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Abstract

This paper reviews the Challenge on Image Demoire-

ing that was part of the New Trends in Image Restoration

and Enhancement (NTIRE) workshop, held in conjunction

with CVPR 2020. Demoireing is a difficult task of removing

moire patterns from an image to reveal an underlying clean

image. The challenge was divided into two tracks. Track 1

targeted the single image demoireing problem, which seeks

to remove moire patterns from a single image. Track 2 fo-

cused on the burst demoireing problem, where a set of de-

graded moire images of the same scene were provided as in-

put, with the goal of producing a single demoired image as

output. The methods were ranked in terms of their fidelity,

measured using the peak signal-to-noise ratio (PSNR) be-

tween the ground truth clean images and the restored im-

ages produced by the participants’ methods. The tracks had

142 and 99 registered participants, respectively, with a to-

tal of 14 and 6 submissions in the final testing stage. The

entries span the current state-of-the-art in image and burst

image demoireing problems.

1. Introduction

Digital photography has matured in the past years with

the new advancements in relevant research areas, includ-

ing image denoising [61, 19, 2], image demosaicing [16],

super-resolution [37, 46, 47, 8, 9, 31, 23], deblurring [33],

dehazing [4], quality mapping [22], automatic white bal-

ance [7], and high dynamic range compression [17]. Moire

S. Yuan (shanxin.yuan@huawei.com, Huawei Noah’s Ark Lab), R.

Timofte, A. Leonardis and G. Slabaugh are the NTIRE 2020 challenge

organizers, while the other authors participated in the challenge.

Appendix A contains the authors’ teams and affiliations.
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aliasing is a less addressed and fundamental problem. In the

case of digital photography, moire aliasing occurs when the

camera’s color filter array (CFA) interferes with high fre-

quency scene content close to the resolution of CFA grid.

The high frequency regions result in undersampling on the

sensor color filter array (CFA) and when demosaiced, can

create disruptive colorful patterns that degrade the image.

For example, moire aliasing is likely to happen when taking

pictures of clothing or long-distance building’s tiles.

The AIM19 demoireing challenge [59] addressed a more

specific scenario of photography of digital screens. In this

scenario, moire patterns appear when the CFA interferes

with the LCD screen’s subpixel layout. However, in the pho-

tography natural scenes, moire aliasing is also a less ad-

dressed problem, where the CFA interferes with high fre-

quency scene content. Our NTIRE2020 demoireing chal-

lenge addresses this more general case.

By engaging the academic community with this chal-

lenging image enhancement problem, a variety of methods

have been proposed, evaluated, and compared using a com-

mon dataset. In this paper, we also propose a new dataset

called CFAMoire consisting of 11,000 image pairs (image

with moire patterns in the high frequency areas, and clean

ground truth).

This challenge is one of the NTIRE 2020 associated

challenges on: deblurring [34], nonhomogeneous dehaz-

ing [5], perceptual extreme super-resolution [60], video

quality mapping [15], real image denoising [1], real-world

super-resolution [32], spectral reconstruction from RGB

image [6] and demoireing.

2. The Challenge

The demoireing challenge was hosted jointly with

the New Trends in Image Restoration and Enhancement

(NTIRE) workshop held in conjunction with the IEEE Com-

puter Society Conference on Computer Vision and Pattern
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Recognition (CVPR) 2020.

The task of image demoireing is to design an algorithm

to remove moire patterns from an input image. To help build

algorithms, particularly those based on machine learning, a

novel dataset was produced for the challenge.

2.1. CFAMoire Dataset

As an essential step towards reducing moire effects, we

proposed a novel dataset, called CFAMoire. It consists of

10,000 training, 500 validation, and 500 test images with

128 × 128 resolution. The images are high quality in terms

of the reference frames and different moire patterns. It also

covers balanced content, including clothing and buildings,

where the high frequency repetitive patterns interfere with

the camera’s color filter array.

The clean images are sampled or cropped from exist-

ing datasets, including DeepJoint [16], HDR+ [20], and

DIV8K [18]. The corresponding moire images are gener-

ated through a remosaicing and demosaicing process, where

moire artifacts will appear in the high frequency area. To

collect the clean images, we followed a two-step strategy

through first automatically selecting images by quantifica-

tion of moire artifacts in the Fourier domain, followed by

manual selection. The automatic selection step is conducted

by measuring the frequency change between the clean im-

age and the demosaiced image [16].

