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Abstract

Convolutional neural networks have made a prominen-

t progress in low-level image restoration tasks. Moire is a

kind of high-frequency and irregular interference stripe that

appears on the photosensitive element of digital cameras

or scanners. It can bring in unpleasant colorful artifacts

on images. In this paper, we propose a deep wavelet net-

work with domain adaptation mechanism for single image

demoireing, dubbed AWUDN. The feature mapping is main-

ly performed in the wavelet domain, which can not only cut

down computation complexity, but also reduce information

loss. Moreover, considering that the images provided by the

challenge organizers have strong self-similarity, the glob-

al context block is adopted for the learning of feature de-

pendency in different positions. Finally, we introduce the

domain adaptation mechanism to fine-tune the pretrained

model for reducing the domain gap between training moire

dataset and testing moire dataset. Benefiting from these

improvements, the proposed method can achieve superior

accuracy on the public testing dataset in the NTIRE 2020

Single Image Demoireing Challenge.

1. Introduction

When photographing digital images, the scene is sam-

pled at discrete spatial locations. If the highest frequency of

the scene exceeds the sampling rate of the imaging system,

it could cause aliasing in frequency domain. Meanwhile,

the aliasing can generate sawtooth artifacts or moire stripes

on images. Actually, moire is a type of high-frequency and

irregular stripe appearing on the photosensitive element of

digital devices, which could lead into colorful artifacts on

images. In the NTIRE 2020 Single image Demoireing Chal-

lenge Track 1, for an input image the aim is to obtain a high-

quality image with the best fidelity towards the ground truth

moire-free image [18].
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Figure 1. The visual comparisons on the testing dataset. Left: the

moire image ”000019 3”; Right: our demoireing result

Low-level image restoration contains a large number of

tasks, such as image super-resolution, dehazing, deblurring,

denoising and so on. Most of these tasks have the corre-

sponding degradation models to synthetize training dataset-

s. However, moire stripes are irregular in shape. It is com-

plex to formalize the degradation process of a moire image.

Traditional methods for single image demoireing mainly

include images filtering and decomposition operations. [8]

proposes a sparse matrix factorization algorithm to remove

moire stripes on high-frequency textures. With the rise of

deep learning, it has made a great breakthrough for image

restoration both in objective indexes and subjective visual

effects with supervised training. For example, [19] propos-

es a multi-scale network for image demoireing.

In this paper, we propose a deep wavelet network with

domain adaptation for single image demoireing, dubbed

AWUDN. The whole network is an U-Net structure, where

the downsampling and upsampling of feature maps are re-

placed with discrete wavelet transform (DWT) and inverse

discrete wavelet transform (IDWT) for reducing computa-

tion complexity and information loss. Therefore, the fea-

ture mapping is performed in wavelet domain, where the

basic block adopts the residual-in-residual structure [20] for

extracting more residual information effectively. Consider-

ing that the dataset provided by the competition has strong

self-similarity, i.e., similar texture structure inside image

itself, the global context block is introduced in the fron-



t of network structure. It can help establish the relation-

ship between two distant pixels to better use the internal in-

formation of the image for restoring texture details. More-

over, there may exist slight domain difference between the

source domain training data and the target domain testing

data. It means that the distribution of moire images in the

training set and the moire images in the test set is incon-

sistent, which can constrain the performance improvement

of the model pretrained on the training dataset. CORAL

loss [12] gives us some inspiration, which defines the mea-

surement difference of the second-order statistics between

features in the source domain and the target domain. There-

fore, the pretrained model WUDN is fine-tuned using coral

loss for reducing the domain shift of training dataset and

testing dataset in the testing phase. Figure 1 shows the vi-

sual comparisons of the moire image and our demoireing

result on the test dataset, and it seems that our proposal can

remove the moire well.

To summarize, the main contributions are four-fold:

• A deep wavelet network with domain adaptation

mechanism, dubbed AWUDN, is proposed for single

image demoireing.

