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Abstract

The emergence of deep learning methods that comple-

ment traditional model-based methods has helped achieve a

new state-of-the-art for image dehazing. Many recent meth-

ods design deep networks that either estimate the haze-free

image (J) directly or estimate physical parameters in the

haze model, i.e. ambient light (A) and transmission map (t)

followed by using the inverse of the haze model to estimate

the dehazed image. However, both kinds of methods fail

in dealing with non-homogeneous haze images where some

parts of the image are covered with denser haze and the

other parts with shallower haze. In this work, we develop

a novel neural network architecture that can take benefits

of the aforementioned two kinds of dehazed images simul-

taneously by estimating a new quantity — a spatially vary-

ing weight map (w). w can then be used to combine the

directly estimated J and the results obtained by the inverse

model. In our work, we utilize a shared DenseNet-based en-

coder, and four distinct DenseNet-based decoders that esti-

mate J , A, t, and w jointly. A channel attention structure is

added to facilitate the generation of distinct feature maps of

different decoders. Furthermore, we propose a novel dila-

tion inception module in the architecture to utilize the non-

local features to make up the missing information during the

learning process. Experiments performed on challenging

benchmark datasets of NTIRE’20 and NTIRE’18 demon-

strate that the proposed method –namely, AtJwD– can out-

perform many state-of-the-art alternatives in the sense of

quality metrics such as SSIM, especially in recovering im-

ages under non-homogeneous haze.

1. Introduction

Haze is a common atmospheric phenomenon caused by

the floating particles in the atmosphere which can scatter

or absorb lights. It dramatically degrades the visibility and

details of scenes in captured outdoor images. Consequently,

it also affects computer vision tasks that excessively depend

on captured images, such as classification and segmentation

[29]. Many methods have been proposed to reduce the neg-

ative impact from haze by utilizing a mathematical model

introduced by [33], which can be described by the equation:

I(x) = J(x)t(x) +A(1− t(x)) (1)

where I is the observed haze image, J is the true scene ra-

diance, A is the global atmospheric light indicating the in-

tensity of the ambient light, t is the transmission map and

x is the pixel location. Transmission map is the distance-

dependent factor that affects the fraction of light which is

able to reach the camera sensor. When the atmospheric light

A is homogeneous, the transmission map can be expressed

as t(x) = e−βd(x), where β represents the attenuation coef-

ficient of the atmosphere and d represents the scene depth.

Most existing single image dehazing methods attempt to re-

cover the clear image or scene radiance J based on the ob-

served hazy image I via estimation of the transmission map

t. In fact, the image dehazing task is essentially a process

of recovering J based on the observation of I, which would

inevitably lead to a heavily ill-posed problem according to

Eq. (1). It can be observed from Eq. (1) that there are mul-

tiple possibilities for the choice of the solution when given

a hazy image as the input. Having dense-haze in certain re-

gions of the image implies a significantly small value (close

to 0) for t and large value (close to 1) for A in those regions.

Existing dehazing work can be categorized into multi-

image and single image dehazing. The limited avail-

ability of the parameters describing the scene information

pushes early research to focus on multi-image dehazing

[36, 37, 12, 31, 44, 45]. However, it is often unrealistic

to capture many images of the same scene under different

weather/environmental conditions, besides the problem of

aligning multiple images with such limited scene informa-

tion. As a result, single image dehazing has gained popular-

ity recently where most work tries to reconstruct J through

I and the estimated parameters t and A [39, 38, 23, 28].

Deep learning techniques are well-known for their ex-

cellent performance in image inverse problems such as sin-

gle image super-resolution [47, 22], image deblurring [35],

and image inpainting [50]. For single image dehazing, deep

learning techniques also bring significant improvements in

performance. These techniques usually require many pairs

of hazy and haze-free images to either learn a mapping be-

tween them directly or to estimate t and/or A first then re-

construct the dehazed image utilizing Eq. (1).