Assuming the clean image and the demosaiced image to

be Ic and Im. Both images are first converted to the Lab

space and then a 2D Fourier transform is applied to each

channel to get F (Ic) and F (Im). The frequency ratio is cal-

culated by

ρ(w) =

{

log( |F (Im)|2+η

|F (Ic)|2+η
) if |w| < γ

1 otherwise
(1)

where w is the spatial frequency and γ is a threshold. Fol-

lowing the setting of [16], we only compare the ratio in fre-

quencies lower than γ, which is set to 0.95π, to mitigate

high-frequency noise. The ratio map is then smoothed with

Gaussian blur. If the maximum ratio value across all chan-

nels and frequencies exceeds a threshold of 2, then the im-

age is selected.

This technique can produce a large number of candi-

date image pairs for the dataset. However, it cannot detect

clean images that are already corrupted with moire artifacts.

Moreover, since it works in the Fourier domain and requires

some manually set parameters, it may select suboptimal im-

age pairs. Therefore, the organizers spent one week on man-

ual selection. As a result, only 10% of the pairs from the au-

tomatic step are selected. Figure 1 shows some examples.

2.2. Tracks and Evaluation

The challenge had two tracks: Single image track and

Burst track.

Single image: In this track, participants developed

demoire methods to achieve a moire-free image with the

best fidelity compared to the ground truth. Figure 1 shows

some image pairs.

Burst: Similar to the Single image track, this track works

on a burst of images. To generate the input data, apart from

the reference moire image, 6 supporting images are gen-

erated by first applying random homographies to the clean

image and then by going through the mosaicing and demo-

saicing step, see Figure 2 for examples.

For both tracks, we used the standard Peak Signal To

Noise Ratio (PSNR) measure to rank methods. Addition-

ally, the Structural Similarity (SSIM) index was computed.

Implementations of PSNR and SSIM are found in most im-

age processing toolboxes. For each method we report the

average results over all the processed images.

2.3. Competition

Platform: The CodaLab platform was used for this com-

petition. To access the data and submit their demoired im-

age results to the CodaLab evaluation server each partici-

pant had to register.

Challenge phases: (1) Development (training) phase:

the participants received both moire and moire-free train-

ing images of the dataset. (2) Validation phase: the par-

ticipants had the opportunity to test their solutions on the

moire validation images and to receive immediate feedback

by uploading their results to the server. A validation leader-

board was available. (3) Final evaluation phase: after the

participants received the moire test images and clean valida-

tion images, they submitted their source code / executable,

demoired images, and a factsheet describing their method

before the challenge deadline. One week later, the final re-

sults were made available to the participants.

3. Results

For the single image track, there were 142 registered

teams, and 14 teams entered the the final phase by submit-

ting results. Table 1 reports the final test results, rankings

of the challenge, self-reported runtimes and major details

from the factsheets. The leading entry was from the HaiYun

team, scoring a PSNR of 42.14 dB. Second and third place

entries were by teams OIerM and Alpha respectively.

For the burst track, there were 99 registered teams, and

6 teams entered the final phase by submitting results. Ta-

ble 2 reports the results and details from the factsheets. The

leading entry was from the OIerM team, scoring a PSNR of

41.95. Second and third place entries were by teams Alpha

and Mac AI respectively. Please note that the best PSNR



Figure 1: Examples from the CFAMoire dataset. Top row are moire images, bottom row are ground truth.

Figure 2: Two examples for the burst image track. Random homographies are applied to the clean image before the remo-

saicing and demosaicing step. The last column is the ground truth. With slight viewpoint changes, the moire patterns change

dramatically. A burst of images can provide extra information to the reference image.

Team PSNR SSIM Time (train, test) GPU Platform Loss Ensemble GFlops #Para

HaiYun 42.14 0.99 3 days, 0.45 GTX Titan XP Pytorch 1.0.0 L1 (RGB) + L1 (DCT) Self-ensemble 45.17 144.33M

OIerM 41.95 0.99 67 hours, 0.1 RTX 2080Ti PyTorch L1 Refinement x16 - 56.2M

Alpha 41.84 0.99 5 days, 0.34 RTX 2080Ti PyTorch L1 charbonnier Self-ensemble x8 267 23M

Reboot 41.11 0.99 10 days, 0.87 RTX 2080Ti PyTorch 1.4 L1 (RGB) + L1 (UV) Self-ensemble x4 - 164M

