
NTIRE 2020 Challenge on Image and Video Deblurring

Seungjun Nah Sanghyun Son Radu Timofte Kyoung Mu Lee Yu Tseng

Yu-Syuan Xu Cheng-Ming Chiang Yi-Min Tsai Stephan Brehm Sebastian Scherer

Dejia Xu Yihao Chu Qingyan Sun Jiaqin Jiang Lunhao Duan Jian Yao

Kuldeep Purpohit Maitreya Suin A.N. Rajagopalan Yuichi Ito Hrishikesh P S

Densen Puthussery Akhil K A Jiji C V Guisik Kim Deepa P L Zhiwei Xiong

Jie Huang Dong Liu Sangmin Kim Hyungjoon Nam Jisu Kim Jechang Jeong

Shihua Huang Yuchen Fan Jiahui Yu Haichao Yu Thomas S. Huang Ya Zhou

Xin Li Sen Liu Zhibo Chen Saikat Dutta Sourya Dipta Das Shivam Garg

Daniel Sprague Bhrij Patel Thomas Huck

Abstract

Motion blur is one of the most common degradation ar-

tifacts in dynamic scene photography. This paper reviews

the NTIRE 2020 Challenge on Image and Video Deblur-

ring. In this challenge, we present the evaluation results

from 3 competition tracks as well as the proposed solutions.

Track 1 aims to develop single-image deblurring methods

focusing on restoration quality. On Track 2, the image de-

blurring methods are executed on a mobile platform to find

the balance of the running speed and the restoration accu-

racy. Track 3 targets developing video deblurring methods

that exploit the temporal relation between input frames. In

each competition, there were 163, 135, and 102 registered

participants and in the final testing phase, 9, 4, and 7 teams

competed. The winning methods demonstrate the state-of-

the-art performance on image and video deblurring tasks.

1. Introduction

As smartphones are becoming the most popular type of

cameras in the world, snapshot photographs are prevail-

ing. Due to the dynamic nature of the hand-held devices

and free-moving subjects, motion blurs are commonly wit-

nessed on images and videos. Computer vision literature

has studied post-processing methods to remove blurs from

photography by parametrizing camera motion [16, 22, 80]

or generic motion [19, 31, 41, 34, 35, 36].

S. Nah (seungjun.nah@gmail.com, Seoul National University), S.

Son, R. Timofte, K. M. Lee are the NTIRE 2020 challenge organizers,

while the other authors participated in the challenge.

Appendix A contains the authors’ teams and affiliations.

NTIRE 2020 webpage:

https://data.vision.ee.ethz.ch/cvl/ntire20/

Modern machine learning based computer vision meth-

ods employ large-scale datasets to train their models. For

image and video deblurring tasks, GOPRO [50], DVD [66],

WILD [55] datasets were proposed as ways to synthe-

size blurry images by mimicking camera imaging pipeline

from high-frame-rate videos. Recent dynamic scene de-

blurring methods train on such datasets to develop im-

age [50, 72, 92, 33] and video [81, 37, 38, 51, 32, 8] de-

blurring methods.

However, the early datasets for deblurring lacked in the

quality of reference images and were limited in the realism

of blur. With the NTIRE 2019 workshop, a new improved

dataset, REDS [49] was proposed by providing longer sen-

sor read-out time, using a measured camera-response func-

tion and interpolating frames, etc. REDS dataset was em-

ployed for NTIRE 2019 Video Deblurring [52] and Super-

Resolution [53] Challenges.

Succeeding the previous year, NTIRE 2020 Challenge

on Image and Video Deblurring presents 3 competition

tracks. In track 1, single image deblurring methods are

submitted and competed on desktop environments, focus-

ing on the image restoration accuracy in terms of PSNR

and SSIM. In track 2, similarly to track 1, single image de-

blurring methods are submitted but deployed on a mobile

device. Considering the practical application environment,

the image restoration quality as well as the running time is

evaluated together. Track 3 exploits temporal information,

continuing the NTIRE 2019 Video Deblurring Challenge.

