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Abstract

In recent years, hyperspectral reconstruction based on

RGB imaging has made significant progress of deep learn-

ing, which greatly improves the accuracy of the recon-

structed hyperspectral images. In this paper, we proposed a

convolution neural network of the hyperspectral reconstruc-

tion from a single RGB image, called Residual Pixel Atten-

tion Network (RPAN). Specifically, we proposed a Pixel At-

tention (PA) module, which was applied to each pixel of all

feature maps, to adaptively rescale pixel-wise features in

all feature maps. The RPAN was trained on the hyperspec-

tral dataset provided by NTIRE 2020 Spectral Reconstruc-

tion Challenge and compared with previous state-of-the-art

method HSCNN+. The results showed our RPAN network

had achieved superior performance in terms of MRAE and

RMSE.

1. Introduction

Hyperspectral imaging technology can obtain detailed

spectral information from a target or a scene. Hyperspec-

tral images can have hundreds or thousands of spectral

bands. Different objects have different spectral character-

istics. By comparing the spectral characteristics, different

targets can be distinguished. Therefore, hyperspectral im-

ages are widely used in various computer vision tasks, such

as target tracking [29, 32], detection [14, 9], and classifica-

tion [35, 7].

Hyperspectral images are acquired by hyperspectral

cameras. Although there are many advantages of hyper-

spectral images, the cost of hyperspectral cameras is often

very high, which hinders many low-cost applications. To

obtain high spectral resolution, the spatial or temporal reso-

lution is inevitably reduced, which severely limits the appli-

cation range of hyperspectral images. Therefore, obtaining

hyperspectral image with high spatial resolution at low cost
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has become an important direction.

Reconstructing hyperspectral images from RGB images

is a way to solve the problem. RGB images can be ob-

tained by low-cost RGB cameras with high spatial reso-

lution. Reconstructing hyperspectral images from RGB

images is a severely ill-posed problem, so some methods

[4, 13, 33, 1] introduce the inherent statistics of hyperspec-

tral images into the model as a prior. The prior models

are often based on experience, so the generalization ability

is limited. With the excellent performance of deep learn-

ing methods on many computer vision tasks, convolutional

neural network(CNN) methods have also been introduced

into spectral reconstruction tasks, these CNN-based meth-

ods greatly improve the quality of the reconstructed hyper-

spectral images [10, 2, 27, 26, 21, 18].

Recently, the effect of the attention mechanism has been

proved on many computer vision tasks [12, 6, 31], which

can further improves the performance of CNN. The atten-

tion mechanism makes the output of the neural network

more affected by the most content components and reduce

the influence of useless information, which is the main rea-

son that the attention mechanism works. However, few

methods based on CNN methods apply the attention mech-

anism to the spectral reconstruction task.

In the single-image super-resolution task, the effect of

the attention mechanism has also been proved in RCAN

[36], which effectively improves the super-resolution per-

formance of the RCAN model through the channel atten-

tion module. Both image super-resolution and spectral re-

construction tasks are serious ill-posed problems, and spec-

tral reconstruction can be regarded as super-resolution in

the spectral dimension. It can be seen that there are some

similarities between the spectral reconstruction and image

super-resolution. Therefore, we try to introduce the atten-

tion mechanism into the spectral reconstruction network.

Channel attention mechanism can adaptively rescale

each channel-wise feature by learning the interdependency

between the channels, which will make CNNs pay more at-

tention to the more important features. However, the dif-



ferent positions of a channel also have different degrees of

importance. The channel attention used by RCAN cannot

simultaneously adaptively rescale the channel-wise features

and the features of different positions in a channel with dif-

ferent scale factors.

In this paper, we propose a novel attention module

called pixel attention (PA) to solve the above problems,

and apply it to the hyperspectral image reconstruction task.

Specifically, we designed the residual pixel attention net-

work(RPAN) for spectral reconstruction from RGB image,

in which the PA can generates a rescale factor cube for each

pixel of all feature maps by considering the interdependency

in feature cube.

