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Abstract

Current state-of-the-art Single Image Super-Resolution

(SISR) techniques rely largely on supervised learning where

Low-Resolution (LR) images are synthetically generated

with known degradation (e.g., bicubic downsampling). The

deep learning models trained with such synthetic dataset

generalize poorly on the real-world or natural data where

the degradation characteristics cannot be fully modelled.

As an implication, the super-resolved images obtained for

real LR images do not produce optimal Super-Resolution

(SR) images. We propose a new SR approach to mitigate

such an issue using unsupervised learning in Generative

Adversarial Network (GAN) framework - USISResNet. In

an attempt to provide high quality SR image for percep-

tual inspection, we also introduce a new loss function based

on the Mean Opinion Score (MOS). The effectiveness of

the proposed architecture is validated with extensive exper-

iments on NTIRE-2020 Real-world SR Challenge valida-

tion (Track-1) set along with testing datasets (Track-1 and

Track-2). We demonstrate the generalizable nature of pro-

posed network by evaluating real-world images as against

other state-of-the-art methods which employ synthetically

downsampled LR images. The proposed network has fur-

ther been evaluated on NTIRE 2020 Real-world SR Chal-

lenge dataset where the approach has achieved reliable ac-

curacy.

1. Introduction

The High-Resolution (HR) images consist of detailed in-

formation of the scene which helps in many use-cases such

as in perceptual applications. While it is preferred to have

HR images in many applications, a High Definition (HD)

camera is an imperative requirement. Given the cost of HD

cameras, not all real-world applications can afford to inte-

grate the HD cameras. As an alternative, the software based

(a) ESRGAN [47] (b) Proposed (c) Ground-truth

Figure 1: The SR results obtained using (a) ESRGAN [47]

and (b) proposed methods. (c) The ground-truth original

HR image.

approaches such as Super-Resolution (SR) techniques are

employed widely in order to increase the resolution of the

given Low-Resolution (LR) image. Super-resolving an im-

age is a classical problem in the computer-vision commu-

nity and despite the extensive amount of work, the prob-

lem is yet an open research problem due to number of co-

variates in the problem such as ill-posed nature of solutions,

complexity and unavailability of true perceptual quantita-

tive measures amongst many others [2].

The super-resolving of the LR images has been achieved

using Single-Image approaches, dictionary based ap-

proaches and lately using the deep learning approaches

such as Convolutional Neural Networks (CNNs). Combin-

ing the approaches of Single-Image SR and the CNNs, re-

cent works have obtained state-of-the-art performance, both

in terms of quantitative as well as qualitative assessments

[47, 53, 2]. However, the proposed CNN models so far

proposed use supervised learning by employing a dataset

of LR-HR pair of images. In the pursuit of supervision

for such models, the training process employs a single HR

dataset while the corresponding LR images are synthesized

through known degradation such as bicubic downsampling.

1



Despite such a mechanism of creating the LR-HR pairs,

it can be noted that synthetically generated images from

true HR image do not fully represent the true statistical

modelling of LR images with a wide variety of factors.

For instance, the synthesized LR images may not represent

the natural image characteristics such as inevitable sensor

noise, artifacts which are always present in the natural or

real image [32]. As a direct impact of such data being

used with synthetic degradation, the CNN models trained

are not able to generalize for real LR images captured from

camera. Such limitations hinder in achieving reliable accu-

racy as they fail to scale when real data is presented for SR

tasks[33].

In order to solve above limitation, it is necessary to train

the given CNN model on a dataset of true LR-HR pair. Due

to practical limitations, there are not many datasets which

provide true LR-HR pairs. The hardware changes to capture

such LR-HR pair need varying resolutions through the spa-

tial resolutions of the camera itself [7, 52]. Not only is such

design cumbersome process but also needs extra hardware.