For images with non-homogeneous haze, the haze level

may vary from one region to another. One great example

is the dataset used in NTIRE’20 dehazing challenge, which

has non-homogeneous haze with sharp changes in terms of

haze level from certain regions to others. Existing state-

of-the-art methods fail to provide good performance when

dealing with this dataset. In this paper, we propose a Non-

Local Channel Attention Estimation Network to tackle the

issues brought by non-homogeneity. The proposed network

has a U-net [43] like structure with DenseNet blocks [26]

embedded in it. The complete architecture consists of one

shared encoder, three bottlenecks and four decoders. The

encoder is used to extract representative features from the

hazy input and the bottlenecks help bifurcate the feature ex-

traction flow. Three decoders are used to obtain the esti-

mated values Â, t̂, Ĵdirect of A, t, and J, respectively. The

fourth decoder is designed to estimate w — a spatially vary-

ing weight map used to combine the dehazed result ĴAT re-

constructed by Â and t̂ and the directly estimated haze free

image Ĵdirect. It is observed that Ĵdirect has more satisfying

values in the dense haze regions where t is close to 0 and

A >> J – pixel-wise. Since, t̂ and Â will be close to ex-

treme values while the direct estimation process of Ĵdirect

can still recreate missing features consistently with the re-

maining available features. On contrary, in regions where

there are light haze, ĴAT performs better than Ĵdirect since

the accurate estimations of A and t can complement each

other hence preserve more sharp information in reconstruc-

tion. The channel attention structure is added to facilitate

the different decoders to extract different feature maps after

receiving the features learned through the shared encoder.

Furthermore, in order to better preserve the information

especially in the regions where the dense haze and light haze

are concatenated, we propose a novel dilation inception

module which successfully fill the gap regions in feature

maps. Customized regularized loss terms are constructed to

further enhance the parameter estimation. The experiments

on the challenging NTIRE’18 and NTIRE’20 datasets show

that the proposed method gives better results compared

with other state-of-the-art alternatives. In NTIRE’20 non-

homogeneous dehazing challenge[7], the proposed AtJwD

and AtJwD+ (see Section 5 for details) obtain highly com-

petitive dehazing results with AtJwD in particular achieving

the best performance in terms of LPIPS metric [16] and the

second best in terms of SSIM metric [24].

2. Related Work

Most deep learning based singe image dehazing methods

try to reconstruct the haze-free image Ĵ by using the inverse

function of Eq. (1) with estimated Â and t̂ through I. For

instance, Ren et al. [42] proposed a multi-scale deep neu-

ral network to estimate t̂ and Cai et al. [11] introduces an

end-to-end CNN network to estimate t̂ with a novel BReLU

unit. More recently, Guo et al. [21] have developed a net-

work to jointly estimate t̂ and Â. Li et al. [29] proposed an

all-in-one dehazing network to estimate t̂ and Â. Some au-

thors [18, 20] addressed the issue of color distortion in the

earlier CNN-based work by presenting a multi-stage CNN.

Liu et al. [32] developed a CNN based iterative algorithm

to iteratively find Â and t̂. Similarly, Li et al. [30] have

proposed a sophisticated model to gradually estimate the

parameters of the physical model starting from the easier

regions and going through the more difficult ones. Deng et

al. [15] used a multi-model fusion for dehazing. Chen et

al. [13] developed an adaptive-distillation based network to

selectively change regions with higher haze level. More-

over, a high resolution auto-encoder network for dehazing

has been proposed by Bianco et al. [9].

In addition to this, many people choose to use GAN [19]

based architectures to improve their results [53, 41, 17]. For

instance, Zhang et al. [53] proposed an end-to-end dehazing

method to combine the parameter estimation and dehazing

all together by utilizing a joint discriminator in GAN. Qu et

al. [41] have proposed an enhanced Pix2Pix network based

on GAN for dehazing, which can reinforce the dehazing ef-

fect in both color and details. Furthermore, Dudhane et al.

[17] uses a residual inception module in their GAN archi-

tecture to learn integrated features related to haze-removal.

3. Proposed Method

To overcome the challenge in non-homogeneous image

dehazing, we propose a specially designed deep network

that can make benefits of regions with different haze lev-

els. The proposed network treats distinct levels of haze dif-

ferently. It utilizes a U-Net like structure with pre-trained

dense blocks embedded in it. It has a shared encoder and

multiple decoders to estimate different parameter values.

3.1. Weighted ensemble estimation

As described in Section 1, Ĵdirect has better performance

than ĴAT in regions with dense haze and vice versa for re-

gions with shallow haze. As a result, our proposed network

is targeted to utilize the ensemble of both estimates in dif-

ferent regions. Hence, the proposed network is mainly com-

posed by the following building blocks: 1) One shared en-

coder, which is constructed based on densely connected net-

work [26], 2) Three bottleneck blocks used to bifurcate spe-

cific feature flows for decoders, 3) Four separate decoders

which have similar structures as the encoder. Skip connec-

tions are used between the encoder and the decoders as in

U-net. The complete network structure is shown in Fig. 1.