Our main contributions include:

(1) We propose a residual pixel attention network

(RPAN) for spectral reconstruction from RGB. (2) Present

a novel module called pixel attention block (PA), which can

adaptively rescale each pixel-wise weights of all input fea-

ture maps. (3) Experimental results have shown our RPAN

has a significantly improvement over previous state-of-the-

art HSCNN+ [26] on NTIRE 2020 spectral reconstruction

challenge dataset.

2. Related Work

Hyperspectral images are generally obtained by scan-

ning, including whiskbroom [24] and pushbroom [25].

Scanning methods have inherent deficiencies, and their

low temporal resolution makes them unsuitable for quickly

acquiring hyperspectral images and capturing dynamic

scenes.

In order to improve the time resolution and quickly

capture hyperspectral images and dynamic scenes, various

snapshot hyperspectral imaging systems have been devel-

oped.

Based on the theory of compressed sensing, the Coded

Aperture Snapshot Spectral Imaging (CASSI) [30] can

quickly capture hyperspectral images.The detector receives

a two-dimensional image with the coded spectrum and spa-

tial information mixed, which can be restored to a hyper-

spectral image through a restoration algorithm. The com-

puter tomography imaging spectrometer (CTIS) [8] records

the projection results of the three-dimensional hyperspectral

information on the two-dimensional plane at different an-

gles, and then reconstructs the hyperspectral image through

the algorithm. However, these imaging systems are quite

complex in hardware and reconstruction algorithms.

RGB images can be obtained at low cost by RGB cam-

eras, and RGB images can have high spatial and temporal

resolution, so reconstructing hyperspectral images through

RGB images has aroused widespread interest.

Oh et al. [22] proposed a framework for reconstruct-

ing hyperspectral images by using multiple consumer-level

digital cameras, which reconstructs hyperspectral images

through multiple RGB pictures taken by cameras with dif-

ferent sensitivity functions.

Nguyen et al. [20] use a radial basis function network

to learn the mapping relationship between RGB and scene

spectral reflectance, and then reconstructs the scene spectral

reflectance image. Arad et al. [4] built a large hyperspectral

data set of natural scenes, and used this data set to build an

over-complete dictionary to reconstruct hyperspectral im-

ages from RGB images. Aeschbacher et al. [33] introduced

the A+ [28] algorithm to improve the performance of the

Arad method. With the excellent performance of the CNN

method on many tasks, the CNN method began to be intro-

duced into the spectral reconstruction task.

Galliani et al. [10] introduces the CNN originally used

for semantic segmentation, realizes the reconstruction of

hyperspectral images from RGB images, and achieves ex-

cellent performance. AlvarezGila et al. [2] proposed a

method based on generative adversarial network (GAN) to

achieve hyperspectral image reconstruction.

In the NTIRE 2018 Spectral Reconstruction Competi-

tion, participants developed a variety of novel CNN meth-

ods to achieve spectral reconstruction [3]. Among them, Shi

et al. [26] improved the HSCNN [34] network, proposed the

HSCNN + network and won the first and second places in

the NTIRE 2018 Spectral Reconstruction Competition.

In the above CNN method, almost all methods treat each

position of each feature map equally, but the features of dif-

ferent positions and different channels are not the same in

importance. The features of some positions and some chan-

nels are more helpful for the spectral reconstruction. In

order to make better use of features, we proposed a novel

attention module pixel attention (PA), which can properly

adjust each feature in all channels and make the network

pay more attention to more important features.

3. Proposed Network

3.1. Network Design

The proposed Residual pixel attention network (RPAN)

details is shown in Figure 1.

The RPAN was inspired by the RCAN, so it should be

noted that the proposed RPAN network and RCAN network

have some similarities in composition. The RCAN is de-

composed of the residual group (RG) and residual channel

attention block (RCAB), RPAN is decomposed of the resid-

ual attention group (RAG) and residual pixel attention block

(RPAB).

