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Abstract

Despite the recent success of text detection and recog-

nition methods, existing evaluation metrics fail to provide

a fair and reliable comparison among those methods. In

addition, there exists no end-to-end evaluation metric that

takes characteristics of OCR tasks into account. Previous

end-to-end metric contains cascaded errors from the binary

scoring process applied in both detection and recognition

tasks. Ignoring partially correct results raises a gap be-

tween quantitative and qualitative analysis, and prevents

fine-grained assessment. Based on the fact that character is

a key element of text, we hereby propose a Character-Level

Evaluation metric (CLEval). In CLEval, the instance match-

ing process handles split and merge detection cases, and

the scoring process conducts character-level evaluation. By

aggregating character-level scores, the CLEval metric pro-

vides a fine-grained evaluation of end-to-end results com-

posed of the detection and recognition as well as individual

evaluations for each module from the end-performance per-

spective. We believe that our metrics can play a key role in

developing and analyzing state-of-the-art text detection and

recognition methods. The evaluation code is publicly avail-

able at https://github.com/clovaai/CLEval.

1. Introduction

Along with the progress in the field of machine learning,

the performances of text detectors and recognizers have re-

markably improved over the past few years [15, 17, 14, 2,

1, 11]. However, existing detection and recognition evalu-

ation metrics fail to provide a fair and reliable comparison

among those methods. Especially when evaluating end-to-

end models, errors are aggregated due to unconvincing mea-

surements in each part. Fig. 1 illustrates common problems

encountered in end-to-end detection and recognition mod-
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Figure 1: Comparison of CLEval with previous end-to-end

metric[6]. Figures in the left column are slightly wrong

cases while figures in the right are completely wrong cases.

Red: GT. Blue: detection. Texts indicate the recognized re-

sults of the detection box, and texts in red are incorrect.

ules. The previously used instance-level binary scoring pro-

cess assigns a value of 0 on both decent(left figures) and

wrong(right figures) results.

To better understand where established text detection and

recognition evaluation metrics fail, a closer look into the in-

trinsic nature of texts is required. At a fundamental level,

text consists of words, which can further be decomposed

into an array of characters. This character array embod-

ies two intrinsic characteristics: its sequential nature and its

content. Text detection’s goal of locating words can then be

reinterpreted as finding the area that encapsulates the right

sequence and content in a group of characters. The degree to

which the right sequence and content are recognized within

the detection area denotes the granularity and correctness

issues, respectively. A more specific explanation of these

attributes follows – with examples of what they measure in

Figure 2.
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(a) Split case (b) Merged case (c) Missing characters (d) Overlapping characters

Figure 2: Examples of issues for the fair evaluation of text detection and recognition tasks. (a) and (b) correspond to the issue

of granularity, (c) and (d) are related to the issue of correctness.

Granularity is the degree to which the text detection

model captures the sequence of characters in exactly one

word as one unbroken sequence. Split detection results (Fig-

ure 2(a)) break the character sequence in the word and

merged detection results (Figure 2(b)) fail to capture ex-

actly one word. Both cases incur penalties proportionate to

the number of splits or merges per word.

Correctness is the degree to which the text detection and

recognition model captures the content of word. Specifi-

cally each character in that word must be detected and rec-

ognized exactly once with its right order. A penalty is in-

curred proportionate to the number of missing or overlap-

ping characters in both detection and recognition results

(Figure 2(c, d)).

Majority of the public datasets provide a word-level an-

notation since each word contains a semantic meaning.

However, as Fig. 1 shows, evaluating word-level boxes with

a predefined threshold provokes various issues. Despite hav-

ing appropriate box predictions, the binary scoring process

discards acceptable prediction results and produces unex-

plainable scores. To provide more detailed interpretation of

the models, recent studies have adopted a character-level

evaluation process [8, 9]. Inspired by them, our proposed

metric, named as CLEval (Character-Level Evaluation), is

designed to perform end-to-end evaluations without explicit

character annotations. The method adopts two key compo-

nents; instance matching process and character scoring pro-

cess. The instance matching process solves granularity is-

sues by pairing all possible GT and detection boxes that

share at least one character, and the character-level scoring

process solves correctness issues by calculating the longest

common subsequence between GT and predicted transcrip-

tions.