Encoder: The detailed structure of the shared encoder

is shown in Table 1. It consists of three pre-trained dense

blocks borrowed from DenseNet-121 [26] with transition

blocks in between. We obtained the pretrained network

parameters of these blocks from PyTorch framework [40].
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Figure 1: The proposed ‘AtJwD’ network architecture. All decoders are identical except for J-Decoder which has extra

layers for non-local features utilization (Dilation Inception–DI). A-, t- and w-decoders only use SE layers.

DenseNet-121 was originally proposed for classification

problem. We utilize the first three dense blocks from it

in order to extract representative features even with limited

training data. It is pretrained over ImageNet dataset [14]

which is a very big dataset designed for classification.

Bottleneck: The bottleneck structure is used to connect

the encoder and decoders. Its detailed structure is shown in

Table 3. Different bottleneck structures connect to different

decoders according to the characteristics of decoders. We

use a shared bottleneck between A- and t-decoders as they

contribute to the same estimation ĴAT, which reduces the

number of parameters in the network.

Decoders: the network architecture includes four de-

coders: A-, t-, J- and w-decoders to predict the estimated

values Â, t̂, Ĵdirect of A, t, and J, respectively and a spa-

tially varying weight map w used to give different weights

when combining the ensemble outputs of ĴAT and Ĵdirect.

The decoders share similar structures as the encoder but

have different intermediate structures from each other. In

A-, t- and w-decoders, Squeeze and Excitation (SE) layers

[25] are added at the middle of the structure. SE, detailed

in Table 4, is a channel attention module which enable the

three decoders to learn specific feature maps corresponding

to their own characteristics while at the same time enjoy-

ing the benefits of complement learning brought by sharing

the same encoder. For the J-decoder, we add a specially

designed structure — dilation inception module which we

will describe in detail in next section. Table 2 shows the

details of the decoders.

To make the benefits of both ĴAT and Ĵdirect, we first ob-

tain the values of ĴAT through the physical model using es-

timated Â and t̂ as below:

ĴAT(x) =
I(x)− Â(x)(1− t̂(x))

t̂(x) + ǫ
(2)

where I is the input hazy image. ǫ is a small value for nu-

merical stability to avoid division by zero and x is the pixel

location. Then we combine the output of J-decoder: Ĵdirect

and ĴAT using the estimate w from w-decoder as below:

Ĵtotal(x) = w(x) · Ĵdirect(x) + (1− w(x)) · ĴAT(x) (3)

We constrain the value of w between 0 and 1 by using a

Sigmoid activation layer at the end of w-decoder to prevent

blobs of saturation and burns caused by large values after

combination, in addition to training stabilization.

3.2. Dilation Inception Module

As mentioned in Section 3.1, we add a specially designed

Dilation Inception Module in the middle of J−decoder.

The main function of the proposed module is to take ad-

vantage of the non-local information nearby to complement



Table 1: Encoder Structure
Base Dense.1 Trans.1 Dense.2 Trans.2 Dense.3 Trans.3

Input input patch/image Base Dense.1 Trans.1 Dense.2 Trans.2 Dense.3

Structure

[

7× 7 conv.

3× 3 max-pool

] [

1× 1 conv.

3× 3 conv.

]

× 6

[

1× 1 conv.

2× 2 avg-pool

] [

1× 1 conv.

3× 3 conv.

]

× 12

[

1× 1 conv.

2× 2 avg-pool

] [

1× 1 conv.

3× 3 conv.

]

× 24

[

1× 1 conv.

2× 2 avg-pool

]

Output 64× 64× 64 64× 64× 256 32× 32× 128 32× 32× 512 16× 16× 256 16× 16× 1024 8× 8× 512

Table 2: Decoder Structure, C is the number of output channels which depends on the functionality of the decoder
Dense.5 Trans.5 Res.5 Dense.6 Trans.6 Res.6

Input [Res.4, Trans.2] Dense.5 Trans.5 [Trans.1, Res.5] Dense.6 Trans.6

Structure





SE/Dilation (R = 16)
batch norm

3× 3 conv.



× 7

[

1× 1 conv.

upsample 2

] [

3× 3 conv.