RCAB uses the channel attention module, while RPAB

uses the new attention module pixel attention (PA) block. In

the overall structure of the network, we have also concate-

nate feature maps generated by RAGs to take full advantage

of the different levels of feature maps generated by RAGs.

The experimental results in Sec 4.3 show that the proposed



Figure 1. RPAN(up) and a RAG block(down).

Figure 2. RPAB block(up) and a RCAB block (down).

method have significantly improved the effect of hyperspec-

tral image reconstruction.

3.2. Overall Network Structure

Our proposed network uses a global residual network

structure like VDSR [15], it can speed up convergence. The

network first goes through a 3× 3 convolution layer which

have 64 filters, then the main network is constructed by

stacking 4 RAG blocks followed by 1× 1 convolution layer

in order to better use these features. By skip connection, it

adds 64 feature maps from the first 3× 3 convolution layer

by global skip connection. Then output 31 channel spectral

image through the last 3× 3 convolution layer.

Each RAG is composed of 8 residual pixel attention

blocks(RPAB) and a 3×3 convolution layer. The RAG also

use residual learning to speed up convergence. We integrate

PA and RB [11] together, and proposed the RPAB block.

When not stacking RAG modules, input RGB picture,

and the output of the network containing m RAG modules

can be expressed as:

y = g(f(x) + Fm(· · ·F2(F1(f(x))))) (1)

where x denotes the input RGB picture and y represents the

reconstructed hyperspectral image. f denotes the function

of the first convolutional layer of the network and g rep-

resents the last convolutional layer of the network and Fm

denotes the function of the m-th RAG.

3.3. Residual Pixel Attention Block (RPAB) and
Pixel Attention (PA)

Previous CNN-based spectral reconstruction methods

treat pixel-wise features almost equally without attention

mechanism. However, the influence of the features in differ-

ent positions and channels on the reconstruction results of

hyperspectral images are likely to be different. The features

of some locations and some channels are more important,

and some features are less important. For example, the pix-

els with sharp spectrum changes, each band has a stronger

correlation with the adjacent band, which requires the net-

work to pay more attention to the adjacent channels; the

pixels at the boundary between the foreground and back-



ground also need to pay more attention to the surrounding

pixels to better reconstruct this part of the area.

In order to solve the above problems, inspired by RCAN

[36] and SE-net [12], the attention mechanism is introduced

into the RPAB module which contains the novel attention

module PA.

Both RCAN and SENet used the channel attention (CA)

module. The channel attention generates different attention

for each channel. In order to adaptively rescale the weight

of each channel, the CA module needs to learn the nonlinear

relationship between the channels.

As shown in Figure 2, the channel attention module first

obtains a 1× 1×C size vector through global pooling, and

each component represents the statistical information of the

features in a channel, and then passes through 1× 1× con-

volution layer(squeeze Conv layers), ReLU activation func-

tion, 1 × 1× Convolution(expand Conv layer), learn the

nonlinear relationship of each channel during the training

process, and finally normalize the scale factor to the range

[0,1] through the sigmoid function. In this process, the vec-

tor of 1 × 1 × C will first reduce the dimension to 1/r of

the input, and then after ReLU activation, it will rise back

to the original dimension, which can greatly reduce the cal-

culation complexity.

Since not only different channels but also different po-

sitions have different importance, different positions of a

channel require different scale factors. The channel atten-

tion mechanism cannot simultaneously adaptively rescale

the channel-wise features and the features of different po-

sitions in a channel with different scale factors. The new

attention module PA is proposed to solve the problem.

Unlike RCAB and SENet block, PA is not CA, and it

removes the global pooling layer and the rest is the same

as CA. In PA, the input with the dimension of H ×W that

contains C feature maps , it will becomes H × W × C/r,

and then back to H ×W ×C, through training to learn the

relationship between each position of all feature maps, and

finally normalize the scale factor to the range [0,1] through

the sigmoid function. Through the PA module, we obtain a

3D scale factors data cube with the same size as the input

feature, so that each position of the 3D feature cube can be

adaptively rescaled to better reconstruct the hyperspectral

image from RGB images.