The CLEval metric is primarily designed to evaluate end-

to-end tasks, but it can also be applied to individual detec-

tion and recognition modules. Interpretation of each module

is valuable since it allows us to discover how each compo-

nent affects overall performance. Assuming that the char-

acters are evenly placed within a word box, the detection

evaluation is conducted using pseudo-character center posi-

tions. This method was first proposed by [8], but we further

developed the idea to handle end-to-end models based on

the same scoring policy. The proposed metric also provides

quantitative indicators of recognition modules by measur-

ing correctly recognized words within detection boxes.

The main contributions of this paper can be summarized

as follows. 1) We propose a character-level evaluation met-

ric that is favorable qualitative view without character-level

annotations. 2) We define granularity and correctness is-

sues, and solve them by performing instance matching and

character scoring processes. 3) We propose a unified proto-

col that could evaluate not only end-to-end tasks, but also

individual detection and recognition modules.

2. Related works

2.1. Detection evaluation

Intersection-over-Union (IoU) IoU metric originally

comes from object detection task such as Pascal VOC [5].

IoU accepts detections that match the ground truth (GT)

box in an exclusive one-to-one manner only when the over-

lapping region satisfy the predefined threshold. Although

IoU is the most widely used evaluation metric thanks to its

simplicity, its behavior is clearly not suitable for evaluating

texts as argued by [3, 13]. IoU cannot handle granularity

and correctness issues, which is critical for OCR tasks.

DetEval DetEval [16] was designed to solve the granu-

larity issue by allowing multiple relationships of a single

bounding box. Their matching processes are conducted by

accepting one-to-one, one-to-many, and many-to-one rela-

tionships. However, each instance is evaluated based on

both area recall and area precision thresholds. Area-based

threshold not only causes correctness issues, but also has a

limitation when trying to apply end-to-end evaluation.

Tightness-aware IoU (TIoU) Liu et al. recently suggested

the TIoU metric that penalizes based on the occupation ra-

tio between detection and ground truth. By doing that, TIoU

tried to give the high score to more similar detection com-

pared to the box of ground truth. The major weakness is

that TIoU penalizes slight differences between the ground

truth and detection, even if the recognition results of those

detection boxes are same. This is far from the end user per-

spective, and it is unfair if the correct box got a different

score under the TIoU metric due to the small perturbation

of box size.

TedEval A character-level evaluation metric for text de-

tection has been proposed by [8]. The metric alleviates

qualitative disagreements, but can only be used to evaluate

text detection modules. We adopt the idea of using pseudo-
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Figure 3: Overall evaluation process of IoU+CRW and CLEval metrics. In IoU+CRW, only two bounding boxes are matched

through 0.5 IoU threshold, and partially detected texts are discarded in CRW scoring process. In CLEval, all detection boxes

are matched, and correct numbers of characters are reflected to the final evaluation.

characters, and apply a character-level evaluation process to

evaluate end-to-end results.

2.2. Recognition evaluation

Correctly Recognized Words (CRW) As its term sug-

gests, the CRW is a binary score metric by judging correct

answers when the transcription and the recognition result

are exactly same. This method has a fundamental limit of a

binary score system that fails to give different scores to an

absurd recognition result and an almost accurate result.

Edit Distance [10] The Edit Distance (ED) method is a

common algorithm used to quantify how dissimilar two

given strings are. The ED of two strings is the minimum

operation required to transform one string into another. In

the most standard Levenshtein distance calculation, such

an operation involves insertion, deletion, and substitution.

Utilizing ED to evaluate scene text recognition model is

considered reasonable in that the score reflects how well

the model is performing with distance measures. Longest

Common Subsequence (LCS) is literally the longest com-

mon subsequence in a set of sequences, and is a specialized

case of ED which only uses insertion and deletion opera-

tions [12].

2.3. End­to­end evaluation

IoU and CRW The IoU and CRW are strictly a cascaded

evaluation metric. The detection stage filters out detection

results whose IoU with the corresponding GT is below the

threshold. Matches with IoU are judged by the CRW. Both

metrics in each of the stages are reported to have hindrances

for fine-grained assessment due to the binary chain scoring.