• The feature mapping is performed in wavelet domain,

where DWT and IDWT operations are used for feature

downsampling and upsampling, respectively. It can re-

duce computation complexity and information loss.

• Global context block is embedded in the front of net-

work for modeling self-similarity dependency. It can

help to mine the internal information of the image to

restore texture details.

• Domain adaptation is introduced to fine-tune the pre-

trained model for reducing the domain difference of

the training dataset and testing dataset.

2. Related work

Image restoration aims to recover a high-quality image

from its degraded counterpart. In general, there exists the

corresponding degradation model for most tasks, such as

image super-resolution, dehazing and so on. These physi-

cal models can be utilized as prior information during the

reconstruction process. Moire is a kind of irregular stripes,

which may appear in different regions. Therefore, it is d-

ifficult to formalize the degradation expression for a moire

image. Here, we focus on the works referred to traditional

demoireing methods and deep learning based methods.

2.1. Traditional demoireing methods

Traditional moire removal methods are generally based

on images filtering and decomposition. Nishioka et al. [9]

proposed that adding a low-pass filter to the camera can ef-

fectively remove moire. K.Pandya et al. [1] proposed a

method for removing moire in the frequency domain. Wei

et al. [15] proposed a median-Gaussian filtering method to

eliminate ripples in X-ray microscope images. Yang et al.

[17] proposed a novel textured image demoireing method

by signal decomposition and guided filtering. Liu et al. [8]

proposed a low-level sparse matrix factorization to remove

moire on high-frequency textures.

2.2. Deep learning based methods

With the prevalence of deep learning (DL), abundant al-

gorithms for low-level tasks have been proposed, such as

image super-resolution and image dehazing. At the same

time, deep convolutional neural network has also been ap-

plied to the problem of image demoireing. Sun et al. [13]

first introduced the demoireing problem on camera images

and proposed that the moire characteristics of camera im-

ages are muti-frequency. Moreover, they also proposed a

multi-scale network, which can achieve significant visual

effects. However, it fails on large-scale color patches. Sub-

sequently, Gao et al. [5] proposed a multi-scale feature en-

hancement network (MSFE), and applied feature enhance-

ment branch (FEB) with skip connections. Later, Cheng

et al. [3] also adopted a multi-scale strategy to introduce

the attention mechanism to the moire removal, and pro-

posed Channel attention Dynamic feature encoding Resid-

ual block (CDR) and Dynamic feature encoding (DFE).

However, this method has insufficient information interac-

tion ability between different scales. He et al. [6] proposed

a multi-scale network based on DenseNet, and added a RGB

channel level edge detector to solve the unbalanced intensi-

ty between color channels, which can achieve a remarkable

visual effect.

In summary, the traditional demoireing methods are

more interpretable, but the results are not satisfactory. Ex-

isting deep learning methods can achieve preferable perfor-

mance and fast inference speed, while limiting on the design

and improvement of multi-scale network structures.

3. Proposed Method

In this section, we first present the overall network ar-

chitecture. Then, the loss function is defined to optimize

the model. Next, we describe the adaptive fine-tuning and

optimization scheme. Finally, we discuss the differences

between the proposed network and its related works.

3.1. Network architecture

The proposed WUDN mainly includes three parts: the

shallow feature extraction module, the global context block,

the wavelet encoder-decoder module as shown in Figure 2.

Here, the input moire image and the output demoireing im-

age are denoted as X and Y , respectively.
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Figure 2. The overall network architecture of the proposed AWUDN

Firstly, discrete wavelet transform (DWT) is performed

to the input moire image X , which can turn the RGB image

into twelve-channel image Xdwt and reduce the image size

by half.

Xdwt = DWT (X). (1)

Then, the shallow features F0 are obtained by the shal-

low feature extraction module, in which a 3 × 3 convolu-

tional layer without activation is applied to the moire input

in wavelet domain, i.e., Xdwt.