This challenge is one of the NTIRE 2020 associated

challenges: deblurring, nonhomogeneous dehazing [4], per-

ceptual extreme super-resolution [89], video quality map-

ping [13], real image denoising [2], real-world super-

resolution [46], spectral reconstruction from RGB image [5]

and demoireing [86].

2. Related Works

The REDS dataset is designed for non-uniform blind de-

blurring. As all the methods submitted to the 3 tracks use

deep neural networks, we describe the related works. Also,

we describe the previous studies on neural network deploy-

ment on mobile devices.

2.1. Single Image Deblurring

Traditional energy optimization methods [19, 31, 41, 34,

35] jointly estimated the blur kernel and the latent sharp im-

age from a blurry image. Early deep learning methods tried

to obtain the blur kernel from neural networksby estimating

local motion field [69, 15] for later latent image estimation.

From the advent of the image deblurring datasets [50, 66],

end-to-end learning methods were presented by estimating

the deblurred outputs directly [50, 72, 92] without kernel

estimation. From the initial coarse-to-fine architecture [50]

whose parameters were scale-specific, scale-recurrent net-

works [72] and selective sharing scheme [14] has been pro-

posed. Spatially varying operation was studied by using

spatial RNN in [92] While the previous methods behave in

class-agnostic manner, as face and human bodies are often

being the main subject of photographs, class-specific de-

blurring methods were proposed [63, 60]. They employ se-

mantic information or 3D facial priors to better reconstruct

target class objects. On another flow of studies, several ap-

proaches [33, 57] were proposed to extract multiple sharp

images from a single blurry image. They are motivated by

the fact that a blurry images have long exposure that could

be an accumulation of many sharp frames with short expo-

sure.

2.2. Video Deblurring

Video Deblurring methods exploit the temporal relation

between the input frames in various manners. DBN [66]

stacks 5 consecutive frames in channels and a CNN learns to

aggregate the information between the frames. The frames

are aligned by optical flow before being fed into the net-

work. Recurrent neural networks are used to pass the in-

formation from the past frames to the next ones [81, 37,

38, 51]. RDN [81] and OVD [37] performs additional con-

nections to the hidden state steps to better propagate use-

ful information. STTN [38] was proposed on top of DBN

and OVD to exploit long-range spatial correspondence in-

formation. IFI-RNN [51] investigates into reusing parame-

ters to make hidden states more useful. Recently proposed

STFAN [94] proposes filter adaptive convolution(FAC) to

apply element-wise convolution kernels. As the convolu-

tional kernel is acquired from the feature value, the opera-

tion is spatially varying.

At the NTIRE 2019 Video Deblurring Challenge [52],

EDVR [77] was the winning solution. PCD alignment mod-

ule is devised to handle large motion and TSA fusion mod-

ule is proposed to utilize the spatio-temporal attention.

2.3. Neural Network for Mobile Deployment

While deep neural network methods have brought sig-

nificant success in computer vision, most of them require

heavy computation and large memory footprint. For practi-

cal usage such as mobile deployment, lightweight and ef-

ficient model architectures are required [26, 27]. There-

fore, several methods have been developed to compress pre-

trained neural networks while keeping their performances.

For example, network quantization aims to reduce the

number of bits for representing weight parameters and in-

termediate features. With a degree of performance loss, bi-

nary [11, 59] or ternary [42] quantization significantly re-

duce model complexity and memory usage. To utilize effi-

cient bit-shift operation, network parameters can be repre-

sented as powers of two [93].

On the other hand, several studies tried to limit the

number of parameters by pruning [17, 18, 21] or using a

set of parameters with indexed representations [9]. Re-

cent pruning methods consider convolution operation struc-

ture [43, 47, 65]. Also, as convolutional filters are multi-

dimensional, the weights were approximated by decompo-

sition techniques [30, 65, 91, 75].

On another point of view, several methods are aiming to

design efficient network architectures. MobileNet V1 [24],

V2 [62], ThunderNet [58] adopt efficient layer composi-

tions to build lightweight models in carefully handcrafted

manners. Furthermore, MnasNet [70], MobileNet V3 [23],

EfficientNet [71] employ neural architecture search to find

low-latency models while keeping high accuracy. Despite

the success in architecture efficiency, most of the networks

compression methods have been mostly focusing on high-

level tasks such as image recognition and object detection.