To this end, another way to tackle this problem is to use un-

supervised learning in SISR tasks which is similar to blind

SR. In this paper, we propose a CNN based model to obtain

SR of given LR observation through unsupervised learning

using a Single Image Super-Resolution approach which we

refer as USISResNet. The proposed architecture is trained

with unpaired LR-HR images on the dataset of NTIRE 2020

Real-world SR Challenge [34]. We employ a Generative

Adversarial Network (GAN) in unsupervised manner to ob-

tain perceptually superior SR image. Additionally, we also

introduce a novel Mean Opinion Score (MOS) loss within

GAN framework in order to further enhance the SR results.

The proposed approach is benchmarked with other state-

of-the-art methods including the winner of PIRM2018 chal-

lenge - ESRGAN [23, 47] SR method to demonstrate the

applicability of the method. The superior results of the pro-

posed approach can be seen in the Fig. 1 alongside the SR

results obtained using the ESRGAN [47]. It can be noticed

from the Fig. 1 that the proposed method obtains better SR

image in terms of preserving high-frequency details when

compared to similar approach using ESRGAN method [47].

The key contributions of the work can therefore be summa-

rized as:

• Many of unsupervised SR methods based on deep learn-

ing [32, 50] adopt cycle consistency loss [55] in order to

obtain the real-world distributions but do not fully cap-

ture possible variations.

• The proposed GAN based method is trained in an end-

to-end manner without additional networks to estimate

the real-world data distribution in contrast to earlier work

[32] in a cycle GAN [55] trained in a sequential manner.

• A new loss function using the Mean Opinion Score

(MOS) is additionally introduced into the GAN frame-

work to improve the superiority of the perceptual quality.

The effectiveness of new loss is also verified experimen-

tally showing committed improvement in the SR results

when compared to same approach without the custom

loss in the proposed SR method.

In the rest of the paper, Section 2, reviews a set of existing

deep learning based SR methods. The detailed description

of the proposed method and the rationale is presented in

Section 3. The experimental results are presented in Sec-

tion 4 following the conclusions in Section 5.

2. Related Work

A number of traditional SR methods [13, 38, 18, 10,

27, 49] have been proposed after first SR approach intro-

duced by Tsai and Huang [46]. Given in many cases there is

only single image available for a specific task, many works

have focused on the Single Image based Super-Resoulution

(SISR). In this direction, the success of deep learning,

specifically Convolutional Neural Networks (CNN) has

been exploited in SISR to obtain superior SR images by

modelling the relationship between LR and HR images

learnt from available large datasets. We therefore provide

a breif overview of relevant SR approaches proposed in the

recent years.

The first CNN based framework for SR was proposed

by Dong et al. [10] which was termed as Super-Resolution

Convolutional Neural Network (SRCNN). The approach

consisted of shallow CNN architecture with 3 convolutional

layers. Later on, the same architecture was modified in

order to obtain better SR image by increasing the depth

from 3 to 20 layers in VDSR method [24]. Both the works

[10, 24] used a bicubically interpolated LR input image for

learning the missing high-frequency details in the SR im-

age using deep models and the approaches are referred as

pre-upsampling based SR methods. The other representa-

tive works based on such concept are reported in [25, 44].

In contrast, a set of CNN based SR methods adopt post-

upsampling strategy in order to obtain SR methods [11, 40].

In addition to that, some SR works are also based on pro-

gressive upsampling idea in order to obtain SR image for

higher upscaling factor [27, 20]. Recently, many SR ap-

proaches such as SRFeat-M [36], MSRN [29], EDSR [30]

and RCAN [53] have obtained state-of-the-art performance

in SISR task using CNN models. These methods use L1 or

L2 loss in order to achieve better quantitative metrics such

as PSNR and SSIM of the SR results.

Furthermore, the use of adversarial training [19] is also

exploited in many SR approaches in order to improve the

perceptual quality of SR image. Ledig et al. [28] proposed

single image SR using GAN termed as SRGAN by using a

deep residual network (ResNet) with skip connection [22].

Following this work, many successful GAN based models

have been proposed in the literature [37, 47] to further en-



hance the quality of SR image.