F0 = G0(Xdwt), (2)

where G0(·) denotes the shallow filter operation.

Next, global context block is followed to capture the de-

pendence between long-distance pixels.

FGC = GGC(F0), (3)

where GGC represents the global context extraction func-

tion. FGC is the obtained features.

The wavelet encoder-decoder module is followed for re-

alizing deep feature mapping, which is an U-Net structure.

The basic block consists of several residual groups (RGs)

that are a residual-in-residual structure as proposed in [20].

The feature maps FGC go through several residual groups at

different scales sequentially. These scales are generated by

DWT downsampling. Then, the size of features FGC is re-

duced to one quarter, and feature upsampling is performed

by inverse discrete wavelet transform (IDWT). Meanwhile,

the feature maps with the same spacial size are element-

wise summed. Note that the convolutional layer after IDWT

is used to the alignment of channels.

XED = GED(FGC), (4)

where GED(·) indicates mapping function of the wavelet

encoder-decoder module, and XED represents the recon-

structed residual image.

Finally, the reconstructed residual image adds with the

input moire image for generating the moire-free image Y :

Y = XED +X. (5)

3.2. Global context block

After glancing over the image pairs provided by the chal-

lenge organizers, it can be found that the internal image it-

self has a great degree of self-similarity. Considering that

the convolution operation only covers local information of

an image, He et al. proposed the non-local module [14]

drawing on the non-local mean algorithm. It is used to cap-

ture the dependence between long-distance pixels, so that

the features at the query point position are calculated by

weighting and summing the features at all positions on the

input features. The non-local module can establish the re-

lationship between two distant pixels on an image, which

can be used to better use the internal information of the

image for texture details restoration. Cao et al. [2] ana-

lyzed the characteristics of the non-local module and found

that the features of the image patches obtained at different

query positions are the same. It means that the input region

has no relationship with the calculated features. Therefore,

they combined with the characteristics of the global context

framework, non-local module and SE block [7], and then

proposed the Global Context (GC) block as shown in Fig-

ure 3. The GC block can greatly simplify the calculation

complexity of the non-local module without decreasing the

performance.

GC block can be regarded as a global context content

modeling module, which forms the global context charac-

teristics of a specific query at each query position and cal-
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Figure 3. Global context block

culates channel attention for each query point. The com-

putation complexity is the second power of the number of

position points. The GC block is obtained by adding the at-

tention weight ωj of features, the conversion function Ψ(·),
and the global context features at each location. The fea-

tures of the query point zi can be denoted as

zi = xi+Ψ(

Np
∑

j=1

αjxj)Ψ(·) = Wv2

(

ReLU
(

LN
(

Wv1(.)
)

)

)

(6)

where ReLU is a nonlinear activation operation. LN refers

to Layer Normalization. xi is a query point. xj is another

point related to the query point. Wv1, Wv2, and Wk rep-

resent the weight values of the three convolutional opera-

tions, respectively.
∑

αjxj is the context modeling opera-

tion, which uses the weight average αj to group the features

of all positions together to obtain a global context feature.

For more details, please refer to [2].

3.3. Loss function

In learning-based image restoration methods, Mean Ab-

solute Error (MAE) and Mean Squared Error (MSE) on im-

age pixels space are frequently used. In this proposal, we

also adopt MAE loss for measuring the differences between

the demoireing images and the ground truth.

