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Abstract

Many image editing techniques make processing deci-

sions based on measures of similarity between pairs of pix-

els. Traditionally, pixel similarity is measured using a sim-

ple L2 distance on RGB or luminance values. In this work,

we explore a richer notion of similarity based on feature

embeddings learned by convolutional neural networks. We

propose to measure pixel similarity by combining distance

in a semantically-meaningful feature embedding with tradi-

tional color difference. Using semantic features from the

penultimate layer of an off-the-shelf semantic segmenta-

tion model, we evaluate our distance measure in two im-

age editing applications. A user study shows that incor-

porating semantic distances into content-aware resizing via

seam carving [2] produces improved results. Off-the-shelf

semantic features are found to have mixed effectiveness in

content-based range masking, suggesting that training bet-

ter general-purpose pixel embeddings presents a promising

future direction for creating semantically-meaningful fea-

ture spaces that can be used in a variety of applications.

1. Introduction

Following on rapid advances in image recognition [21],

the applicability of deep convolutional neural networks has

broadened to encompass a diverse range of tasks in com-

puter vision and image processing. One reason for this

wide-ranging success is the versatility of the features ex-

tracted by image classification networks. CNN architec-

tures originally developed for image classification have

been shown to produce useful image-level feature embed-

dings with applications in image retrieval [22], fine-grained

recognition [8], and visual product search [3]. Meanwhile,

CNN architectures have also been rapidly generalized to

make dense predictions, for example semantic segmenta-

tion and instance segmentation [28].

In this paper, we begin to investigate the question of
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Figure 1: An input image (a) is resized to 80% of its origi-

nal width by seam carving using the standard RGB energy

map (b) and the proposed RGB/semantic combined energy

map (c). The legs and overall shape of the statue are pre-

served due to the sharp difference between the statue and

the background in semantic feature space.

whether semantic feature embeddings at the per-pixel level

can be similarly generalized from semantic prediction tasks

to become useful for other applications. Where image re-

trieval was a natural showcase for semantically-meaningful

image level features, we investigate image editing tasks as

a testbed for semantic pixel features.

Our key observation is that at the core of many image

editing techniques is a measure of similarity between pix-

els. Many algorithms rely on image gradients, smoothness

terms, nonlocal methods, and many other notions that boil

down to measures of similarity or difference between pix-

els or patches. We aim to enrich these comparisons using

semantic information from CNN models. Specifically, we

use semantic pixel features from the second-to-last layer of

an off-the-shelf semantic segmentation model to augment

the notion of pixel similarity that lies at the core of sev-

eral image editing applications. In this work, we try out

semantically-augmented pixel distance metrics in two im-
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age editing applications: seam carving [2] and range mask-

ing. We find that off-the-shelf pixel features make notice-

able improvements in seam carving results, while masking

results are mixed. Figure 1 shows the effect of incorporating

semantics into the seam carving application.

2. Related Work

Various prior works have begun to examine more fine-

grained properties and applications of the image features

learned by image recognition models. In particular, fea-

ture maps from multiple layers of image recognition net-

works capture meaningful notions of perceptual similarity

[26] and image style [12]. These properties have been used

to generate and compare images via network inversion [12]

and via loss functions for feed-forward image generation

models [15, 10]. Our work aims to leverage this same fea-

ture richness in image editing applications, but on an in-

dividual pixel level by using features from pixelwise pre-

diction models (i.e., from the “decoder” of a semantic seg-

mentation network), rather than using only features from

the “encoder” recognition network.

Although per-pixel embeddings have been leveraged for

traditional image and video segmentation as well as se-

mantic segmentation [16, 13, 6, 18, 14], the utility of fea-

tures beyond direct semantic applications remains less ex-

plored. In the image editing domain, Yang [24] used

learned edge detectors to modulate the edge confidence in

edge-preserving filtering, reasoning that edge confidences

are learned from semantically-informed human judgments.

Other specialized learning-based approaches have been

used for editing specific image content such as faces and

hair [19] or illumination estimation for object insertion [11].

Yan et al. [23] addressed exemplar-based image retouch-

ing with deep neural networks, but their approach does not

leverage semantics from pre-trained convolutional models,

opting instead to use a non-convolutional network to regress

parameters of a task-specific color transformation model.

In contrast to these special-purpose techniques, we take

a more generic approach: we use semantic feature em-

beddings alongside traditional color-based pixel distance

metrics to capture a notion of pixel similarity that can be

used in a wide range of applications. Recent progress has

been rapid on image editing tasks where good benchmark

datasets are available, such as super-resolution [17], de-

noising [25], and image retouching [5]. We focus our ef-

forts on two other editing tasks that seem less amenable

to learning-based approaches and have not seen as much

progress: content-based image resizing using seam carving,

and parametric range masking.

