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Abstract

Capturing visual image with a hyperspectral camera has

been successfully applied to many areas due to its narrow-

band imaging technology. Hyperspectral reconstruction

from RGB images denotes a reverse process of hyperspec-

tral imaging by discovering an inverse response function.

Current works mainly map RGB images directly to corre-

sponding spectrum but do not consider context information

explicitly. Moreover, the use of encoder-decoder pair in

current algorithms leads to loss of information. To address

these problems, we propose a 4-level Hierarchical Regres-

sion Network (HRNet) with PixelShuffle layer as inter-level

interaction. Furthermore, we adopt a residual dense block

to remove artifacts of real world RGB images and a resid-

ual global block to build attention mechanism for enlarging

perceptive field. We evaluate proposed HRNet with other ar-

chitectures and techniques by participating in NTIRE 2020

Challenge on Spectral Reconstruction from RGB Images.

The HRNet is the winning method of track 2 - real world

images and ranks 3rd on track 1 - clean images.

1. Introduction

Hyperspectral (HS) imaging technology refers to the

spectral signature is densely sampled to many narrow

bands. It combines imaging technology with spectral tech-

nology to detect the two-dimensional geometric space and

one-dimensional spectral information of the target to obtain

continuous, narrow-band images with high spectral resolu-

tion. Normally, most of the civil cameras capture only three

primary colors. However, HS spectrometers can obtain the

spectrum of each pixel in the scene and collect the infor-

mation into a set of images. To visualize HS images, a

response function is adopted to transform HS images into

RGB format. Conversely, we can acquire HS images from
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the visible format by learning the inverse function. In this

paper, we propose a general hierarchical regression network

(HRNet) for spectral reconstruction from RGB images.

HS imaging technology has many advantages and par-

ticular characteristics. There have been many applications

based on HS imaging technology, e.g, remote sensing tech-

nology [25], pedestrian detection [17, 23], food process-

ing [29], medical imaging [2]. However, in recent years,

the development of HS imaging has encountered a bottle-

neck since it mainly depends on spectrometers. The tra-

ditional spectrometers saves images with huge volume and

need long operation time, which restricts HS imaging tech-

nology applied to portable platforms and high-speed mov-

ing scenes [28]. Although researchers have continuously

optimized the traditional pipeline [7, 35], these hardware

devices are still expensive and of high complexity. Thus,

we present a low cost and automate approach only based on

RGB cameras. To address the problem, we propose a HR-

Net that learns the process of RGB images to corresponding

HS projections.

In general, spectral reconstruction is an ill-posed prob-

lem. Moreover, there is unknown noise in environment

leading to degraded RGB images. However, there is dense

correspondence between RGB images and HS images, mak-

ing it possible to exploit the correlation from many RGB-

HS pairs. Since the information of RGB image is much less

than HS image, there may be many reasonable HS image

combinations corresponding to a same RGB image. The al-

gorithm needs to learn a reasonable mapping function that

produces high-quality HS images. With the development of

deep convolutional neural network (CNN), it is eligible to

learn the blind mapping for spectral construction.

The previous methods [32, 21, 33, 6, 36] mainly utilize

an auto-encoder structure with residual blocks [14]. The

network often performs convolution at low spatial resolu-

tion since the features are more compact and the computa-

tion is more efficient. However, as the network goes deeper,

it fails to remain the original pixel information due to per-



forming down-sampling by convolutions. To address this

problem, we introduce a lossless and learnable sampling op-

erator PixelShuffle [31]. To further boost the quality of gen-

erated images, we propose a hierarchical architecture that

extracts the features of different scales. At each level, the in-

put is obtained by the reverse PixelShuffle (PixelUnShuffle)

that no pixel is lost. Moreover, we propose to use residual

dense block and residual global block in HRNet for remov-

ing artifacts and noise and modelling remote pixel correla-

tion, respectively.

In general, there are three main contributions of this pa-

per:

(1) We propose a HRNet that utilizes PixelUnShuffle and

Pixelshuffle layers for downsampling and upsampling with-

out information loss. We also propose residual dense block

with residual global block to enlarge perceptive field and

boost generation quality;

(2) We propose a 8-setting ensemble strategy to further

enhance the generalization of HRNet;

(3) We evaluate proposed HRNet on NTIRE 2020 HS

dataset. The HRNet is winning method of track 2 - real

world images and ranks 3rd on track 1 - clean images.

2. Related work

Hyperspectral image acquisition. Conventional meth-

ods for hyperspectral image acquisition often adopt spectro-

graph with spatial scanning or spectral scanning technology.