Meanwhile, inspired by [16], which introduces loss in
Fourier domain, we adopt another loss in the discrete co-
sine transform (DCT) domain. After an image signal is
transformed into the DCT domain, the main components
of the frequency coefficients are concentrated in a relative-
ly small range. The distribution of frequency coefficients
presents a zigzag arrangement. The upper left corner repre-
sents the DC component and the low frequency components
(i.e., profile) of the image information. While the values in
lower right corner are small, they mainly reflects the high
frequency (i.e., details) of the image. As shown in Figure

image 000001 3 from training set The dct map of 000001 3

image 000001 gt from training set The dct map of 000001 gt

Figure 4. The moire image and the corresponding moire-free im-

age with the respective dct map. Zoom in for best view

4, the moire images have less low-frequency components
but more high-frequency information than the moire-free
images. Considering the similarity in the frequency do-
main can be mutually reinforced with the spatial domain,
we combine the two loss functions as follows,

L = Lpix + λLdct (7)

Lpix =
1

N

N
∑

i=1

∥

∥x
gt
i −G(xm

i )
∥

∥

1
(8)

Ldct =
1

N

N
∑

i=1

∥

∥D(xgt
i )−D(G(xm

i ))
∥

∥

1
(9)

where x
gt
i , xm

i denote the ith ground truth sample and

moire sample. D(·) represents the discrete cosine trans-

form. N is the total number of training samples. We will

discuss the loss function in the Section 4.3.

3.4. Adaptive Fine­tuning

Considering that there may exist slight distribution dif-

ference between the moire images in the training dataset

and the moire images in the testing dataset, it would lim-

it the performance of the model pretrained on the training

dataset. Inspired by Deep CORAL [12], we introduce do-

main adaptation to fine-tune the pretrained model, dubbed

AWUDN, for reducing the domain shift of training dataset

and testing dataset in the testing phase. As shown in Figure

2, we add CORAL loss between the source domain features

and the target domain features to reduce their second-order



statistical characteristics. Note that the compared features

are extracted after the global context block.

The CORAL loss between a single feature layer in two

different domains can be denoted as follows. Assuming that

the source domain moire and moire-free training sample

pairs DS = (x, y), the target domain test moire samples

DT = u. Here, x and u are the same dimension. The ex-

pression of CORAL loss is shown as

LCoral =
‖CS − CT ‖

2

F

4d2
, (10)

where ‖·‖
2

F represents the square matrix Frobenius norm.

d is the number of feature channels. CS , CT are the feature

covariance matrixes of the source and target data, and can

be expressed as

CS =
1

nS − 1
(FT

S FS −
(1TFS)

T (1TFS)

nS

), (11)

CT =
1

nT − 1
(FT

T FT −
(1TFT )

T (1TFT )

nT

), (12)

where 1 represents the column vector whose elements are

all 1. FS and FT denote the features of the moire image in

the source domain and the moire image in the target domain.

The number of samples of source data and target data are

nS and nT , respectively. Therefore, we introduce CORAL

loss in network fine-tuning to map the features of the moire

images in the training set and the moire images in the testing

set to a common feature subspace for reducing the domain

differences between them.

Lft = L+ γLCoral, (13)

where L represents the loss defined in Section 3.3, and γ is

the weight parameter.

3.5. Optimization scheme

The whole optimization process is shown in Algorith-

m 1. We first optimize the network with paired dataset

by Eq. (7). Next, the pretrained model WUDN is loaded

for fine-tuning with paired training dataset and moire test

dataset without the ground truth. The paired samples in

the source domain and the moire samples in the target do-

main are passed through the global context block to obtain

features for the measurement of the second-order statistical

characteristics. The total optimization loss of the network

during fine-tuning is shown by Eq. (13).

3.6. Discussions

In this subsection, we mainly discuss the differences be-

tween the proposed method and its related methods.

Algorithm 1 Adaptive fine-tuning for single image

demoireing.

1: Input: Paired training samples DS in source domain,

only test moire samples DT , batch size m, total itera-

tion number T , the current iteration numberi

2: Load the pretrained model parameters of WUDN opti-

mized by the loss defined in Eq. (7).

