
Ensemble Dehazing Networks for Non-homogeneous Haze

Mingzhao Yu, Venkateswararao Cherukuri, Tiantong Guo, Vishal Monga

The Pennsylvania State University, The Department of Electrical Engineering, University Park, PA, USA

ethanyu@psu.edu, vmc5164@psu.edu,tiantong@ieee.org, vmonga@engr.psu.edu

Abstract

Image dehazing is one of the most challenging imaging

inverse problems. Although deep learning methods pro-

duce compelling results, one of the most crucial practical

challenge is that of non-homogeneous haze, which remains

an open problem. To address this challenge, we propose

3 models that are inspired by ensemble techniques. First,

we propose a DenseNet based single-encoder four-decoders

structure denoted as EDN-3J, wherein among the four de-

coders, three of them output estimates of dehazed images

(J1, J2, J3) that are then weighted and combined via weight

maps learned by the fourth decoder. In our second model

called EDN-AT, the single-encoder four-decoders struc-

ture is maintained while three decoders are transformed

to jointly estimate two physical inverse haze models that

share a common transmission map t with two distinct ambi-

ent light maps (A1,A2). The two inverse haze models are

then weighted and combined for the final dehazed image.

To endow two sub-models flexibility and to induce capabil-

ity of modeling non-homogeneous haze, we apply attention

masks to ambient lights. Both the weight maps and atten-

tion maps are generated from the fourth decoder. Finally, in

contrast to the above two ensemble models, we propose an

encoder-decoder-U-net structure called EDN-EDU, which

is a sequential hierarchical ensemble of two different de-

hazing networks with different modeling capacities. Experi-

ments performed on challenging benchmark image datasets

of NTIRE’20 and NTIRE’19 demonstrate that the proposed

models outperform many state-of-the-art methods and this

fact is particularly demonstrated in the NTIRE-2020 con-

test where the EDN-AT model achieves the best result in the

sense of the perceptual quality metric LPIPS.

1. Introduction

Dehazing is an important image processing task, which

aims at recovering the scene information from images that

are corrupted by dust, mist, smoke and other atmospheric

particles that cause deflection of light from the objects. Due

to the presence of haze, the visual quality of images is de-

graded drastically and the scene information will be lost.

With the scene information being effected, crucial computer

vision tasks such as object detection and recognition [1] that

are critical to many emerging real-world applications such

as autonomous driving, navigation systems, will be severely

impacted. Hence, the demand for robust dehazing algo-

rithms has been boosted in recent years.

Over the past decades, image dehazing has been an ac-

tive research field [2, 3, 4, 5, 6, 4, 7, 8, 9] where the majority

of work can be categorized into two classes: multi-image

dehazing and single image dehazing. Constrained by the

expressive capacity of models, many of early research work

focused on adopting different kinds of fusion techniques to

combine information from multiple images [10, 11]. How-

ever, in many scenarios, multiple images of the same scene

under various environmental conditions are not available.

Hence, single image dehazing has gradually become the

more desirable option.

Most of the single image dehazing algorithms are gov-

erned by the physical haze model [12] shown below:

I = J · t+A · (1− t) (1)

where · represents element-wise multiplication, I is the

hazy image, A is the ambient light intensity and t is trans-

mission map. t indicates a fraction of radiance of true scene

J transmitted to the camera sensor. Thus, it is physically

constrained within [0,1]. Estimation from the inverse of the

haze model has shown advantages since it reflects the phys-

ical formation of the haze scene. The main challenge to

single image dehazing is the great demand for modeling ca-

pacity since it is a heavily ill-posed inverse problem. Deep

Learning (DL) techniques owing to their rich modeling ca-

pacity – have shown compelling performance across a wide

array of imaging and vision problems such as image super-

resolution [13, 14, 15], deblurring [16] and inpainting [17].

However, a downside of its tremendous increased flexibility

is that its parameters are sensitive to the specifics of training

data since they are mostly trained via stochastic training al-

gorithms like SGD [18]. Hence, adequate amounts of train-

ing pairs {I,J} are required to ensure the training dataset

can represent the true distribution of general data. Other-

wise, the learned models exhibit high variance and may not



be able to generalize well.

