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Abstract

Deep Learning (DL) has become prevalent in today’s im-

age processing research due to its power and versatility. It

has dominated the Single Image Super-Resolution (SISR)

field with its ability to obtain High-Resolution (HR) images

from their Low-Resolution (LR) counterparts, particularly

using Generative Adversarial Networks (GANs). Interest in

SISR comes from its potential to increase the performance

of supplementary image processing tasks such as object de-

tection, localization, and classification. This research ap-

plies a multi-agent Reinforcement Learning (RL) algorithm

to SISR, creating an advanced ensemble approach for com-

bining powerful GANs. In our implementation each agent

chooses a particular action from a fixed action set com-

prised of results from existing GAN SISR algorithms to up-

date its pixel values. The pixel-wise or patch-wise arrange-

ment of agents and rewards encourages the algorithm to

learn a strategy to increase the resolution of an image by

choosing the best pixel values from each option.

1. INTRODUCTION

Single Image Super-Resolution (SISR) is a vague prob-

lem that poses challenges in many computer vision applica-

tions. In this expanding problem we attempt to reproduce

High-Resolution (HR) images from their Low-Resolution

(LR) counterparts. In past years, SISR research revolved

around Deep Learning (DL) algorithms that attempted to

directly map LR input images to HR output images with a

single pass through the network. Hundreds of unique Gen-

erative Adversarial Networks (GANs) have been applied to

SISR that differ in their architectures, loss functions, and

up-sampling techniques. They all share underlying funda-

mentals such as adversarial learning, Convolutional Neural

Networks (CNNs), and attempting to mimic a certain distri-

bution.

Instead of mapping LR images to their HR counterparts

or imitating a distribution, our method adopts a strategy to

increase the resolution of an image by selecting a certain

action for each pixel or patch of pixels, based on pixelRL

[4]. PixelRL is a multi-agent Reinforcement Learning (RL)

algorithm where each pixel is modified by an independent

agent. Agents choose particular actions to update their own

pixel values. Being a RL technique, pixelRL permits the

ability to analyze the output of the network through multi-

ple iterations, referred to as timesteps. At each timestep the

agent can choose to change its decision or stay the same.

Furuta et al. applied this algorithm to three image process-

ing tasks: denoising, restoration, and local color enhance-

ment [4]. In our research we explore the possibility of ap-

plying and modifying pixelRL for the SISR problem.

The contributions of this work are as follows:

• Proposing a SISR RL network, which employs multi-

ple agents. The network is given a bicubicly upsam-

pled image and learns a policy for each pixel in order

to maximize the total reward.

• Proposing an agent-per-patch configuration, where

agents replace square patches of pixels rather than in-

dividual pixels. We attempt to minimize a “noisy” ef-

fect left behind from the agent-per-pixel configuration.

• Proposing a novel action set consisting of a number of

GAN outputs, essentially creating an advanced ensem-

ble approach to SISR.

• Proposing an evaluation method to determine how well

agents perform compared with the naive method of

simply recreating the image from the overall “best” op-

tion (“best” from an image level perspective).

Other SISR works, pixelRL, and some of its uses are de-

scribed in Section 2. Our proposed method is described in

Section 3 and applications and results of the method are

presented in Section 4. Finally, the paper is concluded in

Section 5.

2. RELATED WORKS

GANs were first introduced by Ian Goodfellow et al., in

2014, and were applied to small grayscale and color im-

ages [6]. Consequently, GANs have become an extremely



hot topic in DL research due to their impressive results

and wide application range including: image editing [16]

and texture removal (such as rain [25]) , stenographic secu-

rity [18], data generation for other DL applications [20],

attention prediction [15], and more. In 2016, Christian

Ledig et al. proposed the SRGAN algorithm where they

applied GANs to SISR [9]. Their generator consisted of 16

fully-convolutional residual blocks, ending with two Pix-

elShufflers to increase the image dimension by a factor

of 4. Their discriminator network consisted of 8 fully-

convolutional blocks with batch normalization (in blocks 2-

8) and LeakyReLU activations, followed by dense layers to

produce the final real/fake prediction. To create more per-

ceptually plausible images, the standard mean squared error

(MSE) loss was replaced with a VGG loss, based on fea-

ture map activations from particular layers of the 19-layer

VGG network, and an adversarial loss. Although they did

not achieve state-of-the-art PSNR or SSIM results, they set

a new standard for photo-realistic quality by achieving the

highest mean opinion score (MOS).

