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Abstract

Moiré patterns are commonly seen artifacts when tak-

ing photos of screens and other objects with high-frequency

textures. It’s challenging to remove the moiré patterns con-

sidering its complex color and shape. In this work, we pro-

pose an Attentive Fractal Network to effectively solve this

problem. First, we construct each Attentive Fractal Block

with progressive feature fusion and channel-wise attention

guidance. The network is then fractally stacked with the

block on each of its levels. Second, to further boost the

performance, we adopt a two-stage augmented refinement

strategy. With these designs, our method wins the burst

demoiréing track and achieves second place in single image

demoiréing and single image deblurring tracks in NTIRE20

Challenges. Extensive experiments demonstrate the supe-

riority of our method for moiré pattern removal compared

to existing state-of-the-art methods, and prove the effective-

ness of its each component. We will publicly release our

code and trained weights on https://github.com/

ir1d/AFN .

1. Introduction

With the development of camera imaging technology,

more advanced capturing devices are widely used in our

daily life. However, when the image is taken in front of

a screen or contains other objects with high-frequency tex-

tures, moiré patterns are likely to appear. Due to the loss in

detail and distortion in signal, the visual appearance of the

image is degraded. This also results in the failure of many

high-level computer vision applications, since they are of-

ten built on datasets of clean images. An example of an

image with moiré patterns can be observed in Fig. 1.

Moiré effect is of great use in many domains including

marine navigation [6] and strain measurement [32]. But

when it comes to digital photography, it causes degrada-

tion in visual quality of images. According to the Nyquist

theroem [4], moiré patterns are more likely to appear when

∗ indicates equal contribution.
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Figure 1: Visual comparison of our AFN with state-of-the-

art approaches. Our AFN not only removes the artifact ef-

fectively but also preserves the details of the textures.

textures of photographed objects share a similar frequency

with the color filter array. Due to the information loss, it is

a highly ill-posed problem to remove the undesired moiré

patterns. And considering its diversity in shape and color,

such restoration gets challenging.

Camera manufacturers have adopted various hardware-

level improvements [24, 33] including optical filters and

specially designed color filter arrays [23, 21, 33, 31]. For

the commonly-used Bayer filter [5], post-processing algo-

rithms are more ideal solutions. Various methods have

been proposed using signal processing theories [37, 2] and

exploit low-rank constraint [18]. Recently, deep neural

network based methods appeared and became the main-

stream gradually. In [30], a multi-scale convolution net-

work is proposed to learn the mapping from moiré pat-



tern contaminated images to clean images. He et al. [8]

utilized edge maps and other human-labeled moiré pat-

tern attributes to guide the removal of the moiré patterns.

Though they achieved better performance than non-learning

approaches, they were mainly designed for images captured

from screens and are were ideal when dealing with images

containing other high-frequency textures.

Considering the limitations of existing works, we aim to

design a deep learning framework that is capable of effec-

tively restoring clean images from moiré pattern contami-

nation. First, we construct an Attentive Fractal Block via

progressive feature fusion and channel-wise attention guid-

ance. Then we stack our AFB in a fractal way inspired by

fractal architecture design [15]. Additionally, a two-stage

augmented refinement strategy is adopted to fusion the ge-

ometric transformations of the coarse results. With the

progressively fused feature representations and the power

of two-stage augmented refinement, our AFN outperforms

previous moiré pattern removal networks and other popular

backbones. Our contributions are summarized as follows:

• We propose a fractally designed network for moiré pat-

tern removal. With the help of progressive feature

fusion and channel-wise attention guidance, the con-

structed Attentive Fractal Network manages to model

the moiré pattern and effectively remove the artifacts.

• We propose a two-stage augmented refinement strat-

egy to deal with the severely distorted images. The

coarse results are further refined via fusing the geo-

metric transformed outputs. Such strategy can signifi-

cantly boost overall performance.