Furthermore, in many practical scenarios, the haze is not

uniform across a given image, thereby induces more chal-

lenges to the problem. In such cases, a single haze model

might not be capable enough for modeling different haze

densities in an image. These challenges combined with the

already existing ill-posed nature of the problem may further

hinder the performance of the existing deep-learning mod-

els by increasing the variance of the model. The NTIRE-

2020 Dehazing Challenge [19] aims to tackle these practi-

cal issues by providing a very challenging dataset that has

images with varying haze density.

It is a well-known fact that ensemble learning [20] has

proven to be effective in reducing the variance of the neu-

ral networks. The performance of an ensemble model can

be better than the performance of the best single network

used in isolation [21]. Inspired by this fact, we propose

the Ensemble Dehazing Networks to tackle the challenge of

non-homogeneous haze. As a starting point, we first pro-

pose a simple model called EDN-3J, which consists of one

shared Dense encoder and four Dense decoders. Among

decoders, three of them output distinct Ji, i ∈ {1, 2, 3},

which are learned using different reconstruction loss func-

tions. A crucial step in combining these outputs is to effec-

tively weigh/combine each Ji. Moreover, since the images

are corrupted by non-homogeneous haze, each pixel of each

Ji should be assigned a learnable weight. Keeping this fact

in mind, we use the fourth decoder to generate the weight

maps and to combine the 3 outputs effectively.

Although EDN-3J addresses the non-homogeneous chal-

lenge to a certain extent, it does not utilize the physical haze

model which is crucial to obtain reliable images. Therefore,

we propose another ensemble network based on the physi-

cal haze model, denoted as EDN-AT. Similar to EDN-3J, it

consists of a common Dense encoder and 4 Dense decoders.

Out of these 4 decoders, 2 of them output different ambient

light maps Ai, i ∈ {1, 2} and the third decoder outputs a

common transmission map t. The motivation behind this

design is that the haze is primarily influenced by the atmo-

spheric light A. Hence we restrict the transmission map to

be the same for both haze models and naturally drive two

ambient light maps to focus on haze of different properties

such as dense haze and light haze. To further facilitate each

Ai to represent the ambient light in different haze scene, an

attention mask m of the same size of ambient light map’s

is generated by the fourth decoder. m and 1−m are mul-

tiplied to A1,A2 accordingly. Eventually, J1 and J2 are

weighted by weight map w from another output channel in

the decoder of the attention mask. Note that a single de-

coder is used to generate m and w.

In contrast to the previous models where we combine

different dehazing networks in a parallel fashion, we de-

velop a sequential ensemble of a Dense encoder, a Dense

decoder and a U-net (which also consists of an encoder-

decoder architecture but with a lesser model complex-

ity), denoted as EDN-EDU. By cascading encoder-decoder

dehazing networks having different modeling capacities,

EDN-EDU model shows great ability of extracting and re-

covering scene information for images corrupted by com-

plex haze.

Note that, unlike standard ensemble techniques where

different models are independently learned and combined

explicitly, in our approaches, different models share some

common properties and also independent properties. Jointly

learning with the shared encoder can boost performance of

individual decoder while diversity of decoders are crucial to

success of ensemble scheme. To obtain diversities of sub-

models, customized regularization in terms of fidelity and

perceptual quality are adopted. Through training with the

image pairs {I,J}, three models have shown good perfor-

mance on the experiments performed on challenging bench-

mark image datasets of NTIRE-2020 [22] and NTIRE-2019

[23]. Based on PSNR, EDN-EDU model ranks 7th in the

NTIRE-2020 Dehazing Challenge, while being 7th in the

SSIM metric. More importantly our EDN-AT ranks 1st and

EDN-EDU ranks 4th on LPIPS, a metric which is shown to

be more consistent with human perception as compared to

PSNR and SSIM [24].

2. Related Work

Deep learning based methods have shown tremendous

promise for recovering clean images from very dense haze.

Recently, in [25], the authors proposed a deep network to

estimate individual color channels followed by a subsequent

refinement block to enhance the final synthesized RGB im-

age. Various methods have been proposed to estimate t

and A to reconstruct J. For example, Yang et al. [26] un-

rolled an iterative algorithm into a deep learning framework

to estimate the dark channel and transmission priors. Yuan

et al. [27] combined Network-in-Network with multi-scale

CNN to estimate t. Ren et al. [28] also proposed a multi-

scale deep neural network to estimate t. These methods are

all limited by their structures since only transmission map

t is estimated through CNN frameworks. To incorporate

further essential information, Li et al. [29] proposed a de-

hazing network where both t and A are encoded into one

unit. Recently, in Guo et al.’s work [30], they introduced

a shared-encoder multi-decoders architecture to be trained

jointly to estimate t,A which is proven to be very effective

and achieved top place in NTIRE-2019 Dehazing Contest.