3× 3 conv.

]

× 2





SE/Dilation (R = 16)
batch norm

3× 3 conv.



× 7

[

1× 1 conv.

upsample 2

] [

3× 3 conv.

3× 3 conv.

]

× 2

Output 16× 16× 640 32× 32× 128 32× 32× 128 32× 32× 384 64× 64× 64 64× 64× 64

Dense.7 Trans.7 Res.7 Dense.8 Trans.8 Res.8

Input Res.6 Dense.7 Trans.7 Res.7 Dense.8 Trans.8

Structure

[

batch norm

3× 3 conv.

]

× 7

[

1× 1 conv.

upsample 2

] [

3× 3 conv.

3× 3 conv.

]

× 2

[

batch norm

3× 3 conv.

]

× 7

[

1× 1 conv.

upsample 2

] [

3× 3 conv.

3× 3 conv.

]

× 2

Output 64× 64× 128 128× 128× 32 128× 128× 32 128× 128× 64 256× 256× 16 256× 256× 16

Refine.9 Refine.10 Refine.11 Refine.12 Refine.13 Output.14

Input [Input, Res.8] Refine.9 Refine.9 Refine.9 Refine.9 [Refine.9.10.11.12.13]

Structure

[

SE/Dilation (R = 3)
3× 3 conv.

]





32× 32 avg-pool

1× 1 conv.

upsample









16× 16 avg-pool

1× 1 conv.

upsample









8× 8 avg-pool

1× 1 conv.

upsample









4× 4 avg-pool

1× 1 conv.

upsample



 3× 3 conv.

Output 256× 256× 20 256× 256× 1 256× 256× 1 256× 256× 1 256× 256× 1 256× 256× C

Table 3: Bottleneck Structure

Dense.4 Trans.4 Res.4

Input Trans.3 Dense.4 Trans.4

Structure

[

1× 1 conv.

3× 3 conv.

]

× 16

[

1× 1 conv.

upsample 2

] [

3× 3 conv.

3× 3 conv.

]

× 2

Output 8× 8× 768 16× 16× 128 16× 16× 128

the missing information in local regions during the learn-

ing process. Its explicit structure is shown in Fig. 1 (3). It

can be observed that the module is mainly constructed by

several layers with dilation convolution[51], which is de-

signed to increase receptive view (global view) of the net-

work exponentially with linear parameter accretion. In our

dilation inception module, first, the input features will pass

a structure consisting of a Batch Normalization layer and

a ReLU layer to normalize the input features and increase

the non-linearity of the module. Then, the output is fed to

N dilated convolution layers in parallel, each with a ker-

nel size = 3 × 3, a stride of 1 and different dilation values

from 1 to N . In our work, we set N = 3, since although

a larger value for N can increase the perceptual quality of

the whole image, it may unfortunately reduce the fidelity of

the local regions. This is caused by the fact that utilization

of non-local information will affect the utilization of local

information at the same time. Next, each output from the di-

lated convolution layers is multiplied by a trainable weight

and added to the input features. This guarantees that the

dilated layers will not have a negative impact to the input

during the learning process. As it only adds up features to

the input according to the corresponding multiplied weight.

Finally, we pass the new generated features through an SE

layer to re-calibrate feature channels according to their re-

spective importance. The details of the Dilation Inception

Module can be seen in Table 5.

3.3. Customized Loss Function

In addition to the network structure, we designed a cus-

tomized loss function L for the training process to obtain

satisfying results from each decoder:

L = Lrec + λpLp + λsLs + λALstd (4)

Lrec =‖Ĵtotal − J‖22

+ λc

(

‖Ĵdirect − J‖22 + ‖ĴAT − J‖22

) (5)

Lp = ‖G(Ĵtotal)−G(J)‖22 (6)

Ls = 1− SSIM(Ĵtotal,J) (7)

Lstd = σ2
A (8)

where Lrec is the reconstruction loss between the differ-

ent reconstructed dehazed images Ĵtotal, ĴAT, Ĵdirect and the

ground truth J, which ensures that each decoder is able to

generate its expected estimated parameters. Lp is the per-

ceptual loss obtained by pushing the outputs of feature ex-

traction layers of a pre-trained VGG16 [46, 53] (G is the

function representing the feature extraction module in the

VGG model) to be as similar as possible when using Ĵtotal

and J as the inputs. Ls is used to maximize the value of

SSIM, which is refereed as Multi-Scale Structure Similar-

ity (MS-SSIM)[49]. By maximizing the value of SSIM,

more detailed structural information of the input image can

be preserved during the learning process of different param-

eters. We also regularize A by minimizing its variance σ2
A

through Lstd to prevent generating extreme values through

out the image. λc, λp, λs and λA are hyper parameters used

to balance the contribution of each loss term.