There are several types of scanner utilized for capturing im-

ages including pushbroom scanner, whiskbroom scanner,

and band sequential scanner. They have been widely used to

many applications such as detector, environmental monitor-

ing and remote sensor for decades. For instance, pushbroom

scanner and whiskbroom scanner are used for photogram-

metric and remote sensing by satellite sensors [28, 5]. How-

ever, those devices need to capture the spectral information

of single points or bands separately, then scan the whole

scene to get a fully HS image, which is difficult to capture

scenes with moving objects. In addition, they are too large

physically and not suitable for portable platforms. In order

to address the problems, many kinds of non-scanning spec-

trometers have been developed to adapt the application of

dynamic scenes [10, 7, 35].

Hyperspectral image reconstruction from RGB im-

ages. Since the traditional methods for hyperspectral image

acquisition are not portable or time-consuming for many

applications, current methods attempt to reconstruct hyper-

spectral image from RGB image. By learning the mapping

from RGB images to hyperspectral images on a big RGB-

HS dataset, it is more convenient to obtain many HS im-

ages. Recent years have witnessed various studies includ-

ing sparse coding and deep learning. In 2008, Parmar et al.

[27] proposed a data sparsity expanding method to recover

the spatial spectral data cube. Arad et al. [3] first lever-

aged HS prior in order to create a sparse dictionary of HS

signatures and their corresponding RGB projections. While

Aeschbacher et al. [1] pushed the performance of Arad et

al.’s method for better accuracy and runtime based on A+

framework [34].

Beyond the dataset provided by Arad et al. [3], many ap-

proaches proposed their own dataset. For instance, Yasuma

et al. [37] utilized a CCD camera (Apogee Alta U260) to

captured 31-band multispectral images (400–700 nm, at 10

nm intervals) of several static scenes. Nguyen et al. [26]

captured a dataset by Specim’s PFD-CL-65-V10E (400 nm

to 1000 nm) spectral camera and there were total 64 images.

Chakrabarti et al. [8] explored a statistical model based on

55 HS images of indoor and outdoor scenes. With the im-

provement of the scale and resolution of natural HS dataset,

the training of deep learning method becomes more feasi-

ble, a number of algorithms based on convolutional neural

network were proposed [21, 33]. Simon et al. [20] pro-

posed a fully convolutional densely connected “Tiramisu”

network with one hundred layers for semantic segmenta-

tion. Galliani et al. [11] enhanced it for spectral image

super-resolution. Can et al. [6] improved it to avoid over-

fitting to the training data and obtain faster inference speed.

Moreover, Xiong et al. [36] proposed a unified HSCNN

framework for hyperspectral recovery from both RGB and

compressive measurements. To boost the performance, they

developed a deep residual network named HSCNN-R, and

another distinct architecture that replaces the residual block

by the dense block with a novel fusion scheme, named

HSCNN-D, collectively called HSCNN+ [32].

Convolutional neural networks. The convolutional

neural networks have been successfully applied in many

low-level vision tasks, e.g. colorization [39, 19], inpaint-

ing [18, 38], deblurring [22], denoising [13, 9], and de-

mosaicking [9, 40]. Hyperspectral reconstruction, as one

of low-level task, has gained great improvement of perfor-

mance recently by deep convolutional neural networks. In

order to facilitate convergence and extract features effec-

tively, many well-known basic blocks are utilized in those

frameworks such as residual block and dense block. He

et al. [14] proposed a residual network initially for image

classification. It improves the accuracy obviously compared

with traditional cascade convolutional structure. Then, the

residual block has been widely used in image enhancement

region for maintaining low-level features by the short con-

nection. It was enhanced by densenet proposed by Huang et

al. [16] to improve the feature fusion ability. Moreover, Hu

et al. [15] strengthened them by a squeeze-and-excitation

network including a feature attention mechanism. It was

implemented by MLP layers for modelling connections of

pixels in different spatial location. In general, our HRNet

combines the advantages of above methods and provides a

more effective and accurate solution for HS reconstruction.



Figure 1. Visualization of NTIRE 2020 HS dataset. For each

group, from top to bottom and left to right, they represent clean

RGB images, real world RGB images, HS images with 400 nm,

410 nm, 420 nm, 500 nm, 600 nm, and 700 nm channels, respec-

tively.