With the promise of Generative Adversarial Networks

(GANs) [31] in many computer vision tasks, they have also

exhibited their advantages in image dehazing tasks. In [32],

the authors developed a discriminator to judge whether the

corresponding dehazed image and the estimated transmis-

sion map are real or fake. In [33], the authors proposed a



framework where discriminator guides the generator to cre-

ate realistic images on a coarse scale while the enhancer

following the generator produces realistic images on a fine

scale.

Semi-supervised learning and unsupervised learning for

training dehazing models have also been explored. In [34],

the authors presented a semi-supervised learning algorithm

in which the deep CNN has a supervised learning branch

and an unsupervised learning branch. In [35], a cycle GAN

is trained through unsupervised learning to remove the re-

liance on degraded and ground-truth image pairs.

Although all these methods have offered significant prac-

tical benefits for image dehazing, most of these methods

were developed based on the assumption of the uniform

haze, which may not be valid in many practical scenarios.

Hence, in our proposed work, we tackle this issue by de-

signing shared ensemble models wherein sub-models are

trained partially jointly and are combined effectively to gain

the benefits of different dehazing networks. This strategy

enables our models to offer better performance on the non-

homogeneous hazy images as well as uniform hazy images.

3. Ensemble Dehazing Network

One of the advantages of ensemble techniques is the re-

duced variance of overall estimated models, which is par-

ticularly beneficial in the case of non-homogeneous haze.

In non-homogeneous dehazing problem, mappings from

scenes of multiple haze level to haze-free scene are learned.

Those non-linear mappings have distinct properties and

therefore ideally are supposed to be modeled separately

for avoiding confusion to the neural network. Inspired by

this observation, we focus on ensembling multiple dehaz-

ing networks and facilitating them to be expert at different

aspects of non-homogeneous haze. However, since sub-

models in ensemble model are always less capable due to

smaller structure, the number of distinct sub-models is usu-

ally required to be large to ensure considerable improve-

ment. Since it would make the ensemble model cumber-

some, we aim to address this issue by boosting the indi-

vidual sub-model’s capacity and at the same time main-

taining their differences. In this way, we can benefit from

the ensemble technique and avoid suffering from huge ar-

chitecture. We observed that information sharing between

two distinct sub-models is beneficial to improvement of in-

dividual model. Based on this observation, first we pro-

pose EDN-3J and EDN-AT which focus on ensembling sub-

models sharing a common encoder. Second, we propose

EDN-EDU which focus on ensembling two dehazing net-

works sequentially to let them recover information hierar-

chically and be trained jointly. In this section, we would

illustrate details of the proposed architectures of three en-

semble dehazing networks and strategies we adopted for

optimizing each model.

3.1. Network Building Blocks

In our proposed models, the main building blocks are

encoder and decoders, which are based on Densely Con-

nected Network(DCN) [36] because of its compelling ad-

vantages such as the alleviation of vanishing-gradient prob-

lem, strengthening of features propagation and features

reuse. The details of architectures of EDN-3J, EDN-AT,

and EDN-EDU are shown below:

1) Encoder: We use pre-trained blocks that have been

used for image classification tasks in [36] for the encoder,

since they have already been trained on a vast amount of

natural images and possess feature extracting capacity. The

encoder consists of a base block, 4 Dense blocks(DB), 4

transition blocks and a residual block. Details are shown in

Table. 1. The description of blocks in the table includes 4

items:

• Block: name of the current block.

• Input: name of the blocks which outputs the input of

the current block.

• Structure: operating layers which might be convolu-

tion layers with kernel size and number of layers spec-

ified, max- or average-pooling of specific size, fully

connected layers, etc.

• Output: h × w × c, where h,w, c are dimensions of

height, width and channels of current block’s output.

Table 1: Encoder Structure

Block Base.0 Dense.1 Trans.1 Dense.2

Input input patch/image Base.1 Dense.1 Trans.1

Structure

[

7× 7 conv.