PA can be formulated as

PA = s(WE(δ(WS(x)))) (2)

where s and δ denote the sigmoid function and ReLU [19]

function. Ws is the weight of the squeeze Conv layer,

which act channel-downscaling with reduction ratio r. We

is the weight of the expend Conv layer, which act channel-

upscaling with reduction ratio r. x denotes the input feature

with dimension H ×W × C.

So we can rescale the feature maps Kin by:

Kout = Kin +Kmiddle · PA (3)

where Kin is the input feature maps to RPAB block, Kout

is the output from RPAB block which is a rescaled feature

maps by PA block. Kmiddle is the input feature maps to PA

block.

3.4. Feature Fusion

As the network depth increases, each RAG in the pro-

posed network will extract different levels of features from

the input. Taking full advantage of these different levels of

features will improve the quality of the reconstructed hyper-

spectral image.

According to MSRN [17], in order to make full use of the

different level of feature maps, we concatenated the features

generated by each RAG through skip connection to form the

Concat layer, as shown in Figure 1.

When reconstructing hyperspectral images, stacking

RAGs allows complex parts to be reconstructed through

deeper paths and simple parts to be reconstructed through

shallower paths, which can effectively improve the perfor-

mance of spectral reconstruction. These feature maps con-

tain different levels of information, but there is also a lot of

redundant information. In order to make better use of these

features and reduce the computational complexity, we use

1 × 1 convolution layer to reduce the feature-map dimen-

sion.Input RGB image, the output obtained by the proposed

network can be expressed as

y = g(f(x) + C(F1(f(x)), · · · , Fm(· · ·F1(f(x))))) (4)

where C denotes the 1 × 1 convolution layer behind the

Concat layer

4. Experiment

4.1. Dataset and Metrics

Dataset In this study, we used the data set provided by

the NTIRE 2020 Spectral Reconstruction Challenge to train

the proposed RPAN network.

The NTIRE 2020 Spectral Reconstruction Challenge

dataset [5] (Arad Hyperspectral Database, ARAD HSDB)

provides 450 hyperspectral images as the training set, 10

hyperspectral images as the validation set, and 10 hyper-

spectral images as the test set. In order to meet the needs

of the challenge, a large number of hyperspectral images

have been newly collected, and these hyperspectral images

contain various scenes with very different contents.

The challenge consists of two parts: (1) The RGB pro-

jection function of the track Clean is known and no noise or

compression is applied to the RGB images. (2) The RGB

projection function of the track Real World is unknown, the

JPG compression and noise are applied to the RGB images.



Figure 3. Visual error map of two selected bands(the 5-th and 22-th band) from track Clean images.

Figure 4. Visual error map of two selected bands(the 5-th and 22-th band) from track Real World images.

The RGB image and the corresponding hyperspectral

image have the same resolution of 482 × 512. Each Hy-

perspectral image consists of 31 successive spectral bands.

In the validation set, each track provides 10 RGB images

and corresponding hyperspectral images. The test set only

provides RGB images, so we can only use the validation set

to evaluate the proposed method. The test result is used by

challenge organizers to evaluate the results of each partici-

pants.

Metrics We followed the instructions of the NTIRE

2020 Spectral Reconstruction Challenge and evaluated

the performance of our proposed method on two tracks

(”Clean” and ”Real World”). We use the scoring script pro-

vided by the challenge, and Mean Relative Absolute Error

(MRAE) and Root Mean Square Error (RMSE) as the eval-

uation method. In general, a smaller RMSE or MRAE rep-

resent higher quality. MRAE and RMSE are computed as

follows:

MRAE =
1

N

N
∑

i=1

(
|PRE − PG|

PG

) (5)

RMSE =

√

√

√

√

1

N

N
∑

i=1

((PRE − PG)2) (6)

Where N is the total number of pixels, PRE and PG rep-

resent the corresponding pixels of the reconstructed and

ground truth hyperspectral images respectively.