Prior work on content-based image resizing removes

connected seams of pixels chosen using a gradient-based

energy map [2]; Dong et al. [9] augmented this approach us-

ing image-level similarity measures. Rubinstein et al. [20]

generalized seam carving to video and introduced “forward

energy” to account for changes in the energy map upon re-

moval of seams. The failure modes of these approaches

tend to be where the low-level energy map does not fully

capture the perceptual effects of removing a seam; this of-

ten occurs when semantic edges do not coincide with image

edges. Our work aims to mitigate these failure cases by

using a richer energy map that incorporates semantic infor-

mation in addition to low-level color gradients.

Image editing programs such as Lightroom [1] and dark-

table [7] provide users with the ability to generate range

masks (or parametric masks), including pixels in a mask

based on color or luminance similarity to a selected pixel.

Although we are unaware of any papers describing this sim-

ple technique, we extend the approach to use semantically-

augmented similarity as a criterion for inclusion in a mask

instead of only luminance or color.

3. Method

We propose to use pixel feature embedding vectors in ad-

dition to color values to compute distances between pixels

in image editing applications. In this section, we describe

how this general approach can be applied in two image

editing applications: Seam Carving and parametric mask-

ing for image editing. The key idea in both applications

is to augment a traditional pixel distance metric (i.e., RGB

Euclidean distance or difference in the luminance chan-

nel) with a distance in semantic feature embedding space

to incorporate a higher-level notion of similarity into low-

level image editing tasks. Thus far we have focused only

on using an off-the-shelf pretrained semantic segmentation

model to extract per-pixel embedding feature vectors, leav-

ing the training of purpose-built pixel embeddings for future

work.

3.1. Semantic Seam Carving

The seam carving method proposed by Avidan et al. [2]

removes “seams”—connected strings of pixels, one from

each row or one from each column—in order to change the

aspect ratio of the image without simply cropping or scal-

ing the image. Their method aims to minimize disruption

to the image content by choosing seams with minimal en-

ergy, according to an energy map calculated based on image

gradients. Formally, the energy of a pixel is the sum of the

horizontal and vertical image gradient norms

ergb(I) = ‖
∂

∂x
I‖+ ‖

∂

∂y
I‖, (1)

where I is the image to be retargeted and ‖ · ‖ is a chosen

norm (we used the L1 norm in our experiments). A dynamic

programming algorithm is used to find the lowest-energy

seam for removal, where the energy of a seam is the total

energy at all pixels in the seam.



(a) Original Image (b) ecombined

(c) Resized using ergb (d) Resized using ecombined

Figure 2: An example input with its semantic label map,

resized to 80% width using ergb and ecombined. Notice that

in the ergb result, pixels are removed from the flower in-

stead of from the foliage in the left side of the image. When

semantics are considered, the foreground subject is better-

preserved in the resized image.

The intuition is that seams crossing strong image edges

are most likely to be noticeable when removed, so seams

with least energy should be removed first. We extend this

intuition to semantics: seams that cross boundaries in se-

mantic category are more likely to be noticeable as well. A

naı̈ve approach might use the semantic label map from a se-

mantic segmentation network (e.g., [28]), assigning a high

cost to seams that cross changes in semantic label. How-

ever, the label maps are often not pixel-accurate at object

boundaries, resulting in artifacts when seam carving. This

approach is also limited to semantic categories that are pre-

(a) Original Image (b) ecombined

(c) Resized using ergb (d) Resized using esemantic

(e) Resized using ecombined

Figure 3: An example input with its semantic label map,

resized to 80% width using ergb, esemantic, and ecombined.

The image resized with ergb is unaware of the semantic sig-

nificance of the edges between background and foreground,

so the dog’s shapes is not preserved well. The image re-

sized using esemantic displays a more noticeable artifact in

the continuity of the crack in the wall, because the color dif-

ferences are less heavily weighted. The combined energy

map achieves a balance between the two.

dicted by the network.

To incorporate semantics in a more flexible way, we pro-

pose to use semantic feature embedding vectors in place of

RGB vectors. Given a semantic feature map S, where each

pixel is a d-channel semantic feature vector, the semantic

energy map is

esemantic(S) = ‖
∂

∂x
S‖+ ‖

∂

∂y
S‖. (2)

Because the goal of seam carving is to minimize visual

impact, we found that using only semantics gave poor re-

sults in some examples, especially where an object or back-

ground with uniform semantics exhibits distinctive structure

or texture (e.g., Figure 3). We found that the best results



(a) RGB Image (b) ergb (λ = 0.0)

(c) esemantic (λ = 1.0) (d) ecombined (λ = 0.2)

Figure 4: An input image and three example energy maps.

were achieved using a weighted combination of the two en-

ergy maps:

ecombined(S, I) = λesemantic(S) + (1− λ)ergb(I) (3)

Figure 4 shows an example input image and three energy

maps produced with λ = 0.0, 1.0, and 0.2. All results for

ecombined in this paper are produced using λ = 0.2, which

we found to maintain sharp details present in RGB while

considering important semantic boundaries that may be less

prominent in RGB.