PopEval PopEval was proposed to make full use of text

information from recognition results. Their character elim-

ination process is simple yet good enough from a practical

point of view. However, PopEval does not provide detec-

tion evaluation. We adopted the idea of character elimina-

tion, and enhanced by using a substring elimination scheme

to mitigate the problem of ignoring the order of texts.

3. Methodology

Fig. 3 shows comparison of our method with the IoU +

CRW metric. Detection boxes in the word “RIVERSIDE”

show the granularity issue, and boxes in the word “WALK”

show the correctness issue. While previous metrics fail to

accept decent prediction results, our metric successfully

quantifies various conditions through the matching process

and the scoring process. The matching process identifies

instance-level pairs between GT and detected boxes, and

the scoring process provides a final score by analyzing ex-

tracted statistics.

3.1. Matching process

In this section, the matching process is explained in de-

tail. First, to overcome the absence of character annotations,

we adopt the idea from [8] and calculate Pseudo-Character

Center(PCC) positions. GT and detection boxes are consid-

ered a match if they satisfy two conditions. Their overlap-

ping regions between GT and detection must share at least

one PCC in common and should also cover an adequate GT

area. Any candidates that do not satisfy the conditions are

filtered out from the matching process.

3.1.1 Pseudo-Character Center (PCC)

We first need to know the location of the characters to iden-

tify whether a character region is covered by a detection

box. However, most of the public datasets only provide

word-level bounding box annotations. To handle this issue,

we synthetically generate Pseudo-Character Center(PCC)

points using GT word box and transcription. Let G =
{G1, ..., GI} be a set of GT boxes and D = {D1, ..., DJ}
be a set of detected boxes where I and J denote the size of



Figure 4: An example of computing PCC of Gi. Green dot:

PCC. Red dash: pseudo character box. Grey: Gi.

each set. Each GT box, Gi, contains a word with lGi charac-

ters. As shown in Fig. 4, we compute the k-th PCC of Gi

to obtain the positional information of the characters,

cki =

(

2k − 1

2lGi

)

pleft
i +

(

1−
2k − 1

2lGi

)

pright
i (1)

where pleft
i and pright

i indicate midpoints located on the left

and right edges of Gi. The equation allows us to construct

PCC points using both quadrilateral and polygon boxes.

PCC point generation for polygon boxes is described in the

Appendix.

The PCC points are generated under the assumption that

the characters are evenly divided within a word box. How-

ever, constructed points may not be perfectly aligned with

actual character positions because characters of different

sizes coexist in the word image. Even with this ambigu-

ity, our assumption works fairly well in most cases. Fig. 5

shows constructed PCC points on real datasets.

3.1.2 Matching based on character inclusion

The first criterion for finding a match between GT and de-

tection box is the inclusion of at least one PCC point. Here,

we define character inclusion candidate, m̂k
ij , between Dj

and Gi as

m̂k
ij = I(cki in Dj) (2)

where I(A) is a conditional function that gives a value of

1 when A is satisfied and 0 otherwise. If m̂k
ij = 1, it is

probable that Gi and Dj is matched since they share at least

one PCC in common.

The second matching criterion is the area of intersection

between detection box and GT text region. Since PCC is

a single coordinate in the image, inclusion of a point does

not guarantee good localization of the ground truth text re-

gion. In order to alleviate this ambiguity, detection boxes

that cover small GT box regions are filtered out. To this end,

the area precision of Dj is defined as follow

AreaPrecisionj =
Area(∪i∈{i‖∃k, m̂k

ij
=1}(Dj ∩ Gi)))

Area(Dj)
,

(3)

where the union condition, {i‖∃k, m̂k
ij = 1}, indicates a

set of GT boxes that contains at least one of its PCC points

matched with the Dj . The matching process filters out can-

didates whose non-text region is larger than the text region.

(a) ICDAR2013[7] (b) ICDAR2015[6] (c) TotalText[4]

Figure 5: Visualization of PCC points on different ground-

truth annotations.

Therefore, the final box matching flags Mij are defined by

considering the character inclusion flag mk
ij and its area pre-

cision as

mk
ij = m̂k

ij × I(AreaPrecisionj > 0.5),

Mij = I(
∑

k

mk
ij > 0). (4)

To solve the granularity issue, we need to consider one-

to-many and many-to-one cases. In our matching process,

AreaPrecisionj explicitly handles one-to-one and many-

to-one cases by calculating the union of intersections be-

tween matched Gis and Dj . In our metric, one-to-many

match does not need to be processed since each split de-

tection box is matched with one GT box by checking the

inclusion of at least one character.