3. Methodology

3.1. Dataset

We train our approach on the HS dataset provided by

NTIRE Challenge 2020. This dataset consists of three parts:

spectral images, clean RGB images (for track 1) and real

world RGB images (for track 2). There are overall 450

RGB-HS pairs in training for both tracks involving differ-

ent scenes. Each spectral image has the information of 31

bands in range of 400 nm to 700 nm. It is of 482× 512 spa-

tial resolution. To generate its corresponding RGB image,

there is a fixed response function applied to HS bands. The

rendering process can be defined as:

RGB = HS ×ResponseFunc. (1)

The RGB images and HS images include 3 and 31 chan-

nels, respectively. The ResponseFunc maps each HS band

to visible channel R, G, and B by 93 parameters. For clean

RGB images, they are constructed by a known response

function and saved as uncompressed format. However, the

real world RGB images are acquired by unknown response

function with additional blind noise and demosaicking op-

eration. Some examples are illustrated in Figure 1 (e.g. 1st

band approximately covers the 395-405 nm range).

3.2. HRNet architecture

Generally, we propose a 4-level network architecture for

high-quality spectral reconstruction from RGB images, as

shown in Figure 2. The PixelUnShuffle layers [31] are uti-

lized to downsample the input to each level without adding

parameters. Therefore, the number of pixels of input is

fixed while the spatial resolution decreases. Conversely, the

learnable PixelShuffle layers are adopted to upsample fea-

ture maps and reduce channels for inter-level connection.

The PixelShuffle only reshapes feature maps and does not

introduces interpolation like bilinear upsampling. It allows

the network to learn upsampling operation adaptively.

For each level, the process is decomposed to inter-level

integration, artifacts reduction, and global feature extrac-

tion. For inter-level learning, the output features of subor-

dinate level are pixel shuffled, then concatenated to current

level, finally processed by an additional convolutional layer

to unify channel number. In order to effectively reduce arti-

facts, we adopt residual dense block [14, 16], containing 5

dense-connected convolutional layers and a residual. More-

over, the residual global block [14, 15] with short-cut con-

nection of input is used to extract attention for every remote

pixels by MLP layers.

Since the features are most compact in bottom level,

there is a 1 × 1 convolutional layer attached to the last of

bottom level in order to enhance tone mapping by weighting

all channels. The two mid levels process features at differ-

ent scales. Moreover, the top level uses the most blocks to

effectively integrate features and reduce artifacts thus pro-

duce high-quality spectral images. The illustration of these

blocks are in Figure 3.

3.3. Implementation details

We only use L1 loss in the training process, which is a

PSNR-oriented optimization for the system. The L1 loss is

defined as:

L1 = E[||G(x)− y||1], (2)

where x and y are input and output, respectively. The G(∗)
is the proposed HRNet. Note that, we utilize the local

patches for efficient training. The input RGB image and

output spectral images are cropped in same spatial region.

For network architecture, all the layers are LeakyReLU

[24] activated except output layer. We do not use any nor-

malization in HRNet to maintain the data distribution. The

reflect padding is adopted for each convolutional layer in

order to reduce border effect. The weights of VCGAN are

initialized by Xavier algorithm [12].



Figure 2. Illustration of the architecture of HRNet. Please visit the project web page https://github.com/zhaoyuzhi/

Hierarchical-Regression-Network-for-Spectral-Reconstruction-from-RGB-Images to try our codes and pre-

trained models.

Figure 3. Illustration of the architecture of residual dense block

(ResDB) and residual global block (ResGB).

For training details, we use the entire NTIRE 2020 HS

dataset (450 HS-RGB pairs for both tracks) at training. The

whole HRNet is trained for 10000 epochs overall. The ini-

tial learning rate is 1×10−4 and halved every 3000 epochs.

For optimization, we use Adam optimizer with β1 = 0.5 ,

β2 = 0.999 and batch size equals to 8. The image pairs are

randomly cropped to 256 × 256 region and normalized to

range [0, 1]. All the experiments are implemented using 2

NVIDIA Titan Xp GPUs. It takes approximately 7 days for

whole training process.

3.4. Ensemble strategy

Since the solution space of spectral reconstruction is of-

ten large, there may be multiple settings that achieve same

performance on the training set. Therefore, a single net-

work may lead to poor generalization performance since it

tends to fall into local minima. However, we can minimize

this risk by combining multiple network settings to enhance

generalization and fuse the knowledge. In order to perform

ensemble strategy, we use 4 other hyper-parameter settings

and train HRNet from scratch for both tracks. These set-

tings can be summarized as:

• Re-train the HRNet using baseline training setting.

• Exchange the position of residual dense block and

residual global block in HRNet, and use baseline train-

ing setting.

• Train the network with different batch size (2 or 4) and

keep other hyper-parameter settings, network architec-

ture.

• Train the network with different cropping patch size

(320 × 320 or 384 × 384) and keep other hyper-

parameter settings, network architecture.

Therefore, there are 8 kinds of training methods. All the

methods used for ensemble are trained for 10000 epochs.