3× 3 max-pool

] [

1× 1 conv.

3× 3 conv.

]

× 6

[

1× 1 conv.

2× 2 avg-pool

] [

1× 1 conv.

3× 3 conv.

]

× 12

Output 64× 64× 64 64× 64× 256 32× 32× 128 32× 32× 512
Block Trans.2 Dense.3 Trans.3 Dense.4

Input Dense.2 Trans.2 Dense.3 Trans.3

Structure

[

1× 1 conv.

2× 2 avg-pool

] [

1× 1 conv.

3× 3 conv.

]

× 24

[

1× 1 conv.

2× 2 avg-pool

] [

1× 1 conv.

3× 3 conv.

]

× 12

Output 16× 16× 256 16× 16× 1024 8× 8× 512 8× 8× 768
Block Trans.4 Res.4

Input Dense.4 Trans.4

Structure

[

1× 1 conv.

2× 2 avg-pool

] [

3× 3 conv.

3× 3 conv.

]

× 2

Output 16× 16× 128 16× 16× 128

2) Decoder: the decoders are trained from scratch with-

out specific initialization. The structure of decoder is simi-

lar to that of encoder shown in Table. 2, which consists of

4 Dense blocks, corresponding transition blocks, a residual

block and several convolution layers as refinement blocks

at the end of the decoder. In decoders, 3 channel attention

blocks are embedded to reinforce the informative channels

and to suppress less useful channels of feature maps. The

structures of channel attention module and residual block

are illustrated in Fig. 2 and Fig. 3. It is observed that

the models have relatively stable behaviour after training

phase and avoid severe over-fitting with channel attention

modules incorporated. The number of channels in the out-

put layer, denoted as X, depends on the functionality of de-

coder, which is shown in Table. 3



Table 2: Decoder Structure

Block CA.4 Dense.5 Trans.5 Res.5

Input [Res.4, Trans.2] CA.4 Dense.5 Trans.5

Structure
[

fully connected
]

[

batch norm

3× 3 conv.

]

× 7

[

1× 1 conv.

upsample 2

] [

3× 3 conv.

3× 3 conv.

]

× 2

Output 16× 16× 128 16× 16× 640 32× 32× 128 32× 32× 128
Block CA.5 Dense.6 Trans.6 Res.6

Input [Trans.1, Res.5] CA.5 Dense.6 Trans.6

Structure
[

fully connected
]

[

batch norm

3× 3 conv.

]

× 7

[

1× 1 conv.

upsample 2

] [

3× 3 conv.

3× 3 conv.

]

× 2

Output 32× 32× 128 32× 32× 384 128× 128× 64 64× 64× 64
Block Dense.7 Trans.7 Res.7 Dense.8

Input Res.6 Dense.7 Trans.7 Res.7

Structure

[

batch norm

3× 3 conv.

]

× 7

[

1× 1 conv.

upsample 2

] [

3× 3 conv.

3× 3 conv.

]

× 2

[

batch norm

3× 3 conv.

]

× 7

Output 64× 64× 64 64× 64× 128 128× 128× 32 128× 128× 32
Block Trans.8 Res.8 CA.8 Refine.9

Input Dense.8 Trans.8 Res.8 CA.8

Structure

[

1× 1 conv.

upsample 2

] [

3× 3 conv.

3× 3 conv.

]

× 2
[

fully connected
]









3× 3 conv
32× 32 avg-pool

1× 1 conv.

upsample









Output 256× 256× 16 256× 256× 16 256× 256× 20 256× 256× 1
Block Refine.10 Refine.11 Refine.12 Refine.13

Input Refine.9 Refine.9 Refine.12 [Refine.9, .10, .11, .12]

Structure





16× 16 avg-pool

1× 1 conv.

upsample









8× 8 avg-pool

1× 1 conv.

upsample









4× 4 avg-pool

1× 1 conv.

upsample



 3× 3 conv.

Output 256× 256× 1 256× 256× 20 256× 256× 1 256× 256× X

Table 3: Number of Channels in Output Layers of Decoders

EDN-3J decoder.J1 decoder.J2 decoder.J3 decoder.W

X 3 3 3 1

EDN-AT decoder.A1 decoder.A2 decoder.W decoder.T

X 3 3 2 1

3) U-net: the U-net [37] structure is shown in Table. 4.