LIPT 41.04 0.99 7 days, 1.5 Tesla V100 TF 2.0 L1 (RGB) + L1 (∇RGB) + L1 (DCT) Self-ensemble x8 - 5.1M

iipl-hdu 40.68 0.99 3 days, 0.1 2080Ti Tensorflow 1.14 L1 + ASL - - 24M

Mac AI 40.60 0.99 -, 0.1635 GTX 1080Ti PyTorch 1.1 - Self-ensemble x8 - 13.6M

MoePhoto 39.05 0.99 24 hours, 0.14 RTX2080Ti (11GB) x4 PyTorch 1.4 L1 charbonnier + L1 Wavelet None 46.38 6.48M

DGU-CILab 38.28 0.98 3 days, 0.187 RTX 2080Ti Pytorch 1.3 L2 Self-ensemble x8 - 14M

Image Lab 36.73 0.98 -,0.01944 GPU with 8GB memory TF 1.10 L2 + SSIM + Sobel - - 1.6M

VAADER 36.63 0.98 2days, 0.035 2080Ti train, GTX 1080Ti (test) PyTorch 1.4 L1 Self-ensemble x8 - 13M

CET CVLab 32.07 0.95 5 days,0.192 Nvidia Quadro K6000 TF 2.1 L1 + color loss No - -

sinashish 30.69 0.92 6 hours, 0.045 Tesla K80 PyTorch 1.14 L2 No - -

NTIREXZ 29.52 0.90 18 hours, 0.115 Nvidia 1060 - L1 - -

no processing 25.45 0.77 - - - - - -

Table 1: Final results for the Single image demoire challenge track (Track 1).

in the burst track is lower than that of single frame track,

which is counter-intuitive. One would expect the additional

frames to provide more data useful to produce a better qual-

ity result. However, after the challenge’s deadline, Alpha

team submitted new results that significantly increased the

PSNR to 45.32 (larger than the best result on single frame

track) by making use of alignment across the burst.

Looking across entries, some interesting trends were

noted. In particular,

• Ensembles: Most solutions used self-ensemble [48]

x8. Small improvements are reported by the solu-

tions. Besides self-ensemble, a new fusion method is

also proposed by OIerM team. OIerM team performed

16 invertible transforms including rotating, flipping,

transposing and their combinations on a single im-

age. Then they perform corresponding inverse trans-

forms on the outputs and concatenated them together

to get augmented results. Then they train a smaller

network to fuse the augmented results. This strategy

brings +0.35dB PNSR over the single method on vali-

dation set.

• Multi-scale strategy: Most solutions adopted a multi-



Team PSNR SSIM Time (train, test) GPU Platform Loss Ensemble GFlops #Para

OIerM 41.95 0.99 67 hours, 0.1 RTX 2080Ti PyTorch Loss Refinement x16 56.2M

Alpha 41.88 0.99 3 days, 0.34 RTX 2080Ti Pytorch L1 charbonnier Self-ensemble x8

Alpha∗ 45.32 1.00 5 days, 0.34 RTX 2080Ti PyTorch L1 charbonnier Self-ensemble x8

Mac AI 40.64 0.99 -,0.2753s GTX 1080Ti PyTorch 1.1 - Self-ensemble x8 - 13.8M

Reboot 40.33 0.99 10 days, 0.22 RTX 2080Ti PyTorch 1.4 L1 (RGB) + L1 (UV) None - 21M

MoePhoto 39.05 0.99 24 hours, 0.14 RTX 2080T x4 PyTorch 1.4 L1 charbonnier + L1 Wavelet None 46.38 6.48M

DGU-CILab 38.50 0.99 4 days, 0.1636 RTX 2080Ti Pytorch 1.3 - Self-ensemble x8 - 14M

no processing 25.45 0.77 - - - - - - -

Table 2: Final results for the Burst demoire challenge track (Track 2). ∗ submission after the deadline.

scale strategy as a mechanism to handle moire patterns

of different frequencies.

• New loss functions: Although many solutions choose

the traditional L1 loss function. A few new loss func-

tions are used, including coral loss by HaiYun team,

L1 Wavelet loss by MoePhoto team, color loss by

CET CVLab.

The next section describes briefly the method of each

team, while in the Appendix A the team members and their

affiliations are provided.

4. Challenge Methods

4.1. HaiYun team

Figure 3: The overall network architecture of the proposed

AWUDN.