As mentioned earlier, all the aforementioned deep learn-

ing based SR approaches are trained in highly supervised

manner in which LR images are synthesized from bicubic

downsampling and hence they result in domain shift issue

[32] simply by modelling LR-HR domain shift. Alterna-

tively, true LR-HR pairs can be used to train the deep mod-

els for SR. In this direction, Cai et al. [6] introduced RealSR

dataset of true LR-HR images and also introduced the chal-

lenge on above dataset in NTIRE 2019 [5]. Many represen-

tative works on RealSR dataset have been reported recently

[41, 9, 14, 16, 12, 48, 26]. However, creating large scale true

LR-HR pairs is a cumbersome task which requires specially

designed hardware to acquire same scene with varying res-

olutions and with zero registration error. Further, such dat-

sets are limited with selected upscaling factors and hence it

is very expensive to scale for varying scaling factors.

To circumvent this problem, Lugmayr et al. [32] intro-

duced unsupervised way to train the CNN model for SISR

task. In their method, first they obtain distribution of real-

world images (e.g., sensor noise and other artifacts) in bicu-

bic downsampled LR images by using cycle consistency

loss [55]. Later, such LR along with it’s true HR image were

used to prepare datset which is then used to train the SR net-

work to obtain final SR result. In order to reduce the severe

over-fitting and poor generalization problems, they trained

their cycle GAN frameworks in sequential manner. Simi-

larly, authors in [50] use the concept of unsupervised learn-

ing based on cycle GAN [55] to obtain SR images. Here,

authors used two sets of cycle GANs in order to train the SR

network. First cyele GAN is used to obtain noise-free LR

observation and in the second step another cycle GAN net-

work is used to obtain final SR image. To further develop

such novel idea of unsupervised learning for SR, Lugmayr

et al. [32] introduced real-world SR challenge based on

above concept in ICCV 2019 (called AIM 2019 Challenge

[33]) and in conjunction with CVPR 2020 (called as NTIRE

2020 Real-world SR Challange [34]). Further, Fritsche et

al. [15] use the ESRGAN [47] model to learn features re-

lated to low and high frequencies separately in the LR image

and proposed an SR approach for Real-world data which

was a winner in AIM 2019 SR challenge [33]. As a special

case, authors in [4] learn the downsampling process in order

to better generalize for face recognition alone by using real

face images and the face priors to super-resolve it.

Many SISR approaches [35, 39, 54, 21] are also based

on the concept of blind SR in which information related to

degradation process are not provided. They estimate the

blur kernel in traditional way using probabilistic framework

[35, 39] and also by using deep models [54, 21] recently.

Lastly, a CNN based method to train the model from LR

image itself was proposed later in [42]. However, the ap-

proach requires downsampled LR image of known kernel.

2.1. Constraints Noted from Related Works

Based on the review of current unsupervised SR methods

for SISR, we note the following constraints with existing

works:

• Many of unsupervised SR methods based on deep learn-

ing [32, 50] adopt cycle consistency loss [55] in order to

obtain the real-world distributions.

• The blind SR methods in [54, 21] rely on the estimation

of blur kernel in order to generate LR image of real-world

distribution.

• The SR approach in [42] is based on training from given

LR itself; however, it requires known downsampling ker-

nel in order to generate faithful SR results.

3. Proposed Method

To overcome above constraints of the existing research

works in unsupervised SR, we propose a GAN based deep

learning architecture. In Fig. 2(a), we depict the architec-

ture design of the proposed model which basically consists

three networks: Generator, Discriminator and Quality As-

sessment (QA) networks. The generator network generates

super-resolved images with desired upscaling factor (fixed

to 4 in this work). The unpaired SR and HR images are pro-

vided to the discriminator network. While the aim of dis-

criminator network is to discriminate the content of HR im-

ages from the SR images, the standard loss involved in GAN

helps generator network to force the content of LR image to

match it with that of HR image. Additionally, the QA net-

work is used to assess the quality of SR image in terms of

newly introduced Mean Opinion Score (MOS) based loss

and hence it also helps generator network further to realize

better perceptual quality of SR image. Inspired by [4], we

use bicubically upsampled LR image with the SR image to

obtain the content loss (i.e., L1 norm). Such loss helps the

SR image to preserve the content of LR observation in the

final SR image. The individual description of each network

is elaborated in the following paragraphs.