3: while i <= T do

4: Sample paired data (xi, yi)
m

i=1
from DS and moire

data (xi)
m

i=1
from DT ;

5: Input xi, ui for extracting the features for optimiz-

ing CORAL loss;

6: Update AWUDN by minimizing the objective:

Lft = L+ λLCoral;

7: i← i+ 1;

8: end while

WUDN vs. RCAN. In WUDN, we also adopt the

residual-in-residual structure with channel attention pro-

posed in RCAN [20] as basic feature mapping block. For

further reducing computation complexity, we synthesize

DWT and IDWT for decreasing the size of feature maps

rather than the same spatial size in the network pipeline.

WUDN vs. U-Net. WUDN adopts the U-Net structure.

The difference lies in: DWT as a kind of downsampling way

in WUDN to reduce the size of feature maps instead of a

convolution with a stride of 2 in U-Net. Meanwhile, IDWT

is utilized for feature upsampling rather than sub-pixel con-

volution [11], deconvolution [4], or nearest-neighbor up-

sampling + convolution [10].

Besides, we also add the global context block consider-

ing the self-similarity characteristic of given moire images.

In addition, we fine-tune the pretrained model using coral

loss to compensate for the performance caused by the dif-

ference in the data domain.

4. Experiments

4.1. Datasets

The dataset provided by the NTIRE 2020 Single Image

Demoireing Challenge contains 11000 diverse image pairs

totally, where 10000 image pairs are used for training, 500
for validation, 500 for testing. However, the ground truth

for the validation dataset and the testing dataset has not been

released, so that we can only get online feedback from the

validation server. During training, we use 9950 image pairs

for training and the last 50 image pairs for validation. The

size of image pairs is all 128× 128.

4.2. Implementation details

During training, the whole 128×128 RGB images are as

input to WUDN. Random flipping and rotation are used to



augment the training data. Adam optimizer with β1 = 0.9,

β2 = 0.999 is utilized to optimize the proposed network.

The mini-batch size is set to 16. The initial learning rate is

set to 2e−4 and decreased to half per 200 epochs for a total

of 1000 epochs. The kernel size of all convolutional layers

is set to 3× 3 and the activation functions are all ReLU. We

use PyTorch to realize the network. The hardware configu-

ration is GTX Titan XP. We train the proposed method for

approximately 3 days.

In WUDN, the initial convolutional layer contains 32
kernels. After the second DWT, the kernels are changed

to 128, and then changed to 512 after the third DWT. The

residual groups in each nRG is set to 5 and residual blocks

are also set to 5. γ is set to 100.

Model performance is evaluated by objective index, i.e.,

peak signal-to-noise ratio (PSNR) as Eq. (14).

PSNR = 10log10(
(2n − 1)2

MSE
). (14)

4.3. Ablation analysis

In this subsection, we discuss the effects of wavelet do-

main U-Net, global context block, DCT loss function and

adaptive fine-tuning. The baseline is a U-Net structure with-

out global context block. Meanwhile, the convolution with

a stride of 2 is used for feature downsampling and sub-pixel

convolution is used for feature upsampling. Note that the

PSNR values are obtained by the online server.

Table 1. Ablation studies of the effects of wavelet domain U-Net,

Global context block (GC) in PSNR (dB) on the validation dataset.

Model U-Net WU-Net WU-Net + GC

PSNR 40.73 40.91 41.68

Wavelet domain U-Net (WU-Net). To validate the ef-

fect of feature mapping in wavelet domain, i.e., DWT and

IDWT operations for changing the size of feature maps,

we compare it with convolution with stride of 2 and sub-

pixel convolution upsampling. The DWT and IDWT oper-

ations are orthogonal transform, which can reduce informa-

tion loss. As shown in Table 1, the PNSR is improved from

40.73 dB to 40.91 dB.

Global context block (GC). To validate the effect of

global context block, we add it upon the wavelet domain

U-Net. As shown in Table 1, the PNSR is improved from

40.91 dB to 41.68 dB. It indicates that global context block

can help to mine the similarity of internal image and restore

more rich textures.