In the last few years, a number of image processing prob-

lems have been tackled with deep RL. Zhuopeng Li and Xi-

aoyan Zhang developed an image cropping algorithm which

utilized collaborative deep RL [11]. Optimal cropping ac-

tions were chosen based on information from two different

agents. Both agents were given a vector of all previous ac-

tions and an image. The first agent’s image was the current

crop window of the original image while the second agent’s

image was the current crop window of the emotional at-

tention map associated with the original image. On two

different datasets (FCD and HCD), Li and Zhang achieved

state-of-the-art results. QingXing Cao et al. used deep RL

for face hallucination, a specific case of SISR that applies

only to face images [2]. A single agent determined the best

patch of an image to enhance, via a custom CNN. The en-

hanced patch was then inserted back into the LR image and

the agent selected a new patch. The process repeated until

the entire image was enhanced. Their results showed that

the order of patch enhancement affected the quality of the

final image.

Ryosuke Furuta et al. used a novel multi-agent deep RL

algorithm for image denoising, restoration, and color en-

hancement in which each pixel had its own agent, called

pixelRL [4]. The action set for the denoising and restora-

tion tasks included a number of standard image processing

filters, pixel value increment and decrement, and “do noth-

ing”. For color enhancement the action set included ad-

justing contrast, brightness, saturation, color balance, and

“do nothing”. All tasks used the same CNN architecture,

shown in Figure 1. Rewards were given to agents based

on the MSE difference between the current image (state)

and the target image and the previous image (state) and the

target image (analogous to the L2 loss). Their denoising re-

Figure 1. pixelRL FCN architecture [4].

sults (PSNR) were state-of-the-art for salt-and-pepper noise

with noise densities of 0.5 and 0.9. Their restoration results

(PSNR and SSIM) were also state-of-the-art.

As of this writing, pixelRL has been adapted to two ad-

ditional problem settings: MRI reconstruction [10] and 3D

medical image segmentation [12]. According to Wentian Li

et al., the key benefit of applying pixelRL to MRI recon-

struction is its interpretability. Typical DL methods create

a complex mapping from corrupted images to reconstructed

images, making it nearly impossible for people to under-

stand exactly how the image is reconstructed. In contrast,

pixelRL uses a well-defined action set, allowing people to

see exactly how each pixel of the image has been modi-

fied from corrupted to reconstructed. Similar to the origi-

nal pixelRL, Li et al. used standard filters in their action

set, along with “do nothing” and a pixel value decrement.

They included a number of sharpening filters (Laplace, So-

bel, and unsharp mask) with learnable continuous parame-

ters. The original pixelRL network architecture, shown in

Figure 1, was modified to accommodate these parameters

by adding a third branch to the network after the split. Re-

wards were given based on the absolute error between the

original image (state) and the target image and the final im-

age (state) and the target image (analogous to the L1 loss).

This method achieved state-of-the-art results for NMSE and

SSIM on the fastMRI dataset with a random 40% mask [10].

Xuan Liao et al. adapted pixelRL to 3D medical im-

age segmentation by using voxel-wise agents and rewards.

They also included user interaction to aid in the segmen-

tation process, where users provide hints (such as points

or bounding boxes) to the model. The network architec-

ture used was nearly identical to that in pixelRL, shown

in Figure 1, with the main difference being that the in-

put to the final layer in the policy and value branches was

a concatenation of all previous layers’ outputs. Inputs to

the network included a 3D image, the previous segmen-

tation probabilities, and a user hint map. The new seg-

mentation probabilities were created by tweaking the pre-

vious ones. As such, the action set consisted of various

values that agents could use to modify the previous prob-

abilities. With an output consisting of probabilities, a cross-

entropy gain-based function was used to calculate the re-

wards based on the improvement from the previous output



to the new output. This method achieved state-of-the-art

results across three different datasets (BRATS2015, MM-

WHS, AND NCI-ICBI2013) [12].