• Extensive experiments demonstrate the superiority of

AFN for moiré pattern removal and deblurring task as

well. A rich ablation study proves the effectiveness of

each component.

2. Related Work

Moiré Removal Research on moiré pattern removal goes

on for decades. Some digital camera manufacturers in-

stalled optical low pass filters on cameras [24] which re-

duced moiré effects but they often blurred the images in the

meantime. Some digital camera manufacturers also devel-

oped new CMOS with a more moiré-resistant color filter

array, such as FOVEON X3 CMOS [23, 21, 33] and Fu-

jifilm X-Trans CMOS [31]. However, the Bayer filter [5]

is still the most common color filter array used in digital

cameras, to remove moiré patterns on images produced by

Bayer CFA is significantly important. A few computational

methods have been proposed. Wei et al. [37] proposed a

median-Gaussian filtering framework to remove moiré pat-

terns from X-ray microscopy image. However, it could not

handle colored digital images. A Photoshop plug-in called

Sattva Descreen [2] claimed that it uses Fourier transform to

precisely remove moiré patterns. But it still suffered from

blurring effects. In [18], Liu et al. proposed a moiré remov-

ing method based on low-rank and sparse matrix decompo-

sition in frequency domain.

With the rising computation ability and the marvelous

performance of deep learning in low-level vision tasks, con-

volutional neural networks have been applied to removing

moiré patterns. Sun et al. [30] proposed a multi-scale con-

volutional neural network to learn the mapping from moiré

images to clear images. He et al. [8] utilized the imbal-

anced properties of moiré effects and presented MopNet to

remove moiré patterns with the help of edge maps and other

moiré pattern attributes like shape, etc. However, Mop-

Net required extra data labels of moiré pattern attributes

to achieve a higher PSNR, which is not often available in

real cases. Recently, Yuan et al. hosted a demoiréing

challenge [40] and attracted more researchers on remov-

ing moiré patterns via deep learning. These deep learning

networks were mainly designed and trained for removing

moiré patterns from photos of screens. They don’t yield a

pleasant performance when it comes to moiré patterns on

photos of other high-frequency textured objects such as tex-

tiles, tiles and chain meshes, etc.

Learning Based Image Restoration With the rapid devel-

opment of Deep Learning, many techniques have been de-

veloped to tackle the problem of image restoration under

various degradations. Gu et al. [7] proposed a Self-Guided

Network for image denoising. Wei et al. [36] exploited

Retinex Theory for low light enhancement. Qu et al. [28]

presented a GAN framework for image dehazing. In [17],

Li et al. proposed a rain streak removal network based on

physics models. Zhang et al. [41] introduced a Stacked Hi-

erarchical Network for image deblurring. In [22], Ma et

al. adopted a Cyclic GAN to generate and separate reflec-

tions. However, less research has been made regarding the

removal of moiré pattern artifacts. Existing methods for

other tasks might fail to handle moiré patterns considering

its diverse shape and color.

3. Attentive Fractal Network

Fractal Network Many of the hand-crafted networks are

organized into a hierarchical structure. In [15], Larsson et

al. proposed a fractal architecture, which is a very deep net-

work without residuals. Yang et al. [38] introduced fractal

band learning (FBL) for rain streak removal. FBL networks

conduct band feature refinement, expansion and fusion op-

erations based on band recovery theory, and capture the

hierarchical band dependency with learnable components.

In [14], Kwak et al. proposed a Fractal Residual Network

and adopted RCAN [43] as its fractal design. In our work,

we aim to exploit the fractal features and develop a new ef-

fective backbone for moiré pattern removal.
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Figure 2: Architecture of our proposed framework. (a) shows the structure of the basic block AFB0. (b) shows the hierarchical

architecture of AFBs, where s ∈ [1, r] is the recursion level of the block. (c) illustrates the structure of AFN, which consists

of encoding layers, an AFBr, and decoding layers from left to right.