We record the MRAE (mean absolute value between all

bands of generated spectral images G(x) and ground truth

y) every 1000 epochs, as shown in Table 1 and Figure 4.

Finally, we utilize the epoch with best MRAE value of 8

methods for computing average.



Figure 4. The MRAE between ground truth spectral images and the generated images of different hyper-parameter settings for ensemble.

4. Experiment

4.1. Experimental settings

We evaluate proposed HRNet by comparing with other

network architectures and conducting ablation study on

NTIRE 2020 HS dataset. For each track, there are 10 vali-

dation RGB images. The evaluation metrics are defined as:

• MRAE. It computes the pixel-wise disparity (mean

absolute value) between all bands of generated spectral

images G(x) and ground truth y. It explicitly repre-

sents the construction quality of network. It is defined

as:

MRAE =
1

N

N
∑

i=1

|G(x)i − yi|

yi
, (3)

where N denotes the overall pixels of spectral images.

• RMSE. It computes the root mean square error be-



Setting track 1 track 2

Baseline 0.042328 0.068245

Re-train baseline (1st) 0.043408 0.071044

Re-train baseline (2nd) 0.043487 0.070668

Exchange position of blocks 0.042418 0.071798

Change batch size 8 to 4 0.041936 0.071259

Change batch size 8 to 2 0.041507 0.072797

Change patch size 256 to 320 0.042810 0.070502

Change patch size 256 to 384 0.042166 0.072313

Ensemble 0.039893 0.068081

Table 1. The best MRAE value of both tracks for HRNet settings

used for ensemble.

Method U-Net U-ResNet HRNet

MRAE
track 1 0.047507 0.045242 0.042328

track 2 0.074230 0.078892 0.068245

RMSE
track 1 0.014154 0.013927 0.013537

track 2 0.018647 0.020630 0.017859

BPMRAE
track 1 0.007926 0.007171 0.006064

track 2 0.044966 0.055876 0.042105

Table 2. The quantitative comparison results of different architec-

tures and HRNet on NTIRE 2020 HS validation set.

tween the generated and ground truth spectral images

with 31 bands. It is defined as:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(G(x)i − yi)2. (4)

• Back Projection MRAE (BPMRAE). It evaluates the

colorimetric accuracy of recovered RGB images from

the generated and ground truth spectral images by a

fixed camera response function. It is defined as:

BPMRAE =
1

N

N
∑

i=1

|(R×G(x))i − (R× y)i|

yi
,

(5)

where R denotes the function ResponseFunc.

4.2. Comparison with other architectures

We utilize two common network architectures for com-

parison: U-Net [30] and U-ResNet [30, 14]. Both of them

have been widely used in many previous low-level tasks

[19, 18, 38, 22, 9, 40]. The first convolutional layer and last

convolutional layer utilize 7×7 convolution without chang-

ing spatial resolution. The training scheme for all methods

are same. Other details are concluded as: (1) U-Net. The

encoder layers perform convolution with stride of 2. The

spatial resolution of bottom feature map equals to 1 × 1.

Method w/o ResDB w/o ResGB w/o both HRNet

MRAE 0.042448 0.042565 0.048033 0.042328

RMSE 0.014216 0.014092 0.015740 0.013537

BPMRAE 0.009507 0.007669 0.015502 0.006064

Table 3. The comparison results of ablation study on NTIRE 2020

HS validation set track 1 - clean images.

Method HRNet ( 1
2

) HRNet ( 1
4

) HRNet ( 1
8

)

MACs (G) 46.413 12.017 3.212

Params (Mb) 8.185 2.176 0.6088

Weights (Mb) 32.006 8.532 2.410

MRAE 0.042457 0.046424 0.048443

RMSE 0.015147 0.015459 0.015659

BPMRAE 0.006886 0.007806 0.009891

Table 4. The comparison results of compressed HRNet model (the

number of channels decreased to 1

2
, 1

4
, and 1

8
of the original) on

NTIRE 2020 HS validation set track 1 - clean images.

There are short concatenations between each encoder layer

and decoder layer with same resolution; (2) U-ResNet. The

total number of encoder layers and decoder layers are half

of U-Net. Instead, there are 4 residual blocks attached to

the last layer of encoder. The concatenations are reserved.

We train both networks using same hyper-parameters of

HRNet until convergence. There is no ensemble strategy

used. We generate the reconstructed spectral images using

the best epoch of them. The results are summarized in Ta-

ble 2. We also visualize each method in Figure 5 and 6 by

pseudo-color map. The first three rows show the data dis-

tribution of 3 methods and last row indicates ground truth.

We recommend readers to compare textures of background.