Generator Network (G):

The architecture design of the generator network is dis-

played in Fig. 2(b). The design of the generator network

is categorised into three modules: Low-Frequency Fea-

ture Extraction (LFFE), High-Frequency Feature Extraction

(HFFE) and Reconstruction (REC) modules. The LFFE

module consist one convolution layer with kernel size of

5 and feature maps of size 32 with stride value of 1. The

LFFE module extracts the low-frequency details from the

LR image (ILR) as,

Ilow−freq = fLFFE(I
LR), (1)

where, fLFFE denotes the operation of the LFFE module.

In order to obtain high-frequency details pertaining to

edges and structures from the feature maps obtained from



(a) Proposed architecture for USISResNet. (b) Generator Network.

(c) Discriminator Network. (d) Quality Assessment (QA) network.

Figure 2: The architecture design of the proposed network USISResNet for SISR.

LFFE module, the feature maps of LFFE module are passed

through the HFFE module. The HFFE module consists of

m = 24 number of Residual-in-Residual (RIR) blocks and

one long skip connection. As depicted in Fig. 2(b), each

RIR block consists individual residual network whose de-

sign has several convolution layers, short skip connection

and one Channel Attention (CA) module. Along with long

skip connection, the short skip connection in RIR block

is utilized to reduce the vanishing and exploding gradient

problems. The CA module is employed to re-scale the

channel-wise features adaptively for better generalization

of the proposed generator network which is inspired from

[53]. The output feature maps of the HFFE module are rep-

resented as,

IHFFE = fHFFE(Ilow−freq). (2)

Here, the fHFFE denotes the function of the HFFE mod-

ule. Finally, the SR image is reconstructed through the re-

construction module (REC). Specifically, this module has

two upsampler blocks followed by two convolution layers

to obtain the residual SR image as indicated by

ISR
residual = fREC(IHFFE), (3)

where, fREC indicates the reconstruction function of the

REC module. Additionally, we also implement the global

residual path in which input LR observation (ILR) is passed

through a bicubic interpolation layer with upscaling factor

4 which produces the super-resolved image (ISR
GRL). Such

Global Residual Learning (GRL) helps the network to learn

the identity function for ILR and it also stabilizes the train-

ing process. Finally, the network generates the SR image

(ISR) at upscaling factor of 4 as defined by,

ISR = ISR
residual + ISR

GRL. (4)

Discriminator Network (D):

The design of the Discriminator network is displayed in

Fig. 2(c). Here, we follow the guidelines suggested by Rad-

ford et al. [37] to design it’s architecture. It consists of

eight convolution layers followed by Global Average Pool-

ing (GAP) layer and two Fully Connected (FC) layers. The

strided convolution layers are used with the stride value of

2 whenever the number of feature maps are doubled. The

Leaky ReLU activation function with leaky constant vari-

able of 0.2 is used in all convolution layers except in FC

last layer. The use of GAP pooling layer instead of the flat-

tening layer helps to reduce the number of training parame-

ters. The discriminator network takes unpaired SR and HR

images as input and gives probability value of the corre-

sponding image as output. Finally, this probability value is

used in standard GAN based adversarial loss function and

update the discriminator and generator networks to improve

the generalization of both the networks.