3.1. Network Overview

Moiré patterns are complex in both color and shape, and

restoring such a contaminated image is an ill-posed prob-

lem. A naive deep network would suffer from vanishing

gradients, while a shallow network with limited capacity

can not deal with such severe degradation. To handle this,

we propose a novel Attentive Fractal Network (AFN) to effi-

ciently remove moiré patterns while preserving the texture.

With our network G(·), the moiré pattern removal task can

be formulated as:

ID = G(IM ), (1)

where IM is the observed image with moiré patterns, and

ID is our restored clean image.

The proposed AFN adopts a fractal network architecture.

With the help of shortcuts and residuals of different recur-

sion levels, the whole network gains the ability to utilize

both local and global features for moiré pattern removal.

The framework, as shown in Fig. 2 (c), consists of three

main parts, which are encoding layers GE, an Attentive

Fractal Block (AFB) GAFB, and decoding layers GD.

The encoding layers first transform the input image IM
into a multi-channel feature f0

r
, which is the input of the

following AFB of recursion level r.

f0
r
= GE(IM ). (2)

The AFB performs major refinement for the encoded fea-

tures to obtain fr.

fr = GAFBr
(f0

r
). (3)

The feature fr is then given to the decoding layers to recon-

struct a three-channel clean image ID. A global residual

connection is added to stabilize the network.

ID = GD(fr) + IM . (4)

We also adopt a two-stage augmented refinement strategy

to push the ability of AFN further. Specifically, the second

stage uses a similar but shallower AFN network with lower

recursion levels of AFB to refine the output of the first stage.

The details are presented in Sec. 3.3.

3.2. Attentive Fractal Block

The proposed AFB is built in a fractal way, and it has

a self-similar structure. Each high-level AFB can be con-

structed with AFBs of lower-level recursively until the level

reaches zero. Specifically, as shown in Fig. 2(b), an AFB

of recursion level s consists of ns AFBs of recursion level

s − 1 as well as a Fusion Unit. In Fig. 2(a), a level 0 AFB

is illustrated, and it has a residual shortcut and m convo-

lution layers followed by LeakyReLU layers. For level s,

the encoded features f0
s

are fed into the ns AFBs of level

s − 1 sequentially to obtain ns refined features, which are

f1
s
, · · · , fns

s
respectively:

f i

s
= GAFB

i−1

s−1

(f i−1
s

), (1 ≤ i ≤ ns). (5)

We then adopt a progressive feature fusion strategy, which

is to progressively feed-forward the intermediate features

of early stages to the end of the current block and fusion



them there. By concatenating the features of the same level,

their rich information from different stages help the network

learn more thoroughly:

fC
s
= [f1

s
, f2

s
, · · · , fns

s
]. (6)

Too many channels might confuse the network with abun-

dant information, so we choose to adopt channel-wise atten-

tion with the help of a Squeeze-and-Excitation Layer [9].

By multiplying the assigned learnable weights, the output

feature maps are re-weighted explicitly according to their

properties.

fA
s

= GSEs
(fC

s
) · fC

s
. (7)

Finally, we send the features to a Fusion Unit (FU) to nar-

row down their channels. A local residual connection is also

adopted to stabilize the network.

fs = GFUs
(fA

s
) + f0

s
. (8)

For level 0 AFB, it sends the input f0
0 sequentially to m

convolution layers followed by LeakyReLU layers.

f i

0 = FLeaky(GConvi(f
i−1

0 )), (1 ≤ i ≤ m). (9)

A local shortcut is also adopted to relieve the burden of the

network.

f0 = fm

0 + f0
0 . (10)

As illustrated above, a high-level AFB is made up of several

lower-level AFBs. So actually the input of a level s−1 AFB

f0
s−1 is also the input f i

s
of an intermediate layer in a level

s AFB. And the output of a level s−1 AFB fs−1 is also the

output f i+1
s

of an intermediate layer in a level s AFB.