4.2. Training Detail

In RPAN model, the number of RAGs is set to 4, each

RAG includes 8 RPAB blocks. In PA block, the reduction



track Resnet-based HSCNN+ CANet RPAN(ours)

MRAE/RMSE MRAE/RMSE MRAE/RMSE

Clean 0.03999/4.490 0.03739/4.422 0.03756/4.301

RealWorld 0.07174/5.517 0.06877/5.081 0.06787/4.984

Table 1. The quantitative results of different methods. The best results are in bold.

ratio r is 16. Except the last convolutional layer of the net-

work, there are 31 filters to output 31 spectral band images

and the first 1×1 convolutional layer in the PA module con-

tains 4 filters, the remaining convolutional layers all are 64

filters. Therefore, the Concat layer which stacked 4 RAGs

contains 256 channel feature maps, and then returns to 64

channel feature maps through a 1 × 1 convolutional layer.

All 3 × 3 convolutional layers use a zero-padding to keep

the feature map size unchanged.

The network settings used for each track are slightly dif-

ferent. In track Clean, because no noise or compression is

applied to the RGB images, we remove the biases in the

convolutional layer. In track Real World, due to the noise

and JPG compression is applied to the RGB images, we re-

tain the biases in the convolutional layer to compensate for

the noise and JPG compression.

During the training, the ground truth hyperspectral im-

ages and ground-truth RGB images are cropped into small

pieces of 64×64 from the training dataset and the batchsize

is set to 16. Adam optimizer [16] is used for optimizing the

proposed RPAN network with β1 = 0.9, β2 = 0.999,ǫ =
10−8 and the weight decay was set to 10−6. The initial

learning rate is set to 8× 10−5, the learning rate decays by

0.8 after every 5 epochs, the network is ended the optimiza-

tion at the 50-th epoch. MRAE loss function is used for

training the RPAN network.

When reconstructing the hyperspectral image of the vali-

dation set, we no longer segment the RGB image into small

blocks, but instead use the complete RGB image as input

to get a complete spectral image. The proposed RPAN is

trained by Pytorch [23] platform on a single NVIDIA Titan

Xp GPU. It takes about 13 hours to train the RPAN network

for each track.

4.3. Comparison with StateoftheArt

Comparison Methods We compare RPAN with the pre-

vious state-of-the-art method HSCNN+ to illustrate that our

proposed method has superior performance in spectral re-

construction tasks. HSCNN + has two methods based on

Resnet and Densenet, the Resnet-based HSCNN+ is used to

compare with our RPAN method in this paper.

To illustrate the advantages of the PA module over CA,

we added a comparison method CANet. In CANet, we use

the CA block to replace the PA block in RPAN, and the rest

is exactly the same as RPAN. Through this comparison, it

will be shown whether the PA block is more robust than the

CA block, and whether PA makes the network have better

performance.

Comparison Results

Under the same training settings, the three methods were

trained on the NTIRE 2020 Spectral reconstruction Chal-

lenge dataset. We use the official validation set to compare

the three methods on both Clean and Real World tracks. The

quantitative results are reported in Table 1.

It can be seen that on the two tracks, the proposed

RPAN and CANet are noticeably better than Resnet-based

HSCNN+ method on NTIRE 2020 validation set. When

compared with Resnet-based HSCNN+, RPAN can signif-

icantly reduce the MRAE/RMSE results by as much as

0.00243/0.189 in the track Clean. In the track Real World,

RPAN also significantly reduce the MRAE/RMSE results

by as much as 0.00387/0.533. The results prove that our

proposed RPAN method and PA module greatly improve

the effect of spectral reconstruction compared with Resnet-

based HSCNN+.