Quality Assessment (QA) network:

In the proposed method, we incorporate a novel loss based

on Mean Opinion Score (MOS) in order to improve the per-

ceptual quality of SR image. Simultaneously, it also helps

to suppress the unpleasant noise in the generated SR im-

ages through the proposed Quality Assessment (QA) CNN



network whose design is depicted in Fig. 2(d). It has sev-

eral VGG blocks followed by three FC layers and the VGG

blocks are made up of two convolution layers. As indicated

in figure, in initial two FC layers we use dropout in order to

overcome with the problem of over-fitting of weights during

training process. In QA network, there are two branches at

the beginning of the QA network called as content and in-

formation branches. Both branches consists of four VGG

blocks. In order to extract the noise details from the input

image, the output of the content branch is subtracted from

the output of the information branch. Instead of flattening

layer, the adaptive GAP layer is utilized to reduce the train-

able parameters of the QA network from 30M to 5M . This

network is trained using KADID-10K dataset [31] which

consists different noisy images with corresponding MOS

values and hence, such design of QA network helps to im-

prove the MOS value of the SR image. The trained QA

network takes the generated SR image as input and gives

the quality score based on MOS as output. Then, this score

is used in the proposed GAN model as quality loss function

to further improve the fidelity of of the generated SR image.

Loss functions

The proposed model is trained using different loss func-

tions. The overall loss function is a weighted combina-

tion of pixel-wise content loss (i.e., lcontent), Total Varia-

tion (TV) loss (i.e., ltv), the proposed Quality Assessment

(QA) loss (i.e., lqa) and standard GAN losses (i.e., lgen and

ldisc) which can be represented as,

Loss = λ1 lcontent+λ2 ltv+λ3 lqa+λ4 lgen+ ldisc, (5)

where, λ1, λ2, λ3 and λ4 indicate associated weighting fac-

tors of each loss. The details of these loss functions are as

follows:

Content loss (lcontent): We use L1 pixel wise content loss

between the output of the generator network (i.e., ISR) and

the LR image after passing through the bicubic upsampling

operation (i.e, Iup). We impose such an idea from [4] in

order to enforce the output of the generator network to pre-

serve the similar content with the LR image in unsupervised

learning which is mathematically defined over N number of

training samples as,

lcontent =
∑

N

∑

i,j

‖ISR
i,j − I

up
i,j ‖1. (6)

Total variation (TV) loss (ltv): In order to eliminate the

noise from the generated SR image, we also use the To-

tal Variation (TV) loss function [8] along with other losses.

The TV loss is the sum of the absolute differences for neigh-

boring pixel-values in the input images. It can be repre-

sented mathematically as,

ltv =
∑

N

∑

i,j

‖ISR
i+1,j − ISR

i,j ‖1 + ‖ISR
i,j+1 − ISR

i,j ‖1. (7)

Quality Assessment (QA) loss (lqa): As mentioned earlier,

to improve the perceptual quality by reducing the unpleas-

ant noise details from the generated SR image, QA loss

is proposed in a manner to improve the quality of SR im-

age. The QA network is trained on KADID-10K dataset

[31] having MOS values of different noisy images within

the scale of 1 − 5 where maximum value indicates best vi-

sualization. These MOS values are used as label in the pro-

posed quality loss function. In the proposed method, the

predicted MOS value is maximized in order to improve the

MOS score on the SR images. The proposed QA loss func-

tion (i.e., lqa) is defined on the generated SR image as to

minimize overall loss in Equation (5) as,

lqa =
∑

N

(5−Q(ISR)), (8)

where, Q(ISR) represents MOS value of SR image ob-

tained from the proposed QA network.

Standard GAN losses (lgen and ldisc): In order to improve

the perceptual quality of the generated SR image and match

the it’s quality with clean HR image (IHR), we use the

standard GAN loss functions (i.e., lgen and ldisc). In the

adversarial GAN training, the generator network is trained

to learn the mapping between LR to HR image space. The

generator loss function based on N number of training sam-

ples is given as,

lgen =
∑

N

− log(D(G(ILR))). (9)

Simultaneously, the discriminator network is also trained as,

ldisc =
∑

N

[

− log(D(IHR))− log(1−D(G(ILR)))
]

.