3. PROPOSED METHOD

PixelRL utilizes the asynchronous advantage actor-critic

(A3C) algorithm [14]. A3C is a deep RL algorithm that uses

multiple network instances that each have their own param-

eters and copy of the environment. This allows each in-

stance to train in parallel and contribute to the shared learn-

ing of the global network. Actor-critic methods utilize two

networks, a policy network and a value network, that si-

multaneously operate on the current state, s(t). The value

network, known as the critic, outputs the expected total re-

wards, V (s(t)), from the current state, which exhibits the

quality of the current state [4]. The policy network, known

as the actor, calculates the probabilities of the agent choos-

ing each action, π(a(t)|s(t)), when in the current state [4].

PixelRL employs a Fully Convolutional Network (FCN)

which rearranges the agents into a 2D space where they can

share parameters [4]. This 2D representation facilitates the

reward map convolution learning method proposed by Fu-

ruta et al [4]. In this method, the receptive field of an agent

is treated as a weighted convolutional filter that influences

the policies and values of neighboring agents. Figure 1 il-

lustrates the pixelRL network architecture which applies a

Gated Recurrent Unit (GRU) to the penultimate layer of the

policy network. Cho et al. introduced the GRU in 2014 to

implement a layer with memory that does not suffer from

the vanishing gradient problem [3]. The last layer of the

policy network produces a feature map for each action. A

softmax function is applied across each of the feature maps

to provide a probability distribution over the potential ac-

tions for each agent [4]. During training, the distribution

is stochastically sampled to extract a single action for each

pixel, while during testing the network always chooses the

most probable action.

The pixelRL policy differs from traditional RL policies

in that each pixel has an agent. Thus, the policy becomes

πi(a
(t)
i |s

(t)
i ), where a

(t)
i and s

(t)
i are the action and state at

timestep t of the i-th agent [4]. The number of actions come

from the action set A predefined by the authors. In our case

the action set consists of pixel value increment and decre-

ment, “do nothing”, and choosing pixel values from images

upsampled by numerous GAN SISR algorithms. In the cur-

rent implementation, the increment and decrement actions

are applied to all channels of a pixel. PixelRL applied the

filters during execution, however they could have used pre-

filtered images, which inspired our actions. This idea is a

novel contribution as we change the action set to a number

of pre-computed GAN outputs. These actions are illustrated

in Figure 2, where the colors will be used to create action

maps for each timestep in subsequent figures (see Figure 3

Figure 2. SISR action set: 1. Subtract 1 from the value of all

channels of the pixel, 2. Do not change the pixel value, 3. Add

1 to the value of all channels of the pixel, 4. Substitute pixel

value with that of the Enhanced Deep Super-Resolution network

(EDSR), 5. Substitute pixel value with that of the Enhanced Super-

Resolution GAN (ESRGAN), 6. Substitute pixel value with that of

the Enhanced Super-Resolution GAN, PSNR focused (ESRGAN-

PSNR), 7. Substitute pixel value with that of the Progressive

Perception-Oriented Network (PPON).

HR
PSNR/SSIM

t = 0 t = 1 t = 2 t = 3

bicubic input

22.75/0.808 24.90/0.908 26.02/0.915 26.15/0.916

Figure 3. Super Resolution process and action map at each

timestep for Urban100 image img 090 (RGB color space, pixel-

wise agents, MSE-based rewards). The colors represent the

agent’s choice of options from Figure 2, essentially replacing the

original image pixel with a different option.

for an example). Selecting the GAN algorithms began with

a survey of current SISR methods. Their results were com-

pared and ranked according to PSNR and SSIM values. The

GANs selected for our action set [8, 13, 22] had the highest

values amongst all of the algorithms with publicly available

code.

Here the agent transitions from state to state by choos-

ing an action and acquiring a reward to assist in learning an

efficient policy, π = [π1, ..., πN ], where N is the total num-

ber of pixels/agents in an image [4]. The reward function

compares the output and previous images at each timestep

with the target image, described as:

r
(t)
i = (Itargeti − y

(t−1)
i )2 − (Itargeti − y

(t)
i )2, (1)

where r
(t)
i is the reward for each pixel at a given timestep,

I
target
i is the original HR image, y

(t−1)
i is the image from

the previous timestep, and y
(t)
i is the image from the cur-

rent timestep [4]. Equation 1 reveals how the squared error

between each pixel and its target has changed after taking

a certain action [4]. If the given agent chooses an action

that improves the state, the reward is positive. If the action



makes the state worse, the reward is negative. Herein, we

attempt to maximize the total reward in Equation 1 by mini-

mizing the squared error between each state and the original

image. This forces the output image to resemble the original

HR image.