As general image restoration requires 8-bit depth at min-

imum, it is a nontrivial issue to apply the previous com-

pression techniques to design lightweight models. Thus,

[48] utilizes a local quantization technique in image super-

resolution task by binarizing layers in the residual blocks

only. Besides, there were attempts to apply efficient designs

of MobileNets [24, 62] for super-resolution and deblurring.

In [3], efficient residual block design was presented while

[40] applied the depthwise separable convolution.Recently,

[44] proposed to linearly decompose the convolutional fil-

ters and learn the basis of filters with optional basis shar-

ing between layers. These methods effectively reduces the

model computation while preserving the restoration accu-

racy in a similar level.

PIRM 2018 [25] and AIM 2019 [88] organized chal-

lenges for image super-resolution and image enhancement

on smartphones and for constrained super-resolution, re-

spectively. We refer the reader to [26, 27] for an overview

and benchmark of Android smartphones and their capability

to run deep learning models.

3. The Challenge

We hosted the NTIRE 2020 Image and Video Deblurring

Challenge in order to promote developing the state-of-the-

art algorithms for image and video deblurring. Following

the NTIRE 2019 Challenge on Video Deblurring and Super-

Resolution, we use the REDS dataset [49] to measure the

performance of the results.

3.1. Tracks

In this challenge, we divide the competition into 3 tracks:

(1) Image Deblurring (2) Image Deblurring on Mobile De-

vices (3) Video deblurring.

Track 1: Image Deblurring aims to develop single-image

deblurring methods without limiting the computational re-

sources.

Track 2: Image Deblurring on Mobile Devices goes be-

yond simply developing well-performing single-image de-

blurring methods. To encourage steps towards more prac-

tical solutions, the running time is measured as well as

the restoration accuracy. The challenge participants are re-

quested to submit TensorFlow Lite models so that the run-

ning speed is measured by the organizers.

We use Google Pixel 4 (Android 10) as the platform to

deploy the deblurring models. The processor is Qualcomm

snapdragon 855 which supports GPU and DSP acceleration.

32-bit floating point models typically choose to run on GPU

while the 8-bit quantized models further accelerate on DSP

via Android NNAPI.

Track 3: Video Deblurring targets developing video de-

blurring methods that exploit temporal relation between the

video frames. The winner of the NTIRE 2019 challenge,

EDVR [77] learns to align the input feature and performs

deblurring afterwards. In this challenge, there were several

attempts to use additional modules on top of EDVR.

3.2. Evaluation

The competition consists of development and testing

phases. During the development phase, the registered par-

ticipants train their method and could get feedback from

online server to validate the solution format. Meanwhile,

they can get local feedback directly from the validation data.

In the testing phase, the participants submit their results as

well as the source code, trained model, and the fact sheets

describing their solution. The reproducibility is checked by

the organizers.

The results are basically evaluated by the conventional

accuracy metrics: PSNR and SSIM [79]. For track 2, we

use a score term that favors both fast and accurate methods.

Compared with our baseline model, we add a relative fps

score to the PSNR of the restoration results. Finally, our

score functions is

score = PSNR+
1

2
log

2

FPS

FPSbaseline
, (1)

where our baseline is a simple residual network with 4

blocks and 64 channels [45]. FPSbaseline is 8.23. The

methods faster than the baseline gets higher score than its

PSNR while the slower are penalized. The gains from ac-

celeration is evaluated in log scale to prevent extremely fast

methods without meaningful processing Also, we set the

maximum scorable fps to be 45. However, no submission

score was plateaued by the fps limit.

4. Challenge Results

Each challenge track had 163, 135, and 102 registered

participants. In the final testing phase, total 9, 5, 8 results

were submitted. The teams submitted the deblurred frames

as well as the source code and the trained models.

Table 1, 2, 3 each summarizes the result of the corre-

sponding competition track. All the proposed methods on

desktop use deep neural networks with GPU acceleration.

Mobile accelerators are shown in Table 2.