Table 4: SE Layer with a reduction factor R

Pool Lin.0 Lin.1 Multiplication

Input X of shape h× w × C Pool Lin.0 [Lin.1, X]

Structure

[

Adaptive-Avg-Pool2D

Squeeze

] [

Linear (C,C/R)
ReLU

] [

Linear (C/R,C)
Sigmoid

] [

Broadcast of Lin.1 to X

Element-wise Multiplication

]

Output 1× C 1× C/R 1× C h× w × C

Table 5: Dilation Inception with N Layers and R Reduction, w.k are the trainable parameters for dilated convolution layers

Pre D.1 D.2 · · · D.N Post

Input X of shape h× w × C Pre Pre · · · Pre X +
∑N

k=1 w.k × D.k

Structure

[

batch norm

ReLU

]

3× 3 conv.

dilation = 1
3× 3 conv.

dilation = 2
· · ·

3× 3 conv.

dilation = N
SE(R)

Output h× w × C h× w × C h× w × C · · · h× w × C h× w × C

The details about how the layers in the network are con-

nected can either be inferred from the tables provided in this

paper or from the code made available online1.

4. Dataset, Training, and Test Procedure

4.1. Dataset

In training for non-homogeneous haze, we used the train-

ing set provided in NTIRE’20 competition[3]. The images

were collected by a professional camera including profes-

sional fog generators, so as to capture the same scene under

both conditions (with and without haze). The haze distribu-

tion of the training images are non-homogeneous, namely,

part of the regions in the images are covered with dense

haze and others are with light haze. Haze level changes

abruptly in some regions, which inhibits the accurate esti-

mation of dehazed images. The dataset consists of 45 pairs

of (non-homogeneous) hazy images and haze-free ground-

truths. It also includes 5 images for validation and another

5 for testing without any ground truth data. The statistical

experimental results shown in experiments section are ob-

tained by submitting the generated images to the rank board

provided by NTIRE’20 dehazing challenge organizers2.

To learn a network with more powerful generaliza-

tion ability, we randomly selected 10 images from the

NTIRE2018- and NTIRE2019-Dehaze datasets [1, 6], and

add them in training set with NTIRE’20 dehazing train-

ing set. The number of external training images are cho-

sen based on the consideration of importing more similar

structural information meanwhile avoiding learning exces-

sive specific information from the external training images.

During the training, patches of size 256× 256 are extracted

from the training images. The augmentations are used as

the combination of the following options: 1) horizontal flip,

rotation by 90° , 180° , and 270° ; 2) the images (whole im-

age, not patches) are resized to 256 × 256 and applied the

1https://drive.google.com/drive/folders/1qsLmB_

9HyqE7EhxRkhssNUeq9RVpuYXr?usp=sharing
2https://competitions.codalab.org/competitions/

22236#results

same augmentation strategies on these resized images and

included them for training.

4.2. Training

In order to better utilize the pre-trained DenseNet mod-

ules embedded in our network and avoid unstable results

in training a highly parameterized network. We adopted a

two-stage training strategy as described below:

Stage 1 - Freezing the Encoder: In the first stage we

freeze the parameters of the encoder and only allow the pa-

rameters of the three bottlenecks and the four decoders to be

updated with big learning rate. This can provide a reason-

able initialization for the parameters of the bottlenecks and

the decoders, since the fixed pre-trained parameters in the

encoder can ensure the bottlenecks and decoders to learn

some reasonable initialization values by passing through

representative features generated by the fixed-parameters

encoder. Furthermore, randomly initialized parameters in

bottlenecks and decoders can cause the over-learning of pa-

rameters in the encoder if not freezed, hence losing the ben-

efits brought by the pre-trained module.

Stage 2 - Unfreezing the Encoder: Starting from epoch

40, the parameters of the encoder are unfreezed, and the

whole network is trained together with a small learning rate.

Since at this moment, the parameters of the whole network

are in some good neighborhood of their optimum values.

Having a larger learning rate may diverge the values of the

parameters from that optimum point.