It is important to note that the network does not alter

the dimensionality of the input image. Therefore, the im-

age being fed through the network has to be pre-processed

to match the scale of the desired output. In our work we

upsample by a scaling factor of 4 via bicubic interpolation,

which contributes to the novelty of our algorithm as we ap-

ply RL to SISR. This initial upsampling functions as its own

action that lays the foundation of the output image. Figure

2 illustrates the action of “do nothing” which, for timestep

1, in effect is choosing to preserve the bicubic pixel value

instead of replacing it with the pixel value of another option

in the action set.

4. EXPERIMENTS and RESULTS

The proposed network is trained on the DIV2K dataset

[1], consisting of 800 high definition HR training images.

For memory retention and speed, the network is trained on

60×60 random crops of the 800 training images. These im-

ages are initially blurred using a Gaussian filter, which ap-

proximates real-world distortions in the image capture pro-

cess by simulating a camera’s point spread function [19]. A

standard deviation of σ = 1.3 is used in each of the im-

ages’ spatial dimensions, as per the advice of [24]. After

being blurred, they are bicubicly downsampled by a factor

of 4 and immediately upsampled using the same interpola-

tion method. Note that the results in Tables 1 and 2 for the

four GAN algorithms do not match those in the original pa-

pers since the authors did not make any reference to using

a Gaussian filter in the creation of their LR images. The

bicubicly upsampled images are fed to the network in the

initial timestep. This initial image acts as an action in and

of itself because the network can choose to “do nothing”,

keeping the bicubic pixel value. The network requires ap-

proximately 48 hours to train for 10,000 epochs on a single

NVIDIA RTX 2080Ti.

For testing and validating the network, the whole image

is sent through the network. Each pixel has its own agent

and chooses which action produces the best result. The

same preprocessing approach is carried out: blurred, down-

sampled, and upsampled. The testing images come from

commonly used testing datasets: Set5, DIV2K, and Ur-

ban100. Images 0855, 0878, 0879, and 0891 from DIV2K

are excluded from the dataset due to memory issues result-

ing from their size. All results in Tables 1 and 2 are cal-

culated without these four images to maintain a fair com-

parison. These datasets make it simple to quantitatively

compare results with other SISR techniques. We compare

results with the following metrics: Mean Squared Error

Table 1. Quantitative comparison between the proposed method

and other competing SR algorithms in RGB color space (Best re-

sults in bold, second best in italics).

Method Metric Set5 Urban100 DIV2K Val.

bicubic MSE 193.46 563.64 209.81

PSNR 26.69 21.70 26.66

SSIM 0.7961 0.6442 0.7581

edsr baseline MSE 105.90 426.18 163.37

PSNR 28.73 23.14 27.92

SSIM 0.8631 0.7450 0.8100

esrgan MSE 250.04 1031.3 507.44

PSNR 24.61 18.89 22.87

SSIM 0.7166 0.5569 0.6298

esrgan-psnr MSE 107.99 457.53 170.42

PSNR 28.61 22.57 27.67

SSIM 0.8625 0.7482 0.8139

ppon MSE 222.01 828.63 437.44

PSNR 25.21 19.86 23.39

SSIM 0.7335 0.6213 0.6622

Ours MSE 99.563 411.09 159.52

PSNR 28.97 23.28 28.08

SSIM 0.8664 0.7517 0.8140

Ours MSE 107.83 428.32 165.35

VGG PSNR 28.65 23.10 27.85

Rewards SSIM 0.8612 0.7417 0.8044

Ours MSE 102.33 417.38 161.98

Patches PSNR 28.87 23.19 27.96

SSIM 0.8645 0.7503 0.8129

Table 2. Quantitative comparison between the proposed method

and other competing SR algorithms in YCbCr color space (Best

PSNR results in bold, second best in italics). Note: for SR option

MSE and SSIM values, refer to Table 1.

