuffle strategy. This 
might be because the frequency domain is more suitable for 
denoising and wavelet transform is able to enlarge receptive 
field. 

Table 5: Ablation study on down / up sampling method 
of DSWN on SIDD+ validation dataset. 

Method PixelShuffle / 
PixelUnShuffle DWT/IDWT  

PSNR (dB) 36.59 36.94  
SSIM 0.9548 0.9571  

5. Conclusion 
In this paper, we proposed a densely self-guided wavelet 

network (DSWN) for image denoising. DSWN adopts a 
top-down manner to denoise images. Wavelet transform is 
adopted to generate input variations with different spatial 
resolutions before any convolutional operation. Then, we 
embed a DCR block into three low spatial resolution levels, 
respectively. At the full resolution level, we employ more 
DCR blocks and a double branch structure to further 
improve the quality of output images. The proposed DSWN 
was validated on AWGN task and real world image 
denoising benchmark and demonstrated excellent 
efficiency in NTIRE 2020 real image denoising challenge. 
DSWN is able to generate higher quality denoising results 
than the compared state-of-the-art methods. 
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