HaiYun team propose a deep wavelet network with

domain adaptation for single image demoireing, dubbed

AWUDN [53], as shown in Figure 3. The whole network

is an U-Net structure, where the downsampling and upsam-

pling of feature maps are replaced with discrete wavelet

transform (DWT) and inverse discrete wavelet transform

(IDWT) for reducing computation complexity and informa-

tion loss. Therefore, the feature mapping is performed in

wavelet domain, where the basic block adopts the residual-

in-residual structure [62] for extracting more residual infor-

mation effectively. Considering that the dataset provided by

the competition has strong self-similarity, i.e., similar tex-

ture structure, the global context block [10] as shown in Fig-

ure 4 is introduced in the front of network structure. It can

help establish the relationship between two distant pixels to

better use the internal information of the image for restor-

ing texture details. Moreover, there may exist slight domain

difference between the source domain training data and the

Figure 4: Global context block

target domain testing data. It means that the distribution of

moire images in the training set and the moire images in

the test set is inconsistent, which can constrain the perfor-

mance improvement of the model pretrained on the train-

ing dataset. CORAL loss [43] gives us some inspiration,

which defines the measurement difference of the second-

order statistics between features in the source domain and

the target domain. Therefore, the pretrained model WUDN

is fine-tuned using coral loss for reducing the domain shift

of training moire dataset and testing moire dataset in the

testing phase. Self-ensemble strategy is adopted to further

improve performance. The proposed solution can obtain

significant quantitative and qualitative results.

4.2. OIerM team

OIerM team propose an Attentive Fractal Network

(AFN) [54] to effectively solve the demoiré problem. First,

they construct an Attentive Fractal Block via progressive

feature fusion and channel-wise attention guidance, then

they stack our AFB in a fractal way inspired by FBL-

SS [55]. Finally, to further boost the performance, they

adopt a two-stage augmented refinement strategy.

The proposed AFN adopts a fractal network architecture.

With the help of shortcuts and residuals of different levels,

the whole network gains the ability to utilize both local and

global features for moiré pattern removal. The framework,

as shown in Fig. 5 (c), consists of three main parts, which

are encoding layers GE, an Attentive Fractal Block (AFB)

GAFB, and decoding layers GD.

The encoding layers first transform the input image IM
into a multi-channel feature f0

s , which is the input of the



Figure 5: Architecture of AFN. (a) shows the structure of

the basic block AFB0. (b) shows the hierarchical architec-

ture of AFBs, where s is the recursion level of the block.

(c) illustrates the structure of AFN, which consists of an en-

coding block, an AFBs, and an decoding block.

following AFB of level s.

f0
s = GE(IM ). (2)

The AFB performs major refinement for the encoded fea-

tures to obtain fs.

fs = GAFBs
(f0

s ). (3)

The feature fs is then given to the decoding layers to re-

construct a three-channel clean image ID. A global residual

connection is added to stabilize the network.

ID = GD(fs) + IM . (4)

They also adopt a two-stage augmented refinement strategy

to push the ability of AFN further. Specifically, the second

stage uses a similar but shallower AFN network with lower

levels of AFB to refine the output of the first stage.

Attentive Fractal Block. The proposed AFB is built in a

fractal way, and it has a self-similar structure. Each high-

level AFB can be constructed with AFBs of lower-level re-

cursively until the level reaches zero. Specifically, as shown

in Fig. 5(b), an AFB of level s consists of ns AFBs of level

s− 1 as well as a Fusion Unit. In Fig. 5(a), a level 0 AFB is

illustrated, and it has a residual shortcut and m convolution

layers followed by LeakyReLU layers. For level s, the en-

coded features f0
s are fed into each of the ns AFBs of level

s − 1 sequentially to obtain ns refined features, which are

f1
s , · · · , f

ns

s respectively:

f i
s = GAFB

i−1

s−1

(f i−1
s ), (1 ≤ i ≤ ns). (5)

They then adopt a progressive feature fusion strategy, which

is to progressively feed-forward the intermediate features

of early stages to the end of the current block and fusion

them there. By concatenating the features of the same level,

their rich information from different stages help the network

learn more thoroughly:

fC
s = [f1

s , f
2
s , · · · , f

ns

s ]. (6)

Too many channels might confuse the network with

abundant information, so they choose to adopt channel-

wise attention with the help of a Squeeze-and-Excitation

Layer [21]. By multiplying the assigned learnable weights,

the output feature maps are re-weighted explicitly accord-

ing to their properties.

fA
s = GSEs

(fC
s ) · f

C
s . (7)

Finally, they send the features to a Fusion Unit (FU) to nar-

row down their channels. A local residual connection is also

adopted to stabilize the network.

fs = GFUs
(fA

s ) + f0
s . (8)

For level 0 AFB, it sends the input f0
0 sequentially to m

convolution layers followed by LeakyReLU layers.

f i
0 = FLeaky(GConvi(f

i−1
0 )), (1 ≤ i ≤ m). (9)

A local shortcut is also adopted to relieve the burden of the

network.

f0 = fm
0 + f0

0 . (10)

As illustrated above, a high-level AFB is made up of several

lower-level AFBs. So actually the input of a level s−1 AFB

f0
s−1 is also the input f i

s of an intermediate layer in a level

s AFB. And the output of a level s−1 AFB fs−1 is also the

output f i+1
s of an intermediate layer in a level s AFB.