With the help of the fractal structure, the proposed AFB

performs refinement operations at different levels. Short-

cuts and residual connections effectively solve the vanish-

ing gradients and help the network learn more key features.

The progressive fusion of intermediate features boosts the

network with abundant information, while the adopted at-

tention mechanism guides the network to focus on essen-

tial features. Residual in Residual structures [43] are also

implicitly formed, and thus the network is able to extract

features of both global structure and high-frequency details

for reconstruction. By tweaking the hyper-parameters n, m

and s, the scale and depth of the network can be adjusted

neatly for a variety of situations. AFN has provided us

with new inspirations towards network architecture design

against complex restoration tasks.

3.3. TwoStage Augmented Refinement

Although a single AFN obtains ideal results, we observe

that adopting a two-stage strategy further boosts the perfor-

mance when faced with extremely distorted input images.

Specifically, we use a similar but shallower AFN network

as Stage II, and the AFB of Stage II are of lower levels com-

pared to those in Stage I.

We also notice that when flipping the input images, the

single AFN can sometimes obtain better results compared

to the result when given original input. Intuitively, the re-

sult of augmented input alleviates the artifact and provides

the second stage with the opportunity to improve the overall

restoration quality. Thus, we propose to adopt more trans-

formations for our two-stage restoration strategy. First, we

augment the input image using flip, transpose and rotate

operations. Then we feed the augmented images into our

Stage I AFN network respectively to generate their coarse

results. After that, we perform corresponding inverse trans-

forms on the output images to align their directions with

the original input. Finally, the coarse results are concate-

nated together and fed into Stage II AFN for further refine-

ment. Stage II AFN takes the coarse results as input and

then learns to selectively fuse them into a clearer image.

The effectiveness of two-stage augmented refinement is

illustrated in detail in Sec. 4.6.

4. Experiments

4.1. Datasets

Previous studies on demoiréing [30, 8] use the DMCNN

dataset proposed in [30]. However, its images are captured

from screens with random distance and angles, so they re-

quire additional alignment via post-processing algorithms.

Thus the dataset is limited to moiré patterns of screens only

and can not generalize well on other objects with high-

frequency textures in everyday life. Additionally, the im-

ages in [30] suffer from out-of-focus and pixel density lim-

itation of screens, which lead to color inconsistency and

detail loss. And the networks trained on this dataset are

required to handle the moiré patterns and the information

loss as well to obtain a visually pleasing result. This makes

the comparison on this dataset not solely about demoiréing

ability. Therefore, we mainly conduct experiments on the

CFAMoiré [39] dataset and only provide preliminary re-

sults for the DMCNN dataset [30]. In NTIRE20 demoiréing

competition, CFAMoiré dataset [39] is proposed to pro-

vide a fair comparison of demoiréing ability. It consists

of 11,000 image pairs, which are mainly real-world images

with high-frequency textured objects. Among them, 500

pairs are left out for test usage, and another 500 pairs are

used for the validation phase of the NTIRE20 challenge.

We randomly split the released 10,000 pairs into two parts,

9,500 pairs for training and 500 pairs for validation.

In the following sections, we first illustrate the imple-

mentation details of our network and introduce the baseline

methods. Then we conduct quantitative and qualitative eval-

uation as well as the ablation study on the CFAMoiré [39]

dataset. At last, we provide comparison on the DMCNN

dataset [30] and NTIRE20 challenge results.
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Figure 3: Visual examples of restored results of various methods. Zoom in to view details.



Method UNet DNCNN DMCNN FBL MopNet SGN VDSR HRNet AFN AFN++

PSNR 30.59 32.91 36.38 37.33 37.45 37.83 37.84 38.50 41.70 42.06

SSIM 0.9410 0.9685 0.9848 0.9873 0.9856 0.9883 0.9883 0.9908 0.9945 0.9945

Table 1: Quantitative comparison on validation set of CFAMoiré [39] dataset. Red and blue indicate the best and the second

best performance, respectively. AFN++ denotes the AFN with two-stage augmented refinement. Note that the evaluated

method is a 10-layer VDSR instead of the original 20-layer version because the 20-layer version doesn’t converge.