Method Metric Set5 Urban100 DIV2K Val.

bicubic PSNR 27.10 21.81 26.75

edsr baseline PSNR 29.19 23.25 28.01

esrgan PSNR 24.87 19.01 22.97

esrgan-psnr PSNR 29.03 22.66 27.75

ppon PSNR 25.43 19.94 23.45

Ours MSE 192.37 560.08 208.28

PSNR 27.18 21.84 26.83

SSIM 0.7961 0.6447 0.7585

(MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural

Similarity index (SSIM).

4.1. Patchwise Agents

In some images, a “noisy” appearance can be observed

where pixels are replaced by a number of different actions

within a small area. We attempt to minimize this effect by

converting our original network (RGB color space, MSE-

based rewards) from an agent-per-pixel configuration to



HR Ours RGB Ours RGB Patches

Figure 4. DIV2K validation image 0804 showing the difference

between pixel-wise and patch-wise agents.

agent-per-patch using square patches of pixels (tested with

3×3 patches). To accommodate this reduced number of

agents, a max pooling layer is added immediately before the

network (Figure 1) splits into its policy and value branches.

The final policy is then upsampled to the image size via

nearest neighbor interpolation, applying the single action to

all pixels within the patch. Agent rewards are determined

by modifying Equation 1 to calculate the average over their

respective patches:

r
(t)
i =

1

p2
Σp−1

k=0Σ
p−1
j=0(I

target
ix+j,iy+k − y

(t−1)
ix+j,iy+k)

2

− (Itargetix+j,iy+k − y
(t)
ix+j,iy+k)

2, (2)

where p is the size of the patch in each dimension and ix
and iy are the x and y coordinates of the agents. In Figure 4,

we can compare the “noisy” phenomenon of the agent-per-

pixel configuration to the agent-per-patch. Although using

patches makes the “noisy” appearance subjectively less no-

ticeable, it is not entirely removed. Our patch-based method

(see Table 1) achieved the second best MSE and PSNR val-

ues across all three datasets. For SSIM values, it achieved

the second best results for Set5 and Urban100 datasets.

To verify that the patch-wise agents are sourcing pixel

values from the best options, the PSNR value for each patch

is calculated for all option images to determine which ones

are correct on a patch-by-patch basis. A tolerance value is

introduced to allow for multiple options to be considered

correct if their PSNR values are sufficiently close. This

gives us more insight into how much the image quality of

each option varies between different regions. The tolerance

values used are 0, 0.5, 1.0, 1.5, 2.0, and 2.5 dB. Figure 5

provides a simple example of this comparison in which four

options are provided as sources for a four-patch image. In

the example, only 0, 0.5, 1.0, and 1.5 dB tolerances are used

to illustrate the premise.

With a 0 dB tolerance (Figure 5b), there can only be one

correct option for each patch. Since option 2 is correct for

the highest number of patches, it is the overall best option.

With a 0.5 dB tolerance (Figure 5c), the highest PSNR val-

ues in patch 1 are close enough that options 1 and 2 are both

considered correct, but option 2 is still the overall best op-

tion. With a 1.5 dB tolerance (Figure 5e), all patches have

multiple correct options. Again, option 2 is still the overall

Patch 1 Patch 2

27.0 20.3

Patch 3 Patch 4

17.9 23.0

Patch 1 Patch 2

Img 1 Img 2

27.0 21.0

Patch 3 Patch 4

Img 2 Img 3

22.0 25.0

Image from Option 1 b. 0 dB Tolerance

Patch 1 Patch 2

26.7 21.0

Patch 3 Patch 4

22.0 23.7

Patch 1 Patch 2

Img 1, Img 2 Img 2

27.0, 26.7 21.0

Patch 3 Patch 4

Img 2 Img 3

22.0 25.0

Image from Option 2 c. 0.5 dB Tolerance

Patch 1 Patch 2

25.2 19.0

Patch 3 Patch 4

16.5 25.0

Patch 1 Patch 2

Img 1, Img 2, Img 4 Img 1, Img 2

27.0, 26.7, 26.0 20.3, 21.0

Patch 3 Patch 4

Img 2 Img 3

22.0 25.0

Image from Option 3 d. 1.0 dB Tolerance

Patch 1 Patch 2

26.0 18.0

Patch 3 Patch 4

20.5 22.5

Patch 1 Patch 2

Img 1, Img 2, Img 4 Img 1, Img 2

27.0, 26.7, 26.0 20.3, 21.0

Patch 3 Patch 4

Img 2, Img 4 Img 2, Img 3

22.0, 20.5 23.7, 25.0

Image from Option 4 e. 1.5 dB Tolerance

a. Example PSNR Values [dB]

Figure 5. Simple example illustrating how we can determine the

benefit of the patch-wise agents. For each tolerance, correct image

options (highest PSNR values) are listed (abbreviated as “Img”

for compactness) and the overall best option is shown in bold. If

the number of correct patches chosen by agents is greater than the

number of correct patches in the overall best option, then their use

is beneficial. See Figures 6 and 9 for results with a real image.