In total, it consists of 15 convolution layers.

Table 4: U-net Structure

Block unet.down unet.conv unet.up unet.out

Input Refine.14 unet.down unet.conv unet.out

Structure





3× 3 conv.

3× 3 conv.

max-pool



× 3

[

3× 3 conv.

3× 3 conv.

]





3× 3 conv.

3× 3 conv.

max-pool



× 3
[

3× 3 conv.
]

Output 32× 32× 256 32× 32× 512 128× 128× 64 256× 256× 3

Figure 2: Structure of channel attention module(CA.4,

CA.5, CA.8 in Table. 2). It pools channel information from

multi-channel feature map of last layer and passes it into a

2-layer fully-connected network of which output is recov-

ered to multiply with skipped feature map.

Figure 3: Structure of residual block(Res.4, Res.5, Res.6,

Res.7, Res.8 in Table. 1 and 2). It adds skip connection

with outputs of four convolution layers.

3.2. EDN­3J Model

The EDN-3J model utilizes the encoder in Table. 1

which is initialized as mentioned above. There are 4 de-

coders denoted as decoder.J1, decoder.J2, decoder.J3 and

decoder.W. Decoder.J’s, which are constructed based on

Table. 2, outputs dehazed images J1,J2, J3 which are

learned using different reconstruction loss. Aiming to find

the best version of combination, decoder.W generates 3

weight maps by the 3-channel output layer. Elements of

each weight map are constrained between 0 and 1 and are

restricted to have sum to be 1. The formulation of final out-
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Figure 1: Architecture of the proposed ‘EDN-3J’ model. In EDN-3J, 3 decoders estimate J1,J2 and J3 directly and are

combined via w1,w2,w3 generated by decoder.W. Each decoder consists of convolution layers, attention modules, residual

blocks and Dense blocks(DB).
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Figure 4: Architecture of the proposed ‘EDN-AT’ model. Ambient light maps A1,A2, transmission map t are estimated by

decoder.A1, decoder.A2 and decoder.T respectively. A1,A2, which are then used to estimate clean images via inverse haze

model in Eq. 5, are multiplied with attention maps m and 1−m. Final output is a combination of two sub-models’ weighted

outputs.

put is shown in Eq. 2:

Ĵ = w1 · Ĵ1 +w2 · Ĵ2 +w3 · Ĵ3 (2)

where · represents element-wise multiplication, Ĵi :=

fJi
(I) and ŵi :=

fwi
(I)

fw1
(I)+fw2

(I)+fw3
(I) for i = 1, 2, 3 and

fwi
∈ [0, 1]. The overall architecture is illustrated in Fig. 1.

The joint training of encoder and decoders is accom-

plished by minimizing the following objective function:

L = ‖Ĵ1 − J‖22+λ1‖Ĵ2 − J‖1+λ2LSSIM (Ĵ3,J)

+λ3‖Ĵ− J‖22 + λ4Lvgg(Ĵ,J)
(3)

where λi, i ∈ {1, 2, 3, 4} are parameters for weighing

different loss terms, J is ground truth, LSSIM (x, y) :=
1 − SSIM(x, y) is dissimilarity measurement based on

Structural Similarity Index Measure(SSIM) [38] and Lvgg

is a perceptual loss that measures high-level differences,

like contents and style discrepancies between images alike.

Lvgg is calculated by inputting J and Ĵ into a pre-trained

VGG16 network [39] and measuring their output features’

difference in the sense of L2-norm given by:

Lvgg =
3

∑

i=1

‖gi(Ĵ)− gi(J)‖22 (4)

where the gi(·) represents the operator of feature extraction

conducted by VGG16 model.

In the EDN-3J model, we are combining shared sub-

models that are learned under different reconstruction loss

functions. This offers a great benefit in the challenging sce-

nario of non-homogeneous haze, since each loss function

has certain advantages thereby motivates each sub-model

to have distinct characteristics. Weight maps are generated

and used to ensure that outputs of sub-models are combined

effectively for the best version of final output.