4.3. Alpha team

Alpha team propose the MMDM: Multi-frame and

Multi-scale for Image Demoireing [29], see Figure 6. They

propose a feature extraction and reconstruction module

(FERM) based on RCAN [62] by removing all channel

attention modules and upsampling layers, and adding a

global residual connection. FERM has less inference time

and more stable output. In order to process the various fre-

quency components in the moire patterns, they propose a

multi-scale feature encoding module (MSFE) that processes

images at different scales. The MSFE has 3 simple versions

of FERM with up and down sampling layers for different

scales. In addition, they also propose an enhanced asym-

metric convolution block (EACB), which can be applied

to any image restoration network, see Figure 7. Based on

ACB [14], they add two additional diagonal convolutions

to further strengthen the kernel skeleton, and remove the

batch normalization layers and the bias parameters for bet-

ter performance. They used the proposed FERM and EACB

to achieve the second place in the track 2: sRGB of the real

image denoising challenge [1].

For the burst task, they propose a multi-frame spatial

transformer network (M-STN). In order to connect multiple

input frames, they concatenate n input frames together over

the channel dimension (n is the number of input frames, in-

cluding 1 standard frame and n−1 non-aligned frames). The



Figure 6: Network architecture of multi-frame and multi-

scale for image demoireing (MMDM).

Figure 7: Enhanced asymmetric convolution block (EACB).

localisation network processes the input to get 8 × (n − 1)
parameters (they use the perspective transform which can

simulate the burst input, and only transform the non-aligned

frames), and constructs n − 1 perspective transformation

matrices. The grid generator and sampler respectively trans-

form the input frames according to the matrices to obtain

n aligned frames. The aligned frames are concatenated to-

gether over the channel dimension, then input to the main

network. With more aligned high-frequency information,

the performance of the network has been greatly improved.

Compared to STN [24], the M-STN can process multi-

frame inputs at the same time and make information fusion

between them.

For both tracks, the team only used the simplified version

of EACB (without diagonal convolutions) because EACB

had a long training time. The use of EACB in this model, al-

though it will consume more time during the training phase,

the asymmetric convolutions can be fused, and there is no

additional time consumption during testing phase.

Ensembles and fusion strategies: Both tracks use self-

ensemble X8 (flip and rotate). After training, the weight of

the asymmetric convolution is added to the corresponding

position to achieve the fusion effect. This is not like a gen-

eral fusion strategy, but more like self-fusion.

4.4. Reboot team

The Reboot team proposed C3Net: Demoireing Network

Attentive in Channel, Color and Concatenation [27]. The

method is inspired by Residual Non-local Attention Net-

Figure 8: Overall structure of C3Net.

Figure 9: The structure of Attention-Via-Concat Block

(AVCBlock).

work (RNAN) [63] and Deep Iterative Down-Up CNN for

Image Denoising (DIDN) [57]. The entire network con-

sists of n Attention Via Concatenation Blocks (AVCBlocks)

in global feature fusion used in Residual Dense Network

for Image Super-Resolution (RDN)[64], see Figures 8. An

AVCBlock, see Figure 9, consists of two branches: the trunk

branch and the mask branch. In the trunk branch, there are

r residual blocks (ResBlocks) in parallel to retain the orig-

inal values of input in diverse ways. In the mask branch,

there are a attentive blocks (AttBlock) for guiding the val-

ues from trunk branch to demoire. Outputs from the two

branches are concatenated and the number of channels of

concatenated features is halved for entering next block. The

method uses ResBlocks, each ResBlock similar to the one

used in [56] which consists of one convolutional layer, one

PReLU layer, and another convolutional layer. Channel at-

tention [62] is added with ReLU to cope with demoireing

problems related to colors. An AttBlock is a U-net with Res-

blocks, convolutional layers with stride 2 for downscaling,

and pixel shuffle with kernel size 2 for upscaling features.

The scaling layers and usage of U-net as a block bench-

marked DIDN.