There are two reasons that proposed HRNet outperforms

other two methods. The first is that HRNet utilizes Pix-

elShuffle to connect each level. Traditional nearest or bi-

linear upsampling will introduce redundancy information

to features, which is unnecessary for feature extraction.

However, by the combination of PixelUnShuffle and Pix-

elShuffle, HRNet could process high-level features more

efficiently. The second is that HRNet adopts two residual-

based blocks, which facilitate convergence and assist each

level to exploit different scales of features. Moreover, the

blocks with residual learning helps remove artifacts. The

residual global block enhances context information since it

models correlation for every two pixels.

4.3. Ablation study

In order to demonstrate the effectiveness of both residual

dense block (ResDB) and residual global block (ResGB),

we replace them by plain convolution layers with similar

FLOPs. The results in track 1 - clean images is shown in

Table 3. The baseline of HRNet is shown in Table 1, which



Figure 5. Visualization of generated results from U-ResNet, U-Net, and proposed HRNet on NTIRE 2020 HS validation set track 1.

Team MRAE Runtime / Image (seconds) Compute Platform

Deep-imagelab 0.03010476377 0.56 2×NVIDIA 2080Ti

ppplang 0.03075687151 16 NVIDIA 1080Ti

HRNet 0.03231183605 3.748 2×NVIDIA Titan Xp

ZHU zy 0.03475963089 1 Unknown

sunnyvick 0.03516495956 0.7 Tesla K80 12GB

Table 5. The final testing results of NTIRE 2020 Spectral Reconstruction from RGB Images Challenge track 1 - clean images.

has better performance comparing with all ablation settings.

If we delete all ResDB or ResGB in HRNet, the MRAE

decreases the most, which demonstrates the combination of

both blocks is significant for spectral reconstruction.

We conduct another experiment that shrinks the HR-

Net model size by decreasing channels of each convolu-

tional layer to half, one fourth, and one eighth of origi-

nal numbers. It will compress model size greatly by sac-

rificing pixel fidelity. To better compare these settings, we

conclude the multiply–accumulate operation (MACs), to-

tal network parameters (Params), model size saved on ma-

chine (Weights) and 3 quantitative metrics results in Table

4. The MACs, Params, and Weights of baseline HRNet

are 182.347 Gb, 31.705 Mb, and 123.879 Mb, respectively.

Users can choose high-quality HRNet to obtain high pixel

fidelity of spectral images (MRAE = 0.042328) or high-

efficiency HRNet with small size (Weights = 2.410 Mb).

4.4. Testing result on NTIRE 2020 challenge

The proposed HRNet ranks 3rd and 1st on track 1 and

track 2, respectively, of NTIRE 2020 Spectral Reconstruc-

tion from RGB Images Challenge [4]. The comparison

results on testing set are summarized in Table 5 and 6.

Moreover, the HRNet has better performance on track 2



Figure 6. Visualization of generated results from U-ResNet, U-Net, and proposed HRNet on NTIRE 2020 HS validation set track 2.

Team MRAE Runtime / Image (seconds) Compute Platform

HRNet 0.06200744887 3.748 2×NVIDIA Titan Xp

ppplang 0.06212710705 16 NVIDIA 1080Ti

Deep-imagelab 0.06216655487 0.56 2×NVIDIA 2080Ti

PARASITE 0.06514769779 30 NVIDIA Titan Xp

Tasti 0.06732598306 Unknown NVIDIA 2080Ti

Table 6. The final testing results of NTIRE 2020 Spectral Reconstruction from RGB Images Challenge track 2 - real world images.

since it adopts two effective blocks for removing artifacts

while utilizes learnable PixelShuffle upsampling operator.

The ensemble strategy works obviously on both tracks that

improves the MRAE from 0.042328 to 0.039893 since it

avoids the HRNet to fall into local minima. In conclusion,

both HRNet architecture and ensemble strategy contribute

to spectral reconstruction performance.

5. Conclusion

In this paper, we presented a 4-level HRNet for auto-

matically generating spectrum from RGB images. For each

level, it adopts both residual dense block and residual global

block for effectively extracting features. While the Pix-

elShuffle is utilized for inter-level connection. Then, we

proposed a novel 8-setting ensemble strategy to further en-

hance the quality of predicted spectral images. Finally, we

validated the HRNet outperforms the well-known low-level

vision frameworks such as U-Net and U-ResNet on NTIRE

2020 HS dataset. Furthermore, we presented 3 types of

compressed HRNets and analyzed their reconstruction per-

formance and computing efficiency. The proposed HRNet

is the winning method of track 2 - real world images and

ranks 3rd on track 1 - clean images.
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