Adam optimizer [27] with initial learning rate of 1 ×
10−4 and 1 × 10−6 is used for training in stages 1 and 2

respectively. The learning rate is reduced to its 70% after

every 10 epochs. We set the values of λc, λp, λs and λA to

0.7, 0.5, 0.5 and 0.01 respectively by cross validation [34].

4.3. Optional Postprocessing

An optional post-processing procedure that we utilized is

the IRCNN [54] de-nosier with σ = 15 to further improve

the visual results. IRCNN method enjoys both the benefits

of model based techniques and learning based techniques

for image restoration applications. In our dehazing prob-



(a) Hazy-Input (b) ‘AtJw’ (c) ‘AtJwD’

Figure 2: Output of our network (b) without and (c) with

dilation for validation image examples from NTIRE’20

lem, we apply the pre-trained CNN de-noiser and incorpo-

rate it as a post processing unit for the preliminary output

obtained by our proposed framework. This is reported in the

main manuscript. Albeit, it is noteworthy that over the test

set, IRCNN did not have any significant effect. However,

during validation, we have noticed that it gave a consistent

marginal improvement by about 0.1 dB in PSNR. More dis-

cussion is provided in the experimental results section.

5. Experimental Results

In this section we present the experimental results of

our proposed AtJwD network. Both an ablation study

over different components of our network, outputs and loss

terms and comparisons w.r.t state-of-the-art methods are

presented. The evaluation metrics used to quantify the

performance are Peak Signal-to-Noise Ratio (PSNR) and

Structural Similarity Index (SSIM) [48].

5.1. Ablation Study

Effects of Dilation Inception and Color Channel Atten-

tion module: We denote the model by reducing dilation

inception modules to SE layers by ‘AtJw’. In other words,

‘AtJw’ has the same network structure as ‘AtJwD’ with four

identical decoders that only have SE layers. We also de-

note the same network structure without SE layer as ‘AtJw-

’. In Table 6, we show a performance comparison between

the three models. We also show in Fig. 2 two zoomed-in

patches from NTIRE’20 validation set and the results of

‘AtJw’ and ‘AtJwD’. It is clear that ‘AtJwD’ performs sig-

nificantly better both in statistics and visualisation due to its

rich utilization of non-local features and adaption of chan-

nel attention modules. Through experimentation, we have

also noticed that increasing N (the number of dilated con-

volution layers) increases the perceptual quality but it may

negatively impact fidelity depending on the haze level.

Table 6: Ablation study for SE and Dilation Inception over

the validation set provided in NTIRE’20.

AtJw- AtJw AtJwD

PSNR (dB) ↑ 19.12 19.23 19.38

SSIM ↑ 0.63 0.65 0.65

Effects of fusing Ĵdirect and ĴAT: Table 7 shows how merg-

ing the two resultant images through the physical model ĴAT

and the direct decoder Ĵdirect boosts the numerical results

significantly. This is predictable since the physical model

estimation performs well in shallow hazy regions, and the

direct estimation performs better in the dense hazy regions.

The generated value of w (the weight map), that is used to

merge the two generated images, confirms this conclusion.

Table 7: ‘AtJwD’ vs. ‘J’-only or ‘At’-only

PSNR SSIM Time/Epoch

AtJwD

Ĵdirect 18.34 0.58
30 minutesĴAT 18.83 0.59

Ĵtotal 19.38 0.65
J-only 18.29 0.58 15 minutes

At-only 18.51 0.59 20 minutes

Comparison between ‘AtJwD’, ‘J’-only and ‘At’-only

Table 7 also provides a comparison between outputs from

AtJwD and two other separate estimation networks. The

first one has one encoder and one decoder to generate Ĵdirect

directly and the other one has one encoder and two decoders

to generate J through estimating A and t. It is clear that

having a shared encoder gives better results since the esti-

mation of different parameters can provide complementary

information to each other during the training process. In

addition to that, according to the results shown in Table 7,

we can infer that estimating J and ĴAT separately will con-

sume much more training time not to mention that also need

another network to estimate w.

Effects of different loss terms: We also show the effect of

removing different loss terms from the total loss in Eq. (4)

in Table 8. It is clear that the total customized loss increases

the performance. The perceptual loss and SSIM losses have

a noticeable effect on the SSIM results while the STD loss

has some effect over the PSNR results.