Baseline methods We present the baseline method results

to compare with the participants’ methods. For track 1, we

present the result of Nah et al. [50] that is trained with the

REDS dataset. L1 loss is used to train the model for 200

epochs with batch size 16. The learning rate was set to 10−4

and halved at 100th, 120th, and 140th epoch. For track 2,

we present a EDSR [45]-like architecture without upscaling

module. 4 ResBlocks are used with 64 channels. For track

3, we compare the results with EDVR [77], the winner of

NTIRE 2019 Video Deblurring Challenge.

Architectures and Main ideas There were several attempts

to use multi-scale information in different perspectives.

UniA team used atrous convolution [85] and uses multi-

scale aggregation for video deblurring MTKur, Wang-

wang, CVML, VIDAR, Reboot, Duke Data Science chose

encoder-decoder or U-net style architecture while Vermil-

ion used SRN [72]. In contrast, IPCV IITM, CET CVLab,

Neuro avengers adopted DMPHN [87] without scaling. On

the other hand, OIerM used fractal architecture to fuse

multi-depth information.

For video deblurring, EMI VR, IMCL-PROMOTION

modified EDVR [77]. UIUC-IFP modified their previous

WDVR [12] by frame concatenation.

Several teams used loss other than L1 or L2 loss: adver-

sarial loss (CET Deblurring Team, SG), WAE-MMD loss

(CVML), perceptual loss(IMCL-PROMOTION, SG).

Restoration fidelity UniA Team, MTKur are the winners

of NTIRE 2020 challenge in track 1 and 2. In track 3, the

submitted results did not improve from the NTIRE 2019

winner, EDVR.

Track 1: Image Deblurring

Team Method PSNR SSIM FPS GPU

UniA Team Wide Atrous Block (ensemble ×4) 34.44 0.9412 1.43 Tesla V100

OIerM Attentive Fractal Network 34.20 0.9392 1.16 RTX 2080 Ti

MTKur DRU-prelu (ensemble ×3) 33.35 0.9283 0.83 RTX 2080 Ti

Wangwang Two-stage EdgeDeblurNet 33.07 0.9242 0.46 GTX 1080 Ti

IPCV IITM DMPHN + Region-Adaptive Network (ensemble ×8) 33.03 0.9242 0.56 RTX 2080 Ti

Vermilion Simplified SRN (ensemble ×3) 30.04 0.8616 0.36 GTX 1080 (eGPU)

CET CVLAB Stack-DMPHN 29.78 0.8629 0.50 Quadro K6000

CVML Wasserstein Autoencoder 28.10 0.8097 33.3 RTX 2080 SUPER

CET Deblurring Team DoubleGAN 26.58 0.7492 2.04 GTX 1080

baseline Multi-scale CNN [50]1 32.90 0.9207 1.12 RTX 2080 Ti

baseline no processing 26.13 0.7749 - -

Table 1: Single image deblurring results on the REDS test data.

Track 2: Image Deblurring (Mobile)

Team Method PSNR SSIM FPS2 Final score Accelerator

MTKur
DRU-relu-compressed 32.07 0.9024 17.6 32.62 NNAPI

DRU-prelu 32.95 0.9239 5.1 32.60 GPU

VIDAR Transformed fusion U-Net 30.20 0.8735 6.0 29.97 GPU

Reboot Light-weight Attention Network 31.38 0.8960 1.0 29.87 GPU

OIerM Attentive Fractal Network 28.33 0.8079 0.9 26.71 CPU

baseline 4 ResBlocks 28.46 0.8218 8.23 28.46 GPU

baseline no processing 26.13 0.7749 - - -

Table 2: Single image deblurring results on the REDS test data from Google Pixel 4.

Track 3: Video Deblurring

Team Method PSNR SSIM FPS GPU

EMI VR PAFU (ensemble ×4) 36.93 0.9649 0.14 Tesla V100

UIUC-IFP WDVR+ (ensemble ×8) 35.58 0.9504 0.07 GTX 1080 Ti

IMCL-PROMOTION PROMOTION 35.42 0.9519 0.94 GTX 1080 Ti

UniA Team Dual-Stage Multi-Level Feature Aggregation 34.68 0.9442 0.18 Tesla V100

Neuro avengers
DMPHN + GridNet 31.85 0.9074 0.40 Titan X

DMPHN 31.43 0.8949 0.97 Titan X

SG Multi-Loss Optimization 29.44 0.8526 0.48 GTX Titan Black

Duke Data Science Encoder-Decoder 26.88 0.8051 0.24 Tesla V100

NTIRE 2019 winner EDVR [77] 36.943 0.9656 0.26 Titan Xp

baseline no processing 26.13 0.7749 - -

Table 3: Video deblurring results on the REDS test data.