4.2. Implementation Details

n1, n2, n3, n4, m and r are all set as 4 for Stage I AFN.

And n1, n2, n3, m and r are all set as 3 for Stage II AFN.

The channel size in each AFB0 is set to 128. We use 2 con-

volution layers in the encoding and decoding layers. We use

1 convolution layer as the Fusion Unit. The CFAMoiré [39]

dataset contains images of size 128× 128, and we augment

the training data with random flips, 90◦ rotations and Ran-

domResizedCrop from albumentations [3]. Mini-batch size

is set to 16. We use Adam optimizer [13] and set β1 = 0.9
and β2 = 0.999. The learning rate is initialized as 1×10−4

and we adopt a Cosine Annealing strategy [20]. In Stage I,

we train the whole network for 200 epochs. Then in Stage

II, we fix the Stage I AFN for faster convergence and train

Stage II AFN for 50 epochs. For both stages, we train with

L1 loss only, which minimizes the distance between out-

put and ground truth images. We implement our AFN with

PyTorch [26] framework and train them using 4 GeForce

RTX 2080 Ti GPUs. Our AFN has 47.7M parameters, and

requires 760G MACs for an input image of size 128× 128.

4.3. Baseline Methods

We compare our method with eight state-of-the-art

methods: DMCNN [30], MopNet [8], DNCNN [42],

VDSR [12], HRNet [34], SGN [7], UNet [29] and FBL [38].

Among them, DMCNN and MopNet are specially designed

methods for the moiré removal task. UNet and HRNet are

widely used image restoration architectures. SGN is pro-

posed for the image denoising task. VDSR is originally

designed for the single image super resolution task. FBL

is a network proposed for rain streaks removal. During the

evaluation, we train the compared models from scratch ex-

cept for MopNet. Specifically for MopNet, we load the

pre-trained checkpoint released by the author and remove

its classification branch, because that branch requires ad-

ditional labels other than the target image. After that, we

fine-tune the whole network until convergence. All meth-

ods except DMCNN and VDSR are directly evaluated with

online available codes, while DMCNN is implemented by

ourselves and the architecture of VDSR is modified from

20 layers to 10 layers because the original 20-layer version

doesn’t converge. Two metrics, Peak Signal-to-Noise Ratio

(PSNR) [10] and Structure Similarity Index (SSIM) [35],

are adopted, and we evaluate the results in all RGB chan-

nels.

Methods r SE Stage II PSNR SSIM

AFN++ 4 X X 42.06 0.9945

AFN 4 X 41.70 0.9945

FN 4 40.73 0.9932

FN L3 3 40.01 0.9922

Table 2: Ablation of our AFN.

4.4. Quantitative evaluation

In this section, we provide quantitative evaluation of our

proposed AFN and state-of-the-art methods on the valida-

tion set of CFAMoiré [39] dataset. As shown in Tab. 1,

we can observe that some widely used image restoration

backbones, namely SGN and HRNet, obtain pleasing re-

sults compared to the previous moiré pattern removal net-

works. This is mainly because MopNet and DMCNN are

specially designed for the complex degradations in the DM-

CNN dataset [30], and thus generate blurry results over-

all instead of realistic textures. In comparison, as image

restoration frameworks for super resolution and noise re-

moval, SGN, VDSR and HRNet adopt fine designs for

detail preserving reconstruction. It can also be seen that

our method outperforms other state-of-the-art methods by

3.2dB. With the proposed two-stage augmented refinement

strategy, noted as AFN++, we further obtain a large gain of

0.36dB.