For burst processing, global maxpooling [3] is added fol-

lowing each AVCBlock. The algorithm gives feature maps

which have maximum among 7 images and replicate and

concatenate 7 times to match the dimension. The proposed

C3Net concatenates the output of AVCBlock and the output

of AVCBlock and global maxpooling layer and the num-

ber of channels of concatenated features halves for entering

next block.



4.5. LIPT

Figure 10: Overall architecture of the multi-scale deep

residual network with adaptive pointwise convolution

model.

(a) FSB IN (b) FSB OUT (c) APC

Figure 11: Proposed modules in the model.

The LIPT team proposed Multi-scale deep residual net-

work with adaptive pointwise convolution. In order to ex-

tract more useful features, a novel adaptive pointwise con-

volution (APC) is proposed and applied, which is a modi-

fied version of a pointwise convolution based on 1×1 con-

volution filters [45]. The APC uses spatially variant learn-

able kernel weights for each pixel feature in order to per-

form adaptive linear projection. As shown in Figure 10, the

overall architecture consists of two branches, namely, main

and multi-scale branches. Features are extracted from the

input image by applying a 3×3 convolution.

Each multi-scale branch performs down-scaling, feature

extraction, and up-scaling processes by using Down, Bot-

tleneck, and Up modules, respectively. It can handle multi-

scale features efficiently. The Down module is a 3×3 con-

volution with a stride of 2. The Up module expands the fea-

ture map size by applying a 3×3 convolution and a sub-

pixel convolution [41]. The Bottleneck module consists of

a pointwise convolution with ReLU as the activation func-

tion, the Up, and the Down modules.

The extracted multi-scale information is merged into

the main branch, which consists of several residual blocks

(ResBlocks). Four-level multi-scale branches are used, thus,

the ResBlocks are grouped into 4 ResModules. In order to

extract important features from the main and multi-scale

branches, feature selection blocks (FSBs) are used at the

beginning and end of the each ResModule. The proposed

FSB IN and FSB OUT are shown in Fig. 11. These include

the ResBlock and the feature selection unit. The feature se-

lection unit is modified from the selection unit [13]. The

proposed APC is used instead of a 1×1 convolution in the

selection unit. It can help to extract useful features from the

main and multi-scale branches along channels as a channel

attention.

Adaptive pointwise convolution: Adaptive convolution

has adaptive kernel weights that are learnable for each pixel

feature [35, 42]. A new adaptive pointwise convolution

(APC) is proposed, as shown in Figure 11c. The APC is

a 1×1 convolution that has spatially variant learnable ker-

nel weights for each pixel feature. Thus, the APC can ob-

tain optimized feature maps by performing linear projection

per pixel feature. The APC consists of N pointwise convo-

lutions. In Figure 11c, EM denotes element-wise multipli-

cation, also known as the Hadamard product between each

output feature maps of the pointwise convolutions and input

feature map. And ES denotes element-wise summation for

the N feature maps. Note that the adaptive convolution ker-

nel space is determined by output feature maps of N point-

wise convolutions.

Three loss functions are used to train the model as L =
L1 + LDCT + L∇, where LDCT is the DCT loss, L∇ is

the differential content loss. The LDCT and L∇ can help

alleviate over-smoothness in the demoired image and tend

to reconstruct image for high frequency components [12].

4.6. iipl­hdu team

Figure 12: Architecture of the proposed baseline.

Figure 13: Proposed modules by iipl-hdu team. Left: the

comparison of LBF (a) and ABF (b). Right: the pipeline of

producing the label map.

The iipl-hdu team proposed a CNN-based adaptive

bandpass filter for image demoireing, where Adaptive

Bandpass Filte (ABF) is designed. This work is mainly

inspired by the team iipl-hdu’s previous work, the learn-

able bandpass filter [66, 65] (LBF). The new method intro-



duced a predictive bandpass (PB) block to adaptively pre-

dict the passband along with the image texture changing.

Fig. 13 shows the difference between ABF and LBF. ABF

was used to construct the residual block, and the architec-

ture of GRDN [26] was adopted to construct the baseline.

The architecture of proposed baseline is shown in Fig. 12.

The baseline is constructed by N groups, and each group

contains M residual blocks. In the residual block, let’s de-

fine the input as a c1-channel feature map, then the dense

block includes 5 densely connected dilated convolution lay-

ers. The dilation rates of the 5 layers are 1, 2, 3, 2, 1, and all

of them output a c2-channel feature map.

Label Map: Realizing that the moire effect only appears

in high-frequency areas, a labeling method was proposed

to generate the label map, highlighting the high-frequency

area in the image. The label map will be concatenated to

the moire image and sent to the CNN. The steps shown in

Fig. 13 were followed to generate the label map from the

moire input.