Chosen Patch Sources 0 dB Tolerance 0.5 dB Tolerance 1.0 dB Tolerance

1.5 dB Tolerance 2.0 dB Tolerance 2.5 dB Tolerance

Figure 6. Options chosen by the patch-wise agents for Set5 bird

(see Figure 2 for color key). For the various PSNR tolerances,

incorrect patches are whited out.

best option. Looking at the 0 dB tolerance case in particu-

lar, one can see that there is the potential to create an image

better than the overall best option, which is only correct for

half of the patches.

Figure 6 shows the agent-chosen patch sources for the



HR bicubic edsr baseline esrgan

PSNR/SSIM 24.11/0.877 29.58/0.964 21.01/0.821

esrgan-psnr ppon Ours Patches Ours RGB

18.54/0.778 20.62/0.841 29.50/0.961 29.77/0.966

timestep 1 timestep 2 timestep 3 Pixel Source

HR bicubic edsr baseline esrgan

PSNR/SSIM 14.43/0.491 15.17/0.662 16.29/0.800

esrgan-psnr ppon Ours Patches Ours RGB

23.80/0.955 19.73/0.905 23.80/0.955 24.07/0.955

timestep 1 timestep 2 timestep 3 Pixel Source

Figure 7. Qualitative comparison between the proposed methods and other competing SR algorithms on image img 005 from the Urban100

dataset (Best results in bold, second best in italics). The resulting image chooses between multiple options (seen in Pixel Source), where

the chosen option is the best. The Pixel Source excludes pixel increment and decrement to show the source image of each pixel. The

timestep and Pixel Source images are from our RGB pixel-wise method.

Set5 bird image. Patches may have been altered with incre-

ment or decrement actions; however, those are ignored here

as only the original source of the pixel values is of inter-

est. For each tolerance value, the patch is displayed in its

corresponding source color (see Figure 2) if the algorithm

chose a correct source or is whited out if it chose an incor-

rect source. The bar chart in Figure 9 plots the percentage

of the patches that the algorithm chose from correct sources

with the green bars (left) and the percentage of the patches

that are correct in the overall best option image with the or-

ange bars (right). The Set5 bird image, created by our RGB

patch-wise agents, contains more correct patches than the

overall best option image and thus is quantitatively better.

This finding reiterates the results in Table 1, in which our



HR bicubic edsr baseline esrgan

PSNR/SSIM 25.52/0.850 31.01/0.939 22.86/0.725

esrgan-psnr ppon Ours Patches Ours RGB

26.25/0.880 24.12/0.735 31.08/0.937 31.45/0.939

timestep 1 timestep 2 timestep 3 Pixel Source

HR bicubic edsr baseline esrgan

PSNR/SSIM 14.96/0.537 15.717/0.684 13.15/0.549

esrgan-psnr ppon Ours Patches Ours RGB

18.71/0.847 14.39/0.698 18.71/0.847 19.05/0.855

timestep 1 timestep 2 timestep 3 Pixel Source

Figure 8. Qualitative comparison between the proposed methods and other competing SR algorithms on image 0818 from the DIV2K

dataset (Best results in bold, second best in italics). The resulting image chooses between multiple options (seen in Pixel Source), where

the chosen option is the best. The Pixel Source excludes pixel increment and decrement to show the source image of each pixel. The

timestep and Pixel Source images are from our RGB pixel-wise method.

images have better PSNR values than any of the individual

options.