With our combined energy map, we proceed with the

seam carving algorithm as presented in [2]. We also make

use of the “forward energy” approach proposed by Rubin-

stein et al. [20] to take into account changes in the energy

after removal of a seam. We use forward energy in all our

experiments.

3.2. Semantic Range Masking

Another use case for semantic pixel feature embeddings

is an image editing technique known by various names in-

cluding Luminosity masking, range masking (in Lightroom

[1]) and parametric masking (in Darktable [7]). The ba-

sic idea of all of these techniques is to create a mask or

selection containing all pixels within a user-specified dis-

tance of a given pixel or value. For example, a luminosity

(or luminance) mask might allow the user to choose a pixel

and create a selection of pixels whose luminance is less than

0.25 different; given such a mask, editing operations such as

exposure adjustment or contrast enhancement can be selec-

tively applied to different regions of the image. For exam-

ple, Darktable allows a user to create masked adjustments

based on luminance or any color channel in various color

spaces [7].

As in seam carving, the most obvious approach to us-

ing semantics for masking is to directly use the label map

to segment the image, but inaccuracy around edges makes

(a) Image with pixel selected (b) Semantic distance

(c) Luminance distance (d) Semantic-only mask

(e) Luminance-only mask (f) Combined range mask

Figure 5: An overview of our range masking approach. All

pixels are compared to the selected pixel (a) in semantic fea-

ture space (b) and luminance space (c). Range masks result

from thresholded distances in semantics (d), luminance (e),

and a weighted combination of the two (f).

semantic segmentation outputs ill-suited for photo editing

purposes. Instead, our approach is to again use semantic

feature embeddings to enrich the notion of pixel similarity

when computing range masks to make selections that are

more semantically coherent. Figure 5(a–c) shows an input

image with a pixel selected and the distance of each other

pixel to the selected pixel in luminance (b) and semantic

feature space (c).

As in the seam carving application, we found that the

most effective approach was a distance metric based on a

weighted combination of the traditional distance (in our ex-

periments, we used luminance) and semantic feature em-

bedding distance (illustrated in Fig. 5(f)). Because differ-

ent images have different characteristics, we found it most

useful to provide the user with control over the trade-off be-

tween luminance and semantic distance.

The user provides an input image I and selects a pixel

index x to base the mask on. Sliders allow the user to

choose the weight λ between luminance and semantics, and

a threshold τ on distance. We start by computing a lumi-

nance map L and a semantic feature map S. Then, the pixel

at index p is included in the mask if the following condition



Figure 6: Our prototype user interface for range masking.

The sliders control the τ and λ parameters in Equation 4.

is satisfied:

λ‖S(p)− S(x)‖+ (1− λ)‖L(p)− L(x)‖ < τ (4)

We built a prototype user interface, shown in Figure 6,

that allows the user to select a pixel by clicking a point,

choose a weight between luminance distance and semantic

distance, and choose a threshold on the distance to be in-

cluded in the mask.

3.3. Implementation Details

We extract semantic embeddings from a publicly avail-

able pre-trained semantic segmentation model [28]. We use

the ResNet101dilated encoder and a PPM DeepSup

decoder trained on the ADE20k dataset[27]. We find that

models trained on ADE20K work better than those trained

on Pascal VOC, likely because ADE20K has more classes

and therefore a richer semantic representation of a wide va-

riety of objects and scenes.

We extract features from the second-to-last layer, yield-

ing a (height × width × 512) feature map. For efficiency,

we used random projection [4] to reduce the dimensional-

ity of the feature vectors from 512 to 128 in the case of

the masking application. We found that for the interactive

masking application where distances must be recomputed

with each movement of the slider, efficiency gains make for

a substantially better user experience, while the quality of

the results was only barely affected.

4. Results and Discussion

Evaluating image editing tasks like retargeting and range

masking is challenging since the notion of ground truth is

often subjective. We found that incorporating semantic fea-

ture distances into seam carving resulted in results that were

Input image RGB energy Combined energy

Figure 7: Example seam carving results. The combined en-

ergy map does a better job of preserving semantically sig-

nificant objects in the scene.

often better and rarely worse than the baseline RGB ap-

proach. The range masking results were less compelling

relative to the baseline, performing better on some images

and worse on others. We believe that lower-dimensional

feature embeddings trained on a proxy task have the poten-

tial to improve results in a wider variety of applications.