4.7. Mac AI team

Figure 14: The main architecture of CubeDemoireNet.

The Mac AI team proposed CubeDemoireNet: En-

hanced Multi-Scale Network for Image Demoireing. Cube-

DemoireNet is inspired by [30]. It enhances the conven-

tional multi-scale network by 1) facilitating information ex-

change across different scales and stages to alleviate the

underlying bottleneck issue, and 2) employs the attention

mechanism to identify the dynamic Moiré patterns, and thus

eliminate them effectively with the preservation of image

texture.

Due to the fact that dynamic Moiré patterns usually

embed in a broad range of frequencies, the benefit of a

multi-scale structure is evident. However, the conventional

multi-scale network has a hierarchical design that often suf-

fers a bottleneck issue caused by insufficient information

flow among different scales. the Mac AI team proposed

a new network, named CubeDemoireNet, which promotes

information exchange across different scales and stages

via dense connections using upsampling/downsampling

blocks to alleviate the underlying bottleneck issue prevalent

in conventional multi-scale networks. Moreover, CubeDe-

moireNet further integrates the attention mechanism to pre-

serve image texture while eliminating the dynamic Moiré

patterns. Fig. 14 demonstrates the main architecture of the

proposed CubeDemoireNet. The network consists of two

convolutional layers and three blocks that are residual dense

block (RDB), upsampling block, and downsampling block

respectively. More specifically, the same settings in [64] are

adopted in the proposed RDB. The upsampling and down-

sampling blocks are comprised of only two convolutional

layers to adjust the spatial resolutions accordingly. As for

the attention mechanism, the one employed in SENet [21]

is chosen.

In single and burst demoireing tracks, the proposed

CubeDemoireNet is used as the backbone. In CubeDe-

moireNet, the row, column, and stage is set to 3, 12, and

3 respectively for both tracks. Moreover, it was found

that adding a refinement network can further improve

the demoireing performance. Therefore, a modified U-net

[38] is adopted for both tracks. Specifically, for the burst

demoireing track, to align the burst images in accordance

with the reference one, the Pyramid, Cascading and De-

formable (PCD) proposed by [50] is employed.

4.8. MoePhoto team

Figure 15: Overall structure of MSFAN.

The MoePhoto team proposed Multi-scale feature ag-

gregation network for image demoiréing. This is a multi-

scale feature aggregation network for image demoiréing,

and dubbed MSFAN, see Figure 15. Based on [44, 11],

MSFAN incorporates a multi-branch framework to encode

the image with the original resolution features and 2×, 4×
down sampling features to obtain different feature repre-

sentations. In each branch, local residual learning is used

to remove moire pattern and recover image details. Then

the features are upsampled with sub pixel convolution and

concatenated to the upper level for effective feature aggre-

gation. MSFAN uses channel attention and spatial attention

to further enhance the information among the channels and

grab the non-local spatial information among features with

different spatial resolutions. L1 Charbonnier loss and L1

wavelet loss are used to calculate the difference between the

output image and the ground truth and update the network

parameters.



Figure 16: The architecture of the proposed dual-domain

demoireing network for Track-1.

4.9. DGU­CILAB

The DGU-CILAB team proposed Dual-Domain Deep

Convolutional Neural Networks for Demoireing [49], which

exploit the complex properties of moiré patterns in multiple

domains, i.e., pixel domain and frequency domain. In the

pixel domain, multi-scale features are employed to remove

the moiré artifacts associated with specific frequency bands

through multi-resolution feature maps. In the frequency do-

main, inputs are transformed to spectral sub-bands using the

discrete cosine transform (DCT). Then, DGU-CILAB de-

signed a network that processes DCT coefficients to remove

moiré artifacts. Next, a dynamic filter generation network

[25] is developed to learn dynamic blending filters. Finally,

the results from the pixel domain and frequency domain are

combined by blending filters to yield the clean images. The

Pixel Network is composed of multiple branches of differ-

ent resolutions. Each branch is a stack of attention dense

block (ADB) and residual attention dense block (RADB),

which are based on convolutional block attention module

(CBAM) [51], dense block (DB), and residual dense block

(RDB) [64]. The Frequency Network processes the DCT

coefficients of the input image to remove moiré artifacts in

a frequency domain. The final output image is generated

by applying the inverse discrete cosine transform (IDCT).

The Fusion Network using dynamic filter network [25] is

developed to take a pair of results from the pixel network

and frequency network as input and outputs blending fil-

ters, which are then used to process the inputs to yield the

final moiré-free image. To train the network, first the pixel

network and the frequency network are trained separately.