4.5. Qualitative evaluation

The visual examples of qualitative evaluation are pro-

vided in Fig. 3. As emphasized in the red boxes, previ-

ous methods show limited effectiveness, and our proposed

AFN obtains cleaner results with less artifact. Specifically,

the first input image contains stripe shaped artifacts, and it

can be seen that similar patterns still exist on the outputs of

DNCNN, DMCNN and MopNet. The second input image

is severely contaminated, and the results of DNCNN, SGN

and UNet are over-smoothed with unpleasant artifacts. The

third group contains an image with high-frequency stripe-

shaped textures. From the last two rows, it can be observed

that our AFN restores its details while other methods, such

as FBL, VDSR and HRNet, blur the intrinsic patterns.

4.6. Ablation Studies

In this section, we conduct ablation experiments on parts

of our model for comparison. The visual results are shown



in Fig. 3 and the quantitative results are provided in Tab. 2.

AFN++ denotes the proposed AFN with Stage II augmented

refinement. AFN means that only Stage I is adopted. FN

means we remove the attention mechanism inside each

AFB. FN L3 has a similar structure with FN but it contains

top-level AFB of level 3. As listed in the table and pro-

vided in the figure, the proposed AFN++ generates the best

restored results. The comparison of the variants proves that

the proposed designs all contribute to the performance gain

of the restored images. The comparison between AFN++

and AFN shows the effectiveness of Stage II augmented re-

finement. The comparison between AFN and FN demon-

strates the contribution of channel-wise attention mecha-

nism. And the comparisons between FN and FN L3 prove

the importance of the fractal architecture.
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Figure 4: Visualization of the channel-wise weight gener-

ated by the attention mechanism. The L1 to L4 in the legend

indicate the corresponding levels of the blocks. For simplic-

ity, we provide the results of the last SE layer of each level.

We also investigate the effectiveness of the Squeeze-and-

Excitation attention mechanism. Specifically, we obtain the

channel-wise weight generated by AFN when given Fig. 1

(a) as the input image. As shown in Fig. 4, the weights vary

among the channels. It can be inferred that the attention

mechanism contributes to better restoration result by guid-

ing the network to focus on more important feature maps.

4.7. Evaluation in NTIRE20 Challenge

In this section, we provide the results on the unreleased

test set of NTIRE20 Challenge. Specifically, we submit-

ted our models on 3 different tracks, including single image

demoiréing, burst demoiréing and single image deblurring.

Quantitative results are presented in Tab. 3, 4, and 5. Our

AFN wins the burst demoiréing track and achieves second

place in single image demoiréing and single image deblur-

ring tracks. Note that the ability of deblurring further proves

that our proposed architecture is especially good at preserv-

ing details and reconstructing textures.

Methods PSNR SSIM

AFN (Ours) 41.95 0.99

2nd method 41.88 0.99

3rd method 40.64 0.99

4th method 40.33 0.99

5th method 39.05 0.99

Table 3: Quantitative results on NTIRE20 Challenge Burst

Demoiréing track [39]. Red and blue indicate the best and

the second best performance, respectively. Due to the time

limit of the challenge, we only used one of the frames for

restoration. We believe that our performance will be further

boosted with the help of the additional six frames.

Methods PSNR SSIM

1st method 42.14 0.99

AFN (Ours) 41.95 0.99

3rd method 41.84 0.99

4th method 41.11 0.99

5th method 41.04 0.99

Table 4: Quantitative results on NTIRE20 Challenge Single

Image Demoiréing track [39]. Red and blue indicate the

best and the second best performance, respectively.

Methods PSNR SSIM

1st method 34.44 0.9412

AFN (Ours) 34.20 0.9392

3rd method 33.35 0.9283

4th method 33.07 0.9242

5th method 32.61 0.9198

Table 5: Quantitative results on NTIRE20 Challenge Deblur

track [25]. Red and blue indicate the best and the second

best performance, respectively.