(10)

Here, D(IHR) is the probability value of clean HR image

and D(G(ILR)) is the probability of the reconstructed SR

image from the LR observation.

4. Experimental Analysis

To validate the effectiveness of the proposed model, var-

ious experiments1 have been carried out on NTIRE-2020

Real-world SR Challenge validation (Track-1) as well as

testing datasets (Track-1 and Track-2) [34] and it’s detailed

description is presented in this section. In this challenge,

to perform unsupervised training, the unpaired LR and HR

images are provided from two different datasets of Flickr2k

[30, 45] and DIV2K [1], respectively. The total number of

images in above datasets are 2650 and 800 which are used

for training of the model. Additionally, the LR images from

Flickr2k dataset [30, 45] are given with unknown degrada-

tion in order to apply real-world data degradation. How-

ever, such degradation remains unknown to the model dur-

ing training and hence it provides practical scenario of un-

1All the experiments are performed on a computer with Intel Xeon(R)

CPU with 128GB RAM and NVIDIA Quadro P5000 GPU with 16GB

memory.



supervised learning with real-world images. For validation,

100 number of LR-HR image pairs from DIV2K dataset [1]

had been employed as provided by organizers of NTIRE-

2020 Real-world SR Challenge [34].

4.1. Hyperparameter Tuning

In the proposed model, number of filters are set to the

value of 32 in Generator, Discriminator and QA networks.

Further, it is optimized with the weighted combination of

different loss functions as given by Equation (5) in which

weighting factors such as λ1, λ2, λ3 and λ4 are set empiri-

cally to 0.1, 5× 10−11, 2× 10−6 and 10−3 values, respec-

tively. During training, the LR images are augmented with

random rotation of 0◦ or 90◦, random horizontal flipping

and random cropping operations. The proposed model is

optimized using the Adam optimizer with the learning rate

of 10−4 and it is trained upto 1, 20, 000 number of iterations

with batch size of 32. The number of trainable parameters

in Generator and Discriminator networks of the proposed

model are 5.1M and 1.3M, respectively

Additionally, the proposed QA network is trained sep-

arately on KADID-10K dataset [31] which is the largest

dataset for image quality assessment with 25 different kinds

of artificial noise degradation. This dataset consists 10124
total number of images which has been divided into 7124,

1000 and 2000 number of images for training, validation

and testing, respectively. The QA network is trained upto

50, 000 number of iterations with batch size of 16 and it is

optimized with Adam optimizer. The learning rate in this

training is set to 2× 10−4 which is decayed by half at 20%,

40%, 60% and 80% of total number of iterations. During

the training process, the use of dropout in the architecture

of the QA network helps to overcome with the problem of

over-fitting of the weights. Once the QA network is trained,

then it is used as pre-trained model in the proposed model

in order to find quality loss for the generated SR image. The

number of training parameters of the proposed QA network

is 5.35M.

4.2. Result Analysis

Here, we present the qualitative and quantitative mea-

surements of the proposed and other CNN based state-of-

the-art exiting SISR methods. First, the effectiveness of the

QA network and TV loss in the proposed model are dis-

cussed and later, result comparisons of the proposed method

with other state-of-the-art methods is depicted.

4.2.1 Effectiveness of the QA Network

In the proposed model, we introduce a novel QA network in

order to improve the perceptual quality of SR images with

simultaneous elimination of unpleasant noise details in the

SR image. In this subsection, we justify it’s effectiveness by

conducting experiments on the testing dataset of the Kadid-

10K [31] and validation set of NTIRE 2020 Real-world SR

Figure 3: The performance of QA network in terms of ac-

tual and predicted MOS score values on KADID-10K [31]

testing dataset.