5. Challenge Methods and Teams

We describe the submitted solution details in this section.

5.1. MTKur team - Track 1, 2

MTKur team is the winner of Track 2. Following the

guidelines in [10], MTKur team develops Dense Residual

U-Net (DRU) architecture by applying several modifica-

tions to U-Net [61]. First, they replace concatenation oper-

ation in all skip connections with addition operation except

the last global connection. Second, they replace the single

convolution operation with a dense residual block to im-

prove deblurring quality. Third, considering the mobile de-

ployment, TransposeConv operations are replaced with Re-

sizeBilinear operations as they have poor latency on Pixel

4. The overall DRU architecture is shown in Figure 1.

1trained on REDS dataset without adversarial loss.
2
256× 256 resolution is used as processing on mobile devices is slow.

3In NTIRE 2020, boundaries are included in the evaluation.

Based on DRU, MTKur proposes 2 variations: DRU-

prelu and DRU-relu-compressed depending on the purpose.

DRU-prelu targets on better restoration quality by using

PReLU activation [20] after all convolutional layers except

the convolutional layers before ResizeBilinear and the last

convolutional layer. In contrast, DRU-relu-compressed uses

ReLU activation aiming higher throughput of the model.

Also, current Tensorflow Lite kernel generates erroneous

outputs of quantized PReLU layer.

To DRU-relu-compressed, a series of network com-

pression techniques provided in MediaTek’s NeuroPilot

toolkit [1] are applied including pruning and quantization

after basic training. First, iterative pruning scheme [76]

exploited. The model repeats to prune by 5% MAC re-

duction criterion and retrains to achieve the original PSNR

quality. After the iteration, the pruned model achieves

20% MAC reduction without PSNR drop in the REDS val-

idation dataset. Then, the network is further optimized

with quantization-aware training of NeuroPilot toolkit [1]

to minimize PSNR drop.

To obtain better results, geometric self-

ensemble(x3) [73, 45] is applied to DRU-prelu in Track 1.

In Track 2, ensemble was not used for better running time.

The proposed models are trained with 256 × 256 sized

patches of batch size 16. L1 loss is applied at learning rate

2× 10−4, exponential decaying by rate 0.98 with 5000 de-

cay steps. The input and target images are normalized to

range [0, 1]. The training before compression takes 10 days

on a single RTX 2080 Ti. Pruning and quantization takes 6

and 2 days, respectively.

+ + + + + +

Residual Block (RB) Bottleneck Refinement

c

R
B

Conv

MaxPool

ResizeBilinear

c Concatenate

+ Add

E
C

B
_

0

E
C

B
_

1

E
C

B
_

2

E
C

B
_

3

B
o

ttle
n

e
c
k

D
C

B
_

0

D
C

B
_

1

D
C

B
_

2

D
C

B
_

3

R
e

fin
e

m
e

n
t

Encoder Block (ECB) Decoder Block (DCB)

R
B +

R
B

Figure 1: MTKur team: Dense Residual U-Net

5.2. UniA team - Track 1, 3

UniA team proposes an image deblurring and a video

deblurring method [6] for track 1 and 3, respectively. In

track 1, they propose to use atrous convolution to increase

the receptive field instead of downsampling input multiple

times to prevent loss of information. From the experiments,

receptive fields with missing pixels inside were not bene-

ficial. Thus, Wide Atrous Block is designed where par-

allel atrous convolutions with different dilation rates are

used. The features are concatenated to be used in the next

layer. The model architecture is shown in 2. To stabilize the

training, the convolutional features are scaled by learnable

parameters and added by a constant before the activation.

LeakyReLU activation is used except the last layer which

uses a linear activation.