Methods PSNR SSIM

MopNet-Full 27.75 0.89

MopNet-w/o Class Label 27.44 0.89

MopNet-w/o Edge 27.07 0.88

AFN L3 (Ours) 27.00 0.83

MopNet-w/o Edge & Class Label 26.62 0.88

DMCNN 26.77 0.871

UNet 26.49 0.864

VDSR 24.68 0.837

DNCNN 24.54 0.834

Table 6: Quantitative results on DMCNN Dataset. Red and

blue indicate the best and the second best performance, re-

spectively.



(a) Image #4353

(b) Image #5655

Figure 5: Example images containing moiré pattern con-

taminated texts. Images in each row are input, result from

AFN++, and ground truth, respectively.

4.8. Evaluation in the DMCNN Dataset

In this section, we provide our preliminary results in the

DMCNN Dataset [30]. As illustrated above, the images in

this dataset suffer from detail loss caused by out-of-focus

and pixel density limitation of screens. We believe it’s not

an ideal option for comparison of demoiré ability. However,

it can be considered as a metric of general restoration of

complex degradations. As shown in Tab. 6, our AFN of

level 3 achieves comparable performance as the version of

MopNet without the guidance of edge and class label.

5. Discussions

5.1. Application

It has attracted increasing attention [27, 11, 19] to adopt

enhancement methods as pre-processing for downstream

high-level computer vision tasks. In order to investigate the

impact of moiré patterns on OCR performance, we employ

Google Cloud Vision API [1] to test whether the OCR re-

sults are improved on several hard test cases. The results

are shown in Tab. 7 and Fig. 5. As observed, removing

moiré patterns with our method as a pre-processing step

brings significant improvement to the OCR accuracy. As

suggested in [16], the high-level task performance serves as

a fixed semantic-aware metric, and can be seen as an indi-

rect approval of semantic information preservation of our

method.

5.2. Limitation and Future Work

We observe dataset bias between DMCNN dataset

and CFAMoiré [39] dataset. Specifically, a model

trained on DMCNN dataset cannot produce ideal re-

sults on CFAMoiré [39] dataset, and a model trained on

CFAMoiré [39] dataset cannot generate pleasing images on

Image ID #4353 #5655

Input KRLER PA -

AFN++ KILLER PAS TERINFO Teriarel

GT KILLER PA TERINFO Teriatel

Table 7: OCR results yielded by Google Cloud Vision

API. Numbers after sharp symbols are the indices in

CFAMoiré [39] training set. Dash symbol indicates that Vi-

sion API detects no text in the given image.

Figure 6: An example of hard case when the moiré patterns

(in the red box) appear similar to the original textures.

DMCNN dataset. We believe that the generalizability of

moiré removal methods is worth further investigating, con-

sidering that the moiré patterns in the wild cover a large

variety of shapes and colors.

Current datasets mainly contain cases when a whole im-

age is contaminated, however, in real life photography, it is

common case that only parts of an image are affected by

the moiré artifacts. The moiré removal networks sometimes

cannot accurately identify the moiré patterns and fail to es-

timate appealing results. An example is provided in Fig. 6,

the network mistakenly take the moiré patterns as the tex-

tures and chooses to leave the artifacts untouched. We will

try to improve such cases in our future work.

6. Conclusion

In this paper, we introduce our solution in NTIRE20 im-

age restoration and enhancement challenges. We propose

Attentive Fractal Network, a fractally stacked network to

effectively restore moiré contaminated images. First, we

build a fractal network with progressive feature fusion and

channel-wise attention guidance. Then we adopt a two-

stage augmented refinement strategy to further boost the

performance. Extensive experiments demonstrate that our

method outperforms existing state-of-the-art methods. Our

AFN also wins the burst demoiréing track and achieves sec-

ond place in single image demoiréing and single image de-

blurring tracks in NTIRE20 Challenges.
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