(a) w/o QA Net (b) w/o TV loss (c) proposed (d) Ground-truth

Figure 4: The SR results obtained using the proposed

method (a) without QA network, (b) without TV loss and

(c) proposed. (d) The ground-truth HR image. (better visu-

alization in zoomed images)

Challenge [34]. As mentioned earlier, the proposed QA

network is trained on Kadid-10K [31] dataset and then the

obtained pre-trained QA network is used in training of the

proposed GAN model via quality loss function. The QA

network takes an image and gives the value of MOS score

of that image. In Fig. 3, we display the graph between the

predicted and actual MOS scores on Kadid-10K [31] testing

dataset. Ideally, this relation must be linear with unit slope

when it exactly fits to data with quantitative measure Spear-

man’s Rank Correlation Coefficient (SROCC) [43] value of

1. However, it can be observed from the Fig. 3 that close

linearity with SROCC value of 0.89 (very close to ideal) is

obtained using the proposed QA network.

Furthermore, to understand the role of the QA network

in the proposed model, we conduct an additional experi-

ment on NTIRE 2020 Real-world SR Challenge validation

dataset in which the proposed model is trained without us-

ing QA network and hence without it’s quality loss func-

tion in the GAN framework. We present the qualitative and

quantitative analysis of this experiment in Fig. 4(a) and in

Table 1, respectively. One can notice from Fig. 4(a) that SR

images obtained using proposed method without QA net-



Table 1: The quantitative comparison to validate the effec-

tiveness of the proposed QA network.
Proposed Model PSNR ↑ SSIM ↑ LPIPS ↓
Without QA Network 20.77 0.5333 0.425

Proposed 21.71 0.5895 0.375

work have more structural degradation in addition to noise

details when compared to that of the SR results obtained

with QA network i.e., proposed method (see Fig. 4(c)).

Furthermore, Table 1 shows the quantitative comparison in

terms of PSNR, SSIM and LPIPS measures obtained from

the SR results of the proposed model trained with and with-

out QA network. Similarly, it can be observed here that

the proposed model trained using the QA network achieves

better quantitative measurements as compared to that of the

proposed model trained without the QA network.

4.2.2 Effectiveness of the TV loss function

We further demonstrate the impact of TV loss in the pro-

posed method by conducting an additional experiment on

the validation set of NTIRE-2020 Real-world SR challenge

and it’s results are depicted in Fig. 4(b). As noted from ear-

lier works, TV loss is used to remove the unwanted noisy

pixels from the SR image [8] and our experiments verify the

same as shown in from Fig. 4(b). The SR images obtained

using the proposed method without TV loss are relatively

noisier than that of obtained with the proposed method (i.e.,

trained with TV loss function, see Fig. 4(c)) and hence we

use the same in the proposed method.

4.2.3 Comparison with State-of-the-art Methods

In order to see the visual improvement obtained using the

proposed method, we compare SR results obtained using

the proposed model with three different state-of-the-art SR

models named as ESRGAN [47], RCAN [53] and MsDNN

[17]. We choose these methods based on following criteria:

Currently, the ESRGAN model [47] is a GAN based state-

of-the-art SISR method which is proposed to improve the

perceptual quality of the SR image and it is also a winner in

PIRM 2018 [23]. Apart from GAN framework, the RCAN

model [53] is CNN based state-of-the-art SISR method. The

MsDNN model [17] is the state-of-the-art method for Re-

alSR dataset [6] proposed recently in CVPR 2019 work-

shops. The SR results of these methods are obtained us-

ing their pre-trained model. Regarding training of these

methods, the ESRGAN [47] and RCAN [53] have been

trained in their pre-trained model with single HR dataset

in which LR image is prepared from the bicubic downsam-

pling as referred in [32]. Similarly, the MsCNN pre-trained

SR method [17] is trained on RealSR dataset [6].