The model is trained with extensive data augmentation

including brightness, contrast, hue augmentation. Patch

size is set to 320 × 320. VGG, edge similarity, adversar-

ial loss were investigated but didn’t bring improvements in

terms of PSNR an d SSIM. Geometric self-ensemble is ap-

plied to improve performance [73, 45].

The video deblurring method performs post-processing

to the results obtaine from the image deblurring method.

The features from the target and the neighboring frame are

fused in multiple scales. From downsampled frames, inde-

pendent convolutional features are concatenated and fused

by residual blocks. The coarse features are upsampled and

Figure 2: UniA team (Track 1): Atrous Convolutional Net-

work

t-1

t

t+1

d
o

w
n

sa
m

p
lin

g

s=1

s=2

s=16

…

u
p

sa
m

p
lin

g

global residual

fusion block

fusion block

fusion block

fused

features

residual

block 1

residual

block 2

residual

block 3

p
ix

e
lw

is
e

L2
-n

o
rm dot product

co
n

v
o

lu
ti

o
n

pixelwise scaling

Figure 3: UniA team (Track 3): Dual-Stage Multi-Level

Feature Aggregation

added to the higher resolution features. Figure 3 shows the

video deblurring architecture.

5.3. OIerM team - Track 1, 2

OIerM team proposes an Attentive Fractal Net-

work (AFN) [83]. They construct the Attentive Fractal

Block via progressive feature fusion and channel-wise at-

tention guidance. Then AFB is stacked in a fractal way in-

spired by FBL-SS [84] such that a higher-level AFBs is

constructed with the lower-level AFBs−1, recursively with

self-similarity, as shown in Figure 4. Shortcuts and residual

connections at different scale effectively resolve the vanish-

ing gradients and help the network learn more key features.

The progressive fusion of intermediate features let the net-

work handle rich information.

For track 1 and 2, n, m, and s in Figure 4 are set to 4

and 2, respectively. The models are trained with batch size

8 and 16 for 50 and 200 epochs. The channel size is 128.

L
e
a
k
y

ሺaሻ AFB଴

L
e
a
k
y

ሺbሻ AFBs

S
E

C
o
n
v... fsଵfs଴ fsଶ fs୬ fs� fs� fsf଴଴ f଴ଵ f଴୫ f଴

C
o
n
v

C
o
n
v

C
o
n
v

ሺcሻ AFN

C
o
n
v

A
F
Bfs଴ fs ��......

...

SE

Conv

LeakyReLU

AFB

Addition

Concatenate

Multiplication

��

Figure 4: OIerM team: Attentive Fractal Network

5.4. Wangwang team - Track 1

Wangwang team proposes a solution, EdgeDeblurNet,

based on the DeblurNet module of DAVANet [95]. As the

edges and smooth area are differently blurred, they employ

the edge map as extra available information to guide de-

blurring. To better emphasize the main object edges than

the blur trajectories, spatial and channel attention gate [82]

is adopted. Also, SFT-ResBlock [78] is used to fuse the

edge information effectively. Finally, inspired by the tra-

ditional iterative optimization methods, a two-stage deblur-

ring method is proposed by cascading the EdgeDeblurNet.

The second stage model is trained after the first stage

parameters are trained and fixed. The model is trained with

256× 256 patches of batch size 16 by Adam [39] optimizer

for 400 epochs. The learning rate is initialized as 10−4 and

decayed at predetermined steps. The overall architecture is

shown in Figure 5.

Figure 5: Wangwang team: Two-stage Edge-Conditioned

Network

5.5. IPCV IITM team - Track 1

IPCV IITM team buids a two-stage network based on

DMPHN [87] and [67]. The first stage is a 3-level DMPHN

with cross-attention modules similar to [67] where each

pixel can gather global information. The second stage is a

densely connected encoder-decoder structure [56]. Before

the last layer, The multi-scale context aggregation is per-

formed through pooling and upsampling. Geometric self-

ensemble [73, 45] is applied to further improve results. Fig-

ure 6 shows the overall architecture.