3.3. EDN­AT Model

Although the EDN-3J model shows promise in dehaz-

ing non-homogeneous corrupted images, lack of knowledge

about physical haze model would make it inferior. If we can

estimate the physical parameters, the clean images can be

recovered by:

Ĵ =
I− (1− t̂)Â

t̂
(5)

To explore the merits of the physical haze model and also

the ensemble scheme, we propose EDN-AT which consists

of one shared encoder constructed and initialized in a simi-

lar fashion as EDN-3J.

Four decoders are connected to the encoder in a parallel

way, denoted as decoder.T, decoder.A1, decoder.A2 and de-

coder.W. The dehazed image is estimated by combining the

outputs of two sub-models:

Ĵ(x) = ŵ · Ĵ1(x) + (1− ŵ) · Ĵ2(x) (6)

where Ĵ1, Ĵ2 are sub-models’ outputs, which are estimated

through inversion of physical haze model. In addition to the

parameters A1,A2, t in normal haze model, we embedded

a novel parameter: attention map M to further enable two

sub-models to focus on distinct aspects. The formation of



DB DB DB DBDB DB DB DB

Hazy Image Encoder - Decoder
...

U-net Dehazed Image

Figure 5: The architecture of the proposed ‘EDN-EDU’ model, which consists of a Dense encoder, Dense decoder, and a

U-net.

Ĵ1, Ĵ2 is shown as follows:

Ĵ1(x) =
I(x)− Â1(x) · M̂(x) · (1− t̂(x))

t̂(x)
(7)

Ĵ2(x) =
I(x)− Â2(x) · (1− M̂(x)) · (1− t̂(x))

t̂(x)
(8)

where I is hazy image, t̂ is common transmission map esti-

mated by decoder.T, Â1, Â2 are ambient light intensities in

two haze models estimated by decoder.A1 and decoder.A2,

ŵ and M̂ are weight map and attention mask generated by

2-channel output layer from decoder.W.

The motivation here is that since the haze is primarily

governed by the atmospheric light, we obtain two different

ambient light maps A′s: one for reconstructing dense hazy

regions and one for light hazy regions. With the help of

multiplication of attention map m and its complementary

part 1−m, the models would gain more expressing power

to regress the non-linear mapping from dense hazy scene to

haze-free scene and corresponding mapping of non-dense

haze scene. The transmission map t remains the same for

both the models as we assume t in both model depends on

the pixel locations which do not vary. The overall architec-

ture of EDN-AT is illustrated in Fig. 4.

The training of EDN-AT is performed by minimizing the

following loss function:

L = ‖Ĵ1 − J‖22 + λ1‖Ĵ2 − J‖1+ λ2‖Ĵ− J‖22
+ λ3 LSSIM (Ĵ,J) + λ4Lvgg(Ĵ,J)

(9)

where λi, i ∈ {1, 2, 3, 4} are parameters that weigh each

term, J is ground truth and Lvgg is perceptual loss per-

ceived by VGG16 network. The loss function contains 4

terms constraining outputs of sub-models and final output of

the model. The shared encoder structure enhance both sub-

models’ individual performance significantly. Meanwhile,

different reconstruction losses plus attention maps force the

sub-models in EDN-AT to generate diverse outputs. With

the help of learned weight maps, the final output is able to

recover images in less hazy region and estimate scenes in

dense hazy region.

3.4. EDN­EDU Model

In contrast to the ensemble dehazing networks intro-

duced above, here we demonstrate a simple but effective

cascading ensemble model of two dehazing blocks. In this

model, a DenseNet based encoder-decoder block and a U-

net based block are cascaded to form a direct mapping

from hazy images to clean images, hence called EDN-EDU

model. The sequential ensemble of an encoder-decoder and

a U-net enables the overall model to recover scene infor-

mation in hazy images hierarchically, thereby enhancing its

capacity of feature extraction and recovery. The detailed

structure of encoder, decoder and U-net block are shown in

Table. 1, 2 and 4. The architecture of the cascaded model

is shown in Fig. 5. The training of EDN-EDU is performed

by minimizing the following loss function:

L = ‖Ĵ1 − J‖22 + λ1‖Ĵ− J‖1 + λ2‖Ĵ− J‖22
+λ3 LSSIM (Ĵ,J) + λ4Lvgg(Ĵ,J)

(10)

where Ĵ1 is output of dense network and Ĵ is the output of

U-net which also happens to to be the output of EDN-EDU

model, Lvgg and LSSIM are defined in the same way as

those in EDN-3J and EDN-AT are defined.