4.1. Semantic Carving

Figures 1 and 7 show a few qualitative results from our

seam carving experiments. In each case, the energy map

using combined RGB and semantic feature distances results

in an output that shows a less-distorted representation of

the subject of the image. This results from the energy map

placing a higher cost on semantically-meaningful edges in

the image and discouraging seams that cross those edges,

such as the edge between the ground and the child’s arm in

Fig. 7, or between the trees and the statue’s leg in Fig. 1.

To evaluate our method quantitatively, we performed a

small user study to determine whether humans prefer im-

ages resized using the proposed semantic seam carving ap-

proach or the traditional RGB energy map. We chose 20 im-

ages at random from the photography-oriented MIT-Adobe

FiveK dataset[5] and ran both the proposed semantic carv-

ing method and the traditional seam carving method on each

image to resize it to 80% of its original width.

Each of 10 participants was shown the labeled original

image; the two resized images were displayed in a random

order. Tasked with selecting the image that best represented

the original image, participants were given the option to se-

lect a preferred output, select both if they were equally good

representations, or select neither if both results were poor

representations of the original. Overall, the results produced

with semantic carving received 145 votes, while RGB seam



Figure 8: Results on each of the 20 images in our user

study. Semantic indicates votes for the result using the

combined semantic/RGB energy map; both indicates both

images were considered acceptable; neither indicates that

neither image was acceptable, and seam indicates that the

RGB-only energy map was preferred.

carving results received 69 votes. The vote breakdown for

each individual image is shown in Figure 8.

4.2. Semantic Masking

We found that incorporating semantic features into range

masking was helpful in some images, but detrimental in oth-

ers. Figure 9 shows two example images with a pixel se-

lected and example masks generated using luminance only

and our combined distance. In the arch image (left column),

the combined distance does a slightly better job of omitting

bright pixels that are not part of the sky, though some pix-

els on a person’s white shirt remain unmasked. The image

of a boardwalk (right column) is similar: more of the non-

sky pixels on the walkway are included with the sky when

semantic features are included in the distance.

Landscape images with stark semantic contrasts tended

to show more improvement than than images with clear sub-

jects, even when the subjects were distinct semantic objects

against a background. Even in images like the mountain

from Fig. 5, the semantic features did not seem to cap-

ture the important and (from a human perspective) obvious

semantic differences. This is likely due to a combination

of several factors. The off-the-shelf semantic feature space

used is trained for classification accuracy on a fixed set of

categories; the distances in the resulting embedding space

may be less meaningful than features trained with an em-

bedding loss.

Another problem is the curse of dimensionality: in the

off-the-shelf 512-dimensional feature space we used, lin-

ear classifiers perform well but pairwise distances are less

meaningful. Training purpose-built lower-dimensional em-

(a) Selected pixel (b) Selected pixel

(c) Luminance only (d) Luminance only

(e) Luminance and semantics (f) Luminance and semantics

Figure 9: Two example images and range masks produced

for each using luminance range and a range in combined

luminance and semantic space. In the arch image (left col-

umn), using both luminance and semantics selects the sky

while minimizing the erroneously selected pixels in other

parts if the image compared to the luminance-only version.

In both cases, we tuned the parameters to produce as clean

a result as possible.

beddings on a proxy task with some form of embedding loss

is a promising avenue for improving the general usefulness

of distances in applications like this.

5. Conclusion and Future Work

This work represents early steps in the exploration of se-

mantic pixel feature vectors as a tool for injecting semantic

information into traditional image editing algorithms that

typically rely on only low-level cues. Our approach worked

well in seam carving, while results were less compelling in

range masking.

We believe that the clear next step is to train our own

general-purpose embeddings instead of using off-the-shelf

feature vectors. Such embeddings could be chosen to be

lower-dimensional, avoiding the problems with distances in

high-dimensional space. The features could also be trained

using an embedding loss that might generalize better to un-

familiar semantic content. Because the applications of these



features are difficult to apply to end-to-end learning ap-

proaches, a proxy training task, such as a triplet loss derived

from ground-truth semantic categories could be used.

We believe that the general notion of semantic pixel fea-

ture vectors has promise in image editing applications that

are typically blind to semantics, in much the same way that

feature embeddings have already proven to be useful for

representing image content and style. We have shown one

application where semantic information significantly im-

proves results, but further work is required to investigate

the full generality of our approach.
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