4.2. YCbCr Color Space

Rather than focusing on a purely color-oriented color

space, many recent SR papers explore images in a

luminance-oriented color space. Rui Gong et al. tested

SR reconstruction in a number of color spaces and recom-

mended focusing on the L* channel in CIELAB color space

or the Y channel in YIQ color space, both of which are

luminance-oriented [5]. We follow in the footsteps of recent

SR work [7, 8, 13, 22, 23] and also apply our method to im-

ages in YCbCr color space. All three channels are passed

through the network and replaced by the values from the



images in the action space; however, as in recent SR work,

only the Y channel is considered when calculating PSNR

values. This method is explored using an agent for every

pixel and an MSE-based reward function. Our results, in

Table 2, are only marginally better than the bicubic images.

This is because the policy learned by the agents kept all

pixels from the bicubic images and only modified some of

them with value increments and decrements.

4.3. VGG Rewards

Perceptual loss in the feature space has previously been

explored by a number of sources. Instead of calculating

the pixel-by-pixel error between the ground truth image and

the generated image, the error is calculated in the feature

space. This encourages the the network to generate images

that have a similar feature representation to the ground truth

images [17]. Sajjadi et al. extracts the feature represen-

tations by sending the HR and SR images through a pre-

trained implementation of the VGG-19 network [17]. This

network consists of a combination of convolution and max

pooling layers that extract features as it decreases the spa-

tial dimension of the image [21]. We extract features from

the “conv2 2” layer of Chainer’s VGG-19 implementation.

The MSE is calculated between the ground truth and gen-

erated feature spaces before being upsampled via nearest

neighbor interpolation to the original crop size of 60×60.

This tensor is then added to the total reward calculated with

Equation 1. The VGG results, in Table 1, are only slightly

better than the ESRGAN-PSNR images, but present a good

quantitative comparison.

4.4. Discussion

When GANs were first introduced, they aggressively ex-

ceeded existing SISR models. Since the development of so

many GANs, their breakthroughs have started to level off.

Instead of learning a complex mapping and neglecting the

pixel level of an image, our method works on a pixel-by-

pixel (or patch-by-patch) basis. Therefore, we must zoom in

to the pixel level of an image to observe the full effect of our

method. Figures 7 and 8 show a qualitative comparison be-

tween sections of two different images. Figure 7 shows im-

age img 005 selected from the Urban100 dataset. This im-

age demonstrates the advantage of using our method for SR.

The timesteps manifest the algorithm’s process through vi-

sual representations. Looking at these timesteps for the first

section, we can see the algorithm chooses mostly EDSR

and ESRGAN-PSNR (see Figure 2). The algorithm also

chooses to increment and decrement the pixel values which

helps to increase the PSNR and SSIM values. We can see

that EDSR most accurately recreates the section, both qual-

itatively and quantitatively. All the other options either blur

the image or add in artifacts not found in the HR image.

Looking at the timesteps for the second section, we can see

Figure 9. The green bar (left) shows the percentage of patches

chosen by the patch-wise agents that are correct. The orange bar

(right) shows the percentage of patches in the overall best option

image that are correct.

the algorithm chooses exclusively ESRGAN-PSNR. The al-

gorithm also chooses to increment and decrement the pixel

values which helps it to surpass the PSNR and SSIM values

of ESRGAN-PSNR. Here we can see that ESRGAN-PSNR

most accurately recreates the section, both qualitatively and

quantitatively. This illustrates that some SR algorithms are

more adequate for different parts of an image. Similarly,

Figure 8 shows sections of image 0818 from the DIV2K

validation dataset. Again, we show that selecting from mul-

tiple sources can increase the qualitative and quantitative re-

sults of an image. In both figures, our method either obtains

the highest metric values or scores the same as one of the

options. Consequently, our method learns to quantitatively

outperform the best SR algorithms over the entire datasets

(see Table 1).

5. CONCLUSION

We modified the pixelRL problem setting to handle the

SISR task. Our method learns a strategy to increase the

resolution of an image by choosing the best pixel values

from each of the GAN options provided. The qualitative

and quantitative results support our theory: choosing be-

tween multiple GAN options at the pixel (or patch) level

can increase the overall SISR performance. Our visual re-

sults give us the advantage of observing where each GAN

option is most effective. Some options are more effective in

low frequency portions of the image, while others are more

effective in high frequency portions. This expression can be

used to determine which GAN to use in certain scenarios.

Other SISR applications can benefit greatly from this visual

insight.
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