4. Experiments

In this section we present the procedures for pre-

processing training datasets and setup for the experiments.

4.1. Datasets

The EDN-3J, EDN-AT and EDN-EDN models are

trained using the NTIRE-2020 non-homogeneous Dehaz-

ing dataset [22]. The dataset contains haze-free images

and hazy images of the same scene. The training dataset

consists of 45 pairs of hazy images and their correspond-

ing haze-free ground truth. To enable the networks to

have a better generalizing ability, we also include the out-

door images from the NTIRE-2018 Dehazing dataset [3]

and NTIRE-2019 Dehazing dataset [23] for training. Both

datasets contain images with homogeneous haze while haze

in the NTIRE-2019 dataset has a higher density. To obtain

a sizeable amount of training data, we extract patches of

size 256 × 256 from these images. To further extend our

training dataset, the following augmentation techniques are

used: 1) horizontal flip, rotation by 90◦, 180◦ and 270◦; 2)

the original images are resized to 256 × 256 and then the

same augmentation techniques are applied to them and are

included in the training dataset.



4.2. Training Setup

We use a batch size of four for training with Adam [40]

as the optimizer. The initial learning rate is 1× 10−4 which

is reduced to its 40% after every 10 epochs. All the 3 models

are trained for 60 epochs.

5. Experimental Results

In this section we present the numerical and visual per-

formance of our proposed models, which include ablation

study and comparison with state-of-the-art methods. The

evaluation metrics used to quantify the performance are

Peak Signal-to-Noise Ratio(PSNR), Structural Similarity

Index Measure(SSIM) and Learned Perceptual Image Patch

Similarity (LPIPS) metric. LPIPS is a novel metric that

measures perceptual similarity using deep features of two

images extracted by some well-known deep learning frame-

works. The lower LPIPS score indicates a higher similarity

between two images. The evaluation datasets include the

validation dataset of NTIRE-2019 dehazing challenge and

validation dataset of NTIRE-2020 dehazing challenge. The

ground-truth images are only available for NTIRE-2019

dataset, while for NTIRE-2020 dataset, we submitted the

results on the challenge server to obtain the results of our

methods along with the competing methods.

5.1. Ablation Study

We performed an ablation study on EDN-3J and EDN-

AT models to investigate the effects of different blocks. The

quantitative results of the study are reported in Table. 5. In

Table 5: Ablation Study

Decoder Loss Terms

J1& J2 J3 L1 L2 LSSIM PSNR SSIM

EDN-3J

√ √ √ √ √
18.01 0.61√ √ √

√ √

17.85 0.61√ √ √ √ √
17.82 0.60√ √ √
17.70 0.58

m t A1 A2 W PSNR SSIM

EDN-AT

√ √ √ √ √
18.52 0.63√ √ √ √
18.46 0.62√ √ √
18.27 0.60√ √
18.20 0.59

EDN-3J model, we investigated the impacts of using differ-

ent losses terms for each decoder. We noticed that assigning

distinct loss functions to different decoders have positive

effects on the models. SSIM is particularly crucial to in-

creasing the capacity of this ensemble model. Besides, we

removed the third decoder that is constrained by LSSIM

and observed the result. In EDN-AT model, we investi-

gated the case of attention mask m being removed, the case

of single physical haze model with attention mask and the

case of single physical haze model. From the ablation study

of EDN-AT, it is observed that utilizing two haze models

and combining them effectively can boost the performance.

With attention map incorporated in the model, dehazed im-

ages can be further enhanced. This study is performed on

NTIRE-2020 validation dataset.

5.2. Comparison with State­of­the­art Methods

The state-of-the-art methods used for comparisons in-

clude: TIP’15 [41], TIP’16 [28], CVPR’16 [42], ICCV’17

[29], CVPR’18 [43], CVPRW’18 [32], and CVPRW’19

[30]. Table. 6 and Table. 7 report the quantitative results

of EDN-3J, EDN-AT and EDN-EDU models on NTIRE’19

validation dataset and NTIRE’20 validation dataset. From

Figure. 6 and 7, it can be observed that images gener-

ated by EDN-AT and EDN-EDU models are visually better

compared to the state-of-the art methods. Further, quanti-

tatively EDN-AT and EDN-EDU produced the best PSNR

values compared to the state of the alternatives on both the

datasets. Among the variants of our own methods, EDN-

AT and EDN-EDU produced the best results compared to

EDN-3J. This is due to the facts that EDN-AT has knowl-

edge of physical model imbibed into it and EDN-EDU

has a sequential hierarchical structure with stronger fea-

ture extracting-recovering capacity thereby leading to better

performance. The NTIRE-2019 validation dataset has uni-

form haze which is a special case of non-homogenous haze.