The Quantitative Evaluation

We further compare the SR results in terms of distortion

measures (i.e., PSNR and SSIM). As noted from earlier

Table 2: The quantitative comparison of the proposed and

other exiting SR methods on NTIRE 2020 Real-world SR

Challenge validation dataset (Track-1).
Method PSNR ↑ SSIM ↑ LPIPS ↓
MsDNN [17] 25.08 0.7079 0.482

RCAN [53] 25.31 0.6402 0.576

ESRGAN [47] 19.04 0.2422 0.755

Proposed 21.71 0.5895 0.375

Table 3: The quantitative measurements obtained using the

proposed method on NTIRE-2020 Real-world SR Chal-

lenge Track-1 testing dataset.
PSNR ↑ SSIM ↑ LPIPS ↓

Proposed 21.22 0.576 0.397

works, the distortion measures have not been more ef-

fective when considering perception based SR comparison

[23, 3, 34]. We therefore compare these methods in terms of

perception based metric called LPIPS [51]. The lower value

of LPIPS represents better perceptual quality of SR image.

Table 2 shows such quantitative comparison of the SR re-

sults obtained using the proposed along with other state-of-

the-art methods experimented on NTIRE-2020 Real-world

SR challenge Track-1 validation dataset. It can be observed

from the Table 2 that the proposed model attains 0.375
LPIPS value on validation dataset which indicates that the

proposed method performs better when compared to other

existing SR methods.

The Fidelity of SR Results

In order to verify the fidelity of the proposed SR technique,

we show the visual comparison with three different datasets.

We use NTIRE-2020 Real-world SR Challenge Track-1 val-

idation dataset in which original HR images are available.

Additionally, we also show SR results obtain on the testing

datsets of NTIRE-2020 Real-world SR Challenge Track-

1 (called Image Processing Artifacts) and Track-2 (called

Smartphone Images) in which original HR images are not

provided. In Fig. 5(a), we show the visual comparison of

a single image from NTIRE-2020 Real-world SR challenge

Track-1 validation dataset. Here, for better visualization,

a zoomed-in patches of SR results of the proposed as well

as MsDNN [17], ESRGN [47] and RCAN [53] models are

depicted. It can be observed from the Fig. 5(a) that the

proposed model exhibits better high-frequency details with

less noise artifacts than the other models and it also gener-

ates SR image which is close to the original HR image.

Moreover, the SR results obtained using proposed and

other models on NTIRE-2020 Real-world SR Challenge

Track-1 and Track-2 testing datasets are displayed in

Fig. 5(b) and Fig. 5(c), respectively. One can observe in

these figures that the existing state-of-the-art methods con-

tain the impact of additional noise and do not preserve the

high-frequency details. However, the proposed model pro-



(a) NTIRE-2020 Real-world SR Challenge Track-1 validation dataset

(b) NTIRE-2020 Real-world SR Challenge Track-1 testing dataset (Image Processing Artifacts)

(c) NTIRE-2020 Real-world SR Challenge Track-2 testing dataset (Smartphone Images)

Figure 5: The comparison of SR results obtained using the proposed and other exiting SR methods on different datasets.

duces better perceptual SR images with more preservation

of texture details and with reduction of unpleasant noisy

pixels than that of the other models. Furthermore, in Ta-

ble 3, we display the quantitative measurements in terms of

PSNR, SSIM and LPIPS metrics obtained from the NTIRE-

2020 Real-world SR challenge Track-1 testing dataset 2.

5. Conclusion

In order to mitigate the issue of bicubic downsampling in

the supervised training, in this paper, we propose an SR ap-

proach with unsupervised learning in standard GAN frame-

work. Additionally, we also introduce novel loss based on

Mean Opinion Score (MOS) in order to further enhance the

perceptual quality of the SR image. The proposed method

2The approach was participated to Track-1 and obtained 14th position

based on LPIPS, and 19th position on the basis of PSNR and SSIM.

effectively generalizes the characteristic of real image ver-

ified on NTIRE 2020 validation and testing datasets elim-

inating the need for true LR-HR pairs. The proposed ap-

proach has been validated using number of performance

measures. The generalizable nature of the proposed ap-

proach can be exemplified with the results obtained on

NTIRE 2020 Real-world SR Challenge datasets evaluated

independently.
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