Table 8: Ablation study over different loss terms

Lrec X X X X

Lp X X X

Ls X X

LSTD X

PSNR 19.03 19.20 19.31 19.38
SSIM 0.60 0.61 0.65 0.65

5.2. Comparison with Stateoftheart Methods

This section illustrates the comparisons between our pro-

posed methods with the state-of-the-art methods on real-

world benchmark data sets I-HAZE, and O-HAZE [4, 5].

Although AtJwD has similar performance over NTIRE’19

[2], we do not show it due to limitations in paper size.

State-of-the-art Methods The state-of-the-art methods in-

cluded in the comparisons are: TIP’15 [56], ECCV’16 [42],

TIP’16 [11], CVPR’16 [8], ICCV’17 [29], CVPR’18 [52],

CVPRW’18 [53] and CVPRW’19 [21].

Evaluation Datasets The comparisons are conducted on

the I-HAZE (indoor) and O-HAZE (outdoor) validation

datasets [4, 5]. Each of the dataset contains 5 pairs of



TIP15 ECCV16 TIP16 CVPR16 ICCV17 CVPR18 CVPRW18 CVPRW19HZ AtJwD GT

Figure 3: The visual results of NTIRE2018-outdoor validation dataset.

TIP15 ECCV16 TIP16 CVPR16 ICCV17 CVPR18 CVPRW18 CVPRW19HZ AtJwD GT

Figure 4: The visual results of NTIRE2018-indoor validation dataset.

TIP15 ECCV16 TIP16 CVPR16 ICCV17 CVPR18 CVPRW18 CVPRW19HZ AtJwD

Figure 5: The visual results of NTIRE2020 validation dataset.

haze and haze-free image pairs. Detailed acquisition meth-

ods of these real-world hazy image pairs are discussed in

[4, 5]. Figs. 3 and 4 show the experimental results of the

state-of-the-art methods compared with AtJwD conducted

on NTIRE2018 indoor and outdoor validation datasets. It

can be found that AtJwD generates much more visually

pleasing results. As shown in Tables 9 and 10, AtJwD out-

performs other state-of-the-art methods when evaluated on

PSNR and SSIM. AtJwD+ refers to the output after apply-

ing the post-processing processing step discussed in Sec-

tion 4.3. The post processing had a small but stable im-

provement in the PSNR values but had no effect over the

SSIM values.



Table 9: The PSNR/SSIM of different methods over NTIRE2018-outdoor validation dataset.

method 36.png 37.png 38.png 39.png 40.png avg.

TIP15 [56] 17.4660/0.4976 16.1686/0.4533 15.1391/0.1796 14.7964/0.4131 16.3732/0.5683 15.9887/0.4224

TIP16 [42] 16.5891/0.4862 15.7593/0.4334 13.2500/0.1890 12.7816/0.3935 16.5339/0.5597 14.9828/0.4123

CVPR16 [11] 16.9236/0.4267 14.9854/0.4776 15.5448/0.3390 17.6496/0.4751 17.0424/0.5350 16.4292/0.4507

ICCV17 [29] 17.0951/0.4516 16.4676/0.3886 16.1153/0.1194 15.0439/0.3388 15.9477/0.5043 16.1339/0.3606

CVPR18 [52] 17.1374/0.4385 15.2847/0.4173 14.6555/0.1143 15.2353/0.3530 17.7805/0.5198 16.0187/0.3686

CVPRW18 [53] 24.6703/0.7288 22.4079/0.6551 23.7469/0.7199 21.9055/0.6296 22.2878/0.6822 23.0037/0.6831

CVPRW19 [21] 27.0772/0.8154 24.0295/0.7513 23.9662/0.7991 22.5974/0.7555 24.4090/0.8025 24.4159/0.7847

AtJwD 27.2630/0.8309 24.3895/0.7655 24.0893/0.8146 22.8518/0.7338 24.6910/0.8507 24.65692/0.7991

AtJwD+ 27.3800/0.8309 24.3991/0.7709 24.1082/0.8209 22.8537/0.7420 24.6981/0.8507 24.65692/0.7991

Table 10: The PSNR/SSIM of different methods over NTIRE2018-indoor validation dataset.

method 26.png 27.png 28.png 29.png 30.png avg.