From the results of comparisons, the issue of uniform haze

is also effectively addressed by our EDN models.

Table 6: The average PSNR/SSIM of different methods

over NTIRE-2019 validation dataset.

Team Contest Method PSNR SSIM

Other Methods

TIP15[41] 13.29 0.38

TIP16[28] 14.56 0.42

CVPR16[42] 15.98 0.45

ICCV17[29] 15.67 0.51

CVPR18[43] 16.30 0.48

CVPRW18 [32] 15.69 0.47

CVPRW19[30] 17.15 0.52

Ours

EDN-3J 16.87 0.49

EDN-AT 17.44 0.55

EDN-EDU 17.21 0.51

Table 7: The average PSNR/SSIM of different methods

over NTIRE-2020 validation dataset.

Team Contest Method PSNR SSIM

Other Methods

TIP15 [41] 14.59 0.55

TIP16 [28] 15.94 0.57

CVPR16 [42] 16.13 0.60

ICCV17 [29] 17.97 0.62

CVPR18 [43] 17.90 0.63

CVPRW18 [32] 18.23 0.62

CVPRW19 [30] 18.45 0.64

Ours

EDN-3J 18.01 0.61

EDN-AT 18.52 0.63

EDN-EDU 18.92 0.63



HZ TIP15 CVPR16 ICCV17 CVPR18 CVPRW18 CVPRW19 EDN-AT EDN-EDU GT

Figure 6: Visual results of different state-of-the-art methods on validation dataset of NTIRE-2019 Dehazing Competition.

TIP15 TIP16 CVPR16 ICCV17 CVPR18 CVPRW18 CVPRW19HZ EDN-AT EDN-EDU

Figure 7: Visual results of different state-of-the-art methods on validation dataset of NTIRE-2020 Dehazing Competition.

The GT images for this dataset are not provided.

NTIRE-2020 Dehazing Challenge The haze presented

in images from NTIRE-2020 Dehazing dataset is non-

homogeneous, which is a new challenge that has not been

addressed in the previous literature. In evaluation phase of

NTIRE-2020 Dehazing challenge, both fidelity and percep-

tual quality are taken into consideration.

Table 8: The average PSNR/SSIM/LPIPS of top methods

over NTIRE-2020 testing dataset.

Team Contest Method PSNR SSIM LPIPS

Top methods

method1 21.91(1) 0.69(2) 0.361

method2 21.60(2) 0.67 0.363

method3 21.41(3) 0.71(1) 0.267(2)

method4 20.85(4) 0.69(2) 0.285(3)

method5 20.11(5) 0.66 0.351

method6 20.10(6) 0.69(2) 0.330

Ours

EDN-EDU 19.76(7) 0.67(7) 0.289(4)

EDN-AT 19.22 0.66 0.266(1)

EDN-3J 18.58 0.63 0.303

Table. 8 includes the top methods from the contest in

terms of the performance of PSNR. The superscription of

the number represents the ranking of the model in terms

of the corresponding metric. As we can see from the ta-

ble, EDN-AT model ranks 1st in LPIPS while EDN-EDU

model ranks 7th in PSNR, 4th in LPIPS and 7th in SSIM

metric. These results validate the effectiveness of our pro-

posed models.

6. Conclusion

We developed ensemble dehazing networks to address the

challenge of non-homogeneous haze. We proposed three

new models that are particularly effective in recovering

clean images from non-homogeneous haze. Our EDN-AT

and EDN-EDU models achieved excellent results in the

NTIRE-2020 Dehazing Challenge. EDN-AT model benefits

from the incorporation of the physical model into the deep-

learning framework, while EDN-EDU benefits from the

rich modeling capacity of a sequential hierarchical frame-

work. As a future direction, we can extend our ensemble

framework by combining all the 3 proposed models effi-

ciently thereby increasing the performance further.
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