Space
to

Depth

Pyramid
Pooling

&
Upsampling

Concat

Pre-trained
DenseBlock DenseBlock

Output

Input

Figure 6: IPCV IITM team: Region-Adaptive Patch-

hierarchical Network

5.6. Vermilion team - Track 1

Vermilion team uses a simplified Scale-Recurrent Net-

works [72] in 4 scale levels. To make SRN simpler, the re-

current connections are removed. On each level, a series of

ResBlocks are used instead of U-Net based structure. The

final deblurred result is obtained by an ensemble of 3 re-

sults.

The model is trained with 256 × 256 patches of batch

size 4. The learning rate was set to 10−4.

Figure 7: Vermilion team: Simplified SRN architecture

5.7. CET CVLab team - Track 1

CET CVLab team uses Stack-DMPHN [87] with 5 lev-

els. The upsampling method is replaced by depth-to-space

operation. The model is trained with MSE loss with Adam

optimizer. The learning rate is initialized with 10−4 and

halved at every 100 epochs.

5.8. CVML team ­ Track 1

CVML team uses a Wasserstein autoencoder [74] for sin-
gle image deblurring. The latent space is represented as spa-
tial tensor instead of 1D vector. In addition, an advanced
feature based architecture is designed to deliver rich fea-
ture information to the latent space. There are three tree-
structured fusion modules for encoder and decoder, respec-
tively. To train the model, WAE-maximum mean discrep-
ancy (WAE-MMD) loss, reconstruction loss, and perceptual
loss is applied to the240� 240patches. The overall archi-
tecture is shown in Figure8.

Figure 8: CVML team: Wasserstein Autoencoder

5.9. CET Deblurring team ­ Track 1

CET Deblurring team proposes a double generative ad-
versarial network that consists of two generators and dis-
criminators. The generatorG1 andG2 performs image de-
blurring and the inverse operation. AsG2 is trained with
VGG-19 [64] loss to recover blurry image,G1 learns to de-
blur the original and the re-blurred. The two discriminators
try to classify the output fromG1 and the ground-truth with
different objectives.D f focuses on the edges by looking at
the gray LoG features whileD I refers to the color intensity
in HSI format from Gaussian blurred images. The overall
architecture is shown in Figure9.

Figure 9: CETDeblurring team: Double GAN

5.10. VIDAR team ­ Track 2

VIDAR team proposes a Transformed fusion U-Net. In
the connections between the corresponding encoder and de-
coder, the encoder features go through a transform layer to
get useful information. Also, the decoder features from dif-
ferent scales are concatenated together. Finally, different
dilated convolution layers are used that are similar to atrous
pyramid pooling to estimate different blur motion.

To train the model, L1 loss, SSIM loss, and multi-scale
loss are applied. The training patch size is256� 256 and
the batch size is 16. Adam optimizer is used with learning
rate decaying from2:2 � 10� 5 by power0:997. Training
stops when the training loss does not notably decreases.

5.11. Reboot team ­ Track 2

Reboot team proposes a light-weight attention network
from their proposed building blocks. TUDA (Total Up-
Down Attention) block is the high-level block that contains
other blocks: UAB and UDA. UAB (U-net based Attention
Block) resembles U-net like architecture that replaces con-
volutions with UDA. UDA (Up-Down Attention block) is
the basic block that operates like ResBlock but in a down-
sampled scale for ef�ciency. The overall architecture is
shown in Figure10.

To train the model,96 � 96 patches are used with batch
size 32. Adam optimizer is used with learning rate begin-
ning from10� 4 that is halved every 50 epochs.

Figure 10: Reboot team: Light-weight Attention Network

5.12. EMI VR team ­ Track 3

EMI VR team proposes a framework, PAFU, that tries
to re�ne the result of 2 serial stack of EDVR [77]. PAFU
architecture is similar to EDVR but has different mod-
ules. First, PAFU uses non-local spatial attention before
PreDeblur operation. After the PreDeblur process, a se-
ries of AFU (Alignment, Fusion, and Update) modules per-
form progressly on the extracted feature. AFU module per-
forms FAD (Feature Align with Deformable convolution)
and TCA (Temporal Channel Attention) to fuse aligned fea-
tures. Figure11shows the overall architecture of PAFU.

To train the model, both the training and validation data
are used except 4 training videos that are selected by the au-
thors. At test time, geometric self-ensemble [73, 45] using
�ips are used.