DCT loss. To fully employ the information of an image,

we introduce the loss in DCT domain. As shown in Figure

5, after adding the DCT loss with L1, the validation curve

is superior to only use L1 loss. The loss of image domain
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Figure 5. The convergence curves with L1 loss and DCT loss on

the last 50 image pairs of the given training dataset

is a global measure which is hard to restrict each pixel on

the image. The high-frequency details distribute differently

in the image and frequency domain. The loss of the DCT

domain can help further constrain the similarity of the high-

frequency detail. Note that the models in Table 1 are all

trained by L1 loss.

Fine-tuning. To reduce the domain difference, we fine-

tune the pretrained model WUDN with CORAL loss for 50

epochs. As shown in Table 2, the PSNR is increased from

41.85 dB to 41.94 dB. It shows that domain adaptation can

reduce the domain shift of the training dataset and testing

dataset and further improve performance.

Table 2. The quantitative comparisons between WUDN and

AWUDN in PSNR(dB) on the validation dataset

Model WUDN AWUDN

PSNR 41.85 41.94

4.4. Comparisons with the state­of­the­arts

In this section, we compare our proposal with the state-

of-the-art methods RCAN[20], which is a very deep residu-

al network for image super-resolution with the residual-in-

residual structure embedded with the channel-wise attention

mechanism. We retrain RCAN for image demoireing and

remove its upsampling module. The quantitative results are

shown in Table 3. AWUDN+ represents the results of using

self-ensemble strategy, which can further improve perfor-

mance as a post-processing methods. AWUDN can outper-

form RCAN by 0.23 dB. Moreover, AWUDN+ can achieve

the best performance for 42.22 dB. Although the number of

parameters of AWUDN is larger than RCAN, the amount of

calculation is smaller than that of RCAN.

The quantitative results on the last 50 image pairs in the

training dataset are shown in Figure 6, which can recover

moire-free image similar to the ground truth. Moreover, we



Table 3. The quantitative comparisons between RCAN and

AWUDN in PSNR(dB) on the validation dataset.

Model RCAN AWUDN AWUDN+

PSNR 41.71 41.94 42.22

Params(M) 15.29 144.33 144.33

GFlops 248.93 45.17 45.17

Input  WUDN  GT

Figure 6. Visual comparisons of our proposal on the last 50 images

of the training dataset. Zoom in for best view

also give several example on the validation dataset in Figure

7. The proposed method can obtain significant quantitative

and qualitative results.

4.5. Future work

In the proposed network, we perform feature mapping

mainly in wavelet domain. However, the information of dif-

ferent frequencies is treated equally. Considering moire is a

type of high-frequency and irregular interference stripe, the

information of different frequencies after discrete wavelet

transform should be treated differently. We will consider

improving it in future work.

5. Conclusions

In this paper, we propose a deep wavelet network with

domain adaptation for single image demoireing, named

AWUDN. The whole network is an U-Net structure, where

the downsampling and upsampling of features are replaced

with DWT and IDWT for reducing information loss and

computation complexity. The basic block of the proposed

method adopts residual-in-residual structure for extracting

more texture information. Besides, considering the self-

similarity inside the given moire image, we add the global

context block in the network structure for the learning of

000010 from validation dataset Ours

000032 from validation dataset Ours

000044 from validation dataset Ours

Figure 7. Visual comparisons of our proposal on validation dataset.

Zoom in for best view

dependence between long-distance pixels. Finally, we fine-

tune the pretrained model with domain adaptation mecha-

nism for reducing the domain shift of training dataset and

testing dataset in the testing phase.
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for moiré pattern noise removal from x-ray microscopy im-

age. Micron, 2012.

[16] Guang Yang. Dagan: deep de-aliasing generative adversari-

al networks for fast compressed sensing mri reconstruction.

IEEE Transactions on Medical Imaging, 2017.

[17] Jingyu Yang, Fanglei Liu, Huanjing Yue, Xiaomei Fu, Chun-

ping Hou, and Feng Wu. Textured image demoiréing via sig-
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