In the track Clean, RPAN achieves the better results on

the RMSE, which decrease 0.121 than CANet. Although

the results of CANet is reduced by 0.00017 compared to

the RPAN method on the MRAE, the proposed RPAN is

more robust than CANet, because the PA module can adap-

tively adjust pixel-wise features in all channels, while CA

can only adaptively adjust channel-wise features.

To illustrate that RPAN is more robust than CANet, we

conducted noise interference experiment in the track Clean.

Adding different degrees of White Gaussian Noise to the

clean RGB image, and then used these RGB with noise

for hyperspectral image reconstruction. The results are re-

ported in Table 2.

track Clean CANet RPAN(ours)

MRAE/RMSE MRAE/RMSE

without noise 0.03739/4.422 0.03756/4.301

SNR 40dB 0.04983/4.757 0.04115/4.327

SNR 35dB 0.07487/5.871 0.05161/4.732

SNR 30dB 0.11950/7.029 0.083051/5.670

SNR 25dB 0.20315/9.537 0.15532/7.952

Table 2. The quantitative results of CANet and RPAN at different

noise levels in track Clean, i.e., SNR=25, 30, 35, 40dB.The best

results are in bold.

In Table 2, the proposed RPAN method is noticeably bet-

ter than CANet method When different degrees noises are



Figure 5. Recovered spectral curve in track Clean. (a) is the spectral curve of the red dot, (b) is the spectral curve of the blue dot.

Figure 6. Recovered spectral curve in track Real World. (a) is the spectral curve of the red dot, (b) is the spectral curve of the blue dot.

added to the RGB image. The results prove that RPAN is

more robust than CANet. Despite using pure RGB for spec-

tral reconstruction training, RPAN still exhibits good per-

formance when using RGB with noise for spectral recon-

struction. CANet has been more affected, and the results of

spectral reconstruction have dropped significantly.

In the track Real World, the RGB projection function of

the track Real World is unknown and the noise and JPG

compression is applied to the RGB picture. The proposed

RPAN method is significantly better than CANet. The

RPAN achieves the better results on the MRAE and RMSE,

which decrease 0.0009 and 0.097 than CANet, as shown

in Table 1. The result further illustrate that RPAN method

is more suitable for spectral reconstruction tasks from poor

quality RGB.

Beside numerical results, we have also drawn two ex-

ample of reconstructed spectral image error maps to better

illustrate the results. Figure 3 and Figure 4 correspond to

the track Clean and the track Real World respectively. The

error of the RPAN method is smaller than the other methods

on both tracks. We also plotted the reconstructed spectrum

curves of these methods in Figure 5 and Figure 6, we can

see that the spectral curve reconstructed by RPAN is more

closer to the ground truth.

Track RPAN RPAN

(without Concat layer)

MRAE/RMSE MRAE/RMSE

Clean 0.03806/4.353 0.03756/4.301

Real World 0.0705/5.200 0.06787/4.984

Table 3. Effect of the Concat layer. The best results are in bold.

4.4. Other Discuss

In this part, we conducted ablation studies on the NTIRE

2020 dataset to verify the effect of the Concat layer on hy-

perspectral reconstruction. The quantitative results on the

validation set are shown in Table 3. Compared with RPAN

without Concat layer, RPAN with Concat layer performs

better. This demonstrate that the Concat layer really helps

to make better use of different levels of features and im-

prove the accuracy of hyperspectral reconstruction.

5. Conclusion

In this paper, we propose a residual pixel attention net-

work (RPAN) for the NTIRE 2020 Spectral Reconstruc-

tion Challenge. It uses a novel attention module PA, which

can adaptively rescale the pixel-wise features in all feature

maps, enhance the weight of more important features, sup-



press unimportant information. It significantly improves the

performance of the network. By comparing with the state-

of-art method HSCNN+ on the NTIRE 2020 spectral recon-

struction dataset, it proved that the RPAN method signifi-

cantly improves the accuracy of hyperspectral reconstruc-

tion from a single RGB image.
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