TIP15 [56] 13.1816/0.6581 16.6858/0.3952 11.5135/0.5590 17.1496/0.7803 15.7567/0.3215 14.8574/0.5428

TIP16 [42] 10.1699/0.5498 14.5147/0.3094 13.3890/0.6349 11.9041/0.5369 15.5312/0.3412 13.1018/0.4744

CVPR16 [11] 12.4147/0.4800 14.7990/0.3639 13.2925/0.5489 14.6639/0.5296 13.9293/0.4057 13.8199/0.4656

ICCV17 [29] 10.8313/0.6185 16.8387/0.3943 12.7391/0.4692 15.3688/0.8054 17.2741/0.3095 14.6104/0.5194

CVPR18 [52] 15.3106/0.6283 16.0856/0.3512 9.8470/0.5540 22.2085/0.8013 15.4517/0.1977 15.7807/0.5065

CVPRW18 [53] 14.2680/0.6778 20.8952/0.7533 18.4479/0.6983 20.5845/0.8154 16.4299/0.5445 18.1251/0.6978

CVPRW19 [21] 20.5938/0.8760 22.9991/0.8490 19.9912/0.8313 22.9211/0.9001 18.5186/0.8056 21.0048/0.8524

AtJwD 22.8168/0.9016 23.1603/0.8590 20.2137/0.8511 23.6192/0.9208 20.5301/0.8458 22.0680/0.8756

AtJwD+ 22.8503/0.9018 23.1960/0.8598 20.3737/0.8622 23.6214/0.9220 20.6101/0.8458 22.1303/0.8783

Table 11: The PSNR/SSIM of different methods over

NTIRE2020 validation dataset.

method avg. over 5 images

TIP15 [56] 14.59/0.55

TIP16 [42] 15.94/0.57

CVPR16 [11] 16.13/0.60

ICCV17 [29] 17.97/0.62

CVPR18 [52] 17.90/0.63

CVPRW18 [53] 18.23/0.62

CVPRW19 [21] 18.45/0.64

AtJwD 19.38/0.65

AtJwD+ 19.39/0.65

Table 12: Comparison between our network with the dila-

tion inception module (AtJwD) and without (AtJw) against

some other methods participating in the competition over

the test set provided in NTIRE’20.

method 1 method 2 AtJw AtJwD

PSNR (dB) ↑ 19.70 19.22 19.92 20.10

SSIM ↑ 0.68 0.66 0.68 0.69

LPIPS[55] ↓ 0.301 0.266 0.269 0.265

PI[10] ↓ 2.985 3.267 2.888 2.883

5.3. NTIRE2020 Dehazing Challenge

The haze presented in images from the NTIRE2020-

Dehaze dataset is non-homogeneous compared to images

in the previous literature. As shown in Fig. 5, the state-of-

the-art methods’ performances drop largely when applied to

the dataset due to the reason that non-homogeneity makes it

difficult to have a good estimate of the physical parameters

or to directly estimate the dehazed image each on its own

as most of the state-of-the-art methods do. Since AtJwD

can estimate both accurately from the non-homogeneous

haze image, the dehazed images generated by AtJwD are

much more visually pleasing. We evaluate the quantitative

performances of the methods on the NTIRE2020 valida-

tion set through the competition server [7]. As shown in

Table 11, AtJwD outperforms all the other state-of-the-art

methods. Table 12 includes a comparison between AtJwD,

AtJw and some other top methods from the contest. It

is found that AtJwD/AtJw are among the top performing

methods. Specifically, they outperform all other methods

in terms of perceptual quality metrics (AtJwD ranked first

in terms of LPIPS metric and second in terms of SSIM).

We noticed over the testset, the post processing step didn’t

have any effect on the PSNR nor SSIM values. In fact, it

negatively impacted perceptual metrics (LPIPS and PI).

6. Conclusion

We focus on developing deep learning architecture that es-

timates physical parameters in the haze model. Our AtJwD

network, uses a shared DenseNet encoder and four dis-

tinct decoders to jointly estimate the scene information

viz. A and t., the haze-free scene directly and the fus-

ing weight between them. We use a channel attention

scheme to generate different feature maps and a novel Di-

lation Inception module at the direct decoder to generate

missing features at densely-hazed regions using non-local

features. Experiments performed on challenging bench-

mark image datasets of NTIRE’20 and NTIRE’18 demon-

strate that AtJwD can outperform state-of-the-art alterna-

tives. Notably, in NTIRE’20 results where the haze is non-

homogeneous, AtJwD outperforms the competing methods.
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