Then, after fixing them, the fusion network is trained. For

the burst track, information of each image in the sequence

is exploited and aligned with the reference image using the

attention network.

4.10. Image Lab team

The Image Lab team proposed Moire Image Restora-

tion using Multilevel Hyper Vision Net. The proposed

architecture[39] is shown in Figure 17, where the input im-

Figure 17: Proposed multilevel hyper vision net architec-

ture.

age pixels mapped to the Cartesian coordinate space with

the help of a coordinate convolution layer [28]. The output

of coordinate convolution layers passed to encoder block.

The convolutional layer and the residual dense attention

blocks are utilized for better performance. The proposed

network has the properties of an encoder and decoder struc-

ture of a vanilla U-Net [40, 38]. During down-sampling

three blocks have been used in the encoder phase. In each

block, the first encoder block is a 3×3 convolutional layer,

followed by two residual dense attention blocks added and

at the next block convolution layer with stride 2 used for

down sampling. In the decoder phase, the same blocks have

been used except the down sampling layer, which replaced

with a super pixel convolutional layer. Output features of

the encoder are fed to the convolution block attention mod-

ule [51] (CBAM) and in the skip connection upsampled fea-

tures concatenated with encoder block and the output of the

CBAM block. Inspired by the Hyper Vision Net [40] model,

in this work the three hyper vision layers in the decoder part

were introduced. The output of these hyper vision layers are

fused and supervised to obtain the enhanced image. The loss

function is Loss = MSE + (1− SSIM) + SOBELloss.

4.11. VAADER team

The VAADER team’s method is inspired by MBCNN of

the AIM2019 challenge [59] and uses a CNN-based mul-

tiscale approach. A multi loss extracted from the flow at

different scales is used to train the network. A pre-training

is performed on a mix of AIM2019 challenge patches [58]

and this year challenge samples. The final model is obtained

through a second training stage using only the current chal-

lenge dataset. Indeed, the past year dataset has several dif-

ferences including large luminance shifts between input and

reference that do not appear in this year’s dataset.



4.12. CET CVLab team

The CET CVLab team proposed Single Image

Demoireing With Enhanced Feature Supervised Deep

Convolutional Neural Network. The architecture follows a

CNN based encoder-decoder structure. The base network

was proposed for image deraining [52] and has two

convolutional encoders and one decoder i.e, two inputs

and one output. Encoder-I is a sequence of downsamplers

that extract the features of the degraded image at different

scales. Encoder-II, which has similar structure as encoder-I,

extracts the features of the moire-free image at different

scales during training. The decoder is a sequence of

upsamplers that reconstruct the moire-free images from

encoder-I’s output. The features of moire interfered image

can be brought closer to that of moire-free image by

minimizing their distance of separation in feature space.

This is realized by incorporating feature loss during

training. Feature loss is the mean of weighted sum of

L1 distance between the features of the degraded image

and moire-free image at different scales. To enhance the

network, a block of residual dense network (RDN) [64]

with channel attention (CA) [62] was introduced before

downsampling and upsampling to extract the features in the

current scale level. The proposed solution has 6 different

scale levels. The model complexity can be adjusted by

adding or removing the scale levels

4.13. sinashish team

The sinashish team proposed the use of feature fusion

attention for the demoireing of moired images inspired by

FFA-Net [36]. The method was trained with an L2 loss in-

stead of the L1 loss proposed in the FFA-Net paper.

4.14. NTIREXZ team

The NTIREXZ team followed the work of FFA-Net [36]

to estimate the undesired texture using global residual learn-

ing. Attention mechanisms, including both channel atten-

tion and pixel-wise attention, are used alongside a multi-

scale approach for efficient learning.

5. Conclusion

This paper reviews the image demoireing challenge that

was part of the NTIRE2020 workshop. First, the paper de-

scribes the challenge including the new dataset, CFAMoire

that was created for participants to develop their demoire

methods as well as evaluate proposed solutions. The chal-

lenge consisted of two tracks (single and burst) that consid-

ered different inputs to the demoire approaches submitted

by participants. The tracks had 142 and 99 registered partic-

ipants, respectively, and a total of 14 teams competed in the

final testing phase. The paper summarizes the results of the

two tracks, and then describes each of the approaches that

competed in the challenge. The entries span the current the

state-of-the-art in the image demoireing problem. We hope

this challenge and its results will inspire additional work

in the demoire problem, which is becoming an increasingly

important image quality challenge.
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