3.1.3 Summarized matching statistics

Table. 1 shows matching flags and statistics. The upper

and lower cases mean box-level and the character-level in-

stances, respectively. The subscript indicates the box in-

dex, and the superscript represents the character index. The

statistics are written in the script font, and they represent

row wise and column wise summations.
D1 ... Dj Stat. Recall

G1

c11

M11

m1
11

M1j

m1
1j

G1

g1
1

R1
c21 m2

11 m2
1j g2

1

... ... ... ...

ck1 mk
11 mk

1j gk
1

... ... ... ... ... ... ... ... ...

Gi

c1i

Mi1

m1
i1

Mij

m1
ij

Gi

g1
i

Ri
c2i m2

i1 m2
ij g2

i

... ... ... ...

ck1 mk
i1 mk

ij gk
i

Stat. D1 d1 Dj dj

Precision P1 ... Pj

Table 1: Table of box-level and character-level matching

flags and their statistics.

Matching statistics are summarized in Table 2. The val-

ues are obtained using the character inclusion flag mk
ij and



the box matching flag Mij . By aggregating matching statis-

tics, we could identify total number of box matches and

character inclusions. The value of Gi and Dj show the num-

ber of matched box candidates on each Gi and Dj . The num-

ber gk
i denotes matched detection boxes on k-th PCC point

of Gi, and dj shows the number of PCC points covered

by a detection box Dj . These statistics are finally used to

calculate character scores and granularity penalties.

Stat. Eq. Description

Gi

∑

j

Mij number of D matched with Gi

Dj

∑

i

Mij number of G matched with Dj

gk
i

∑

j

m
k
ij number of D including k-th character of Gi

dj

∑

ik

m
k
ij number of characters in Gis matched with Dj

Table 2: Description of matching statistics.

3.2. Scoring process

Once the matching candidates are obtained, we now

evaluate character-level correctness. Eq. 5 is the ground rule

to calculate recall and precision.

Score =
CorrectNum − GranulPenalty

TotalNum
(5)

TotalNum represents the number of GT or detected charac-

ters, and CorrectNum denotes the number of correct char-

acters. GranulPenalty is proportional to the split number of

GT or detection boxes. Each attribute will be explained in

the following subsections.

3.2.1 TotalNum: Total Number of Characters

TotalNum, the denominator in Eq. 5, indicates the num-

ber of target characters. When evaluating the recall of Gi,

TotalNumG
i is set to the GT text length, lGi . However, note

that the value of text length is absent when measuring de-

tector accuracy. The value of TotalNumD
j differs depending

on the availability of word transcriptions.

For end-to-end evaluation, lDj , which is the length of the

predicted text in Dj , can be used to represent TotalNumD
j .

However, for detection evaluation, the length of predicted

word transcription is unknown. In this case, we define

TotalNumD
j using dj in Table. 2, where it defines the num-

ber of included PCC points of all the matched GT boxes.

3.2.2 CorrectNum: Correct Number of Characters

Correct Number for end-to-end evaluation Since word

transcriptions are available when performing an end-to-end

evaluation, the number of correct characters can be mea-

sured by finding a subsequence between the transcriptions

of matched GTs and detection boxes. However, multiple

matches could occur during the instance matching process,

and thus, a character score could be calculated multiple

times. To avoid this problem, we introduce Subsequence

Elimination Scoring Process (SESP) that calculates each

character score once and eliminates the matched subse-

quences in both GTs and predictions.

SESP is described in Algorithm 1. For each GT

box, a set of matched detection boxes are collected and

sorted according to the order of included PCC points.

Given sorted detection boxes, word transcriptions are as-

sembled together to form a single word(recog text). We

then extract common seq, which is the Longest Common

Sequence(LCS)[12] between GT and recog text. The length

of common seq is directly used as CorrectNumG
i . For

each matched detection box, det seq is extracted between

the common seq and Dj , and the length of det seq within all

matched GTs is accumulated to CorrectNumD
j . Finally,

the det seq gets eliminated in both Dtext
j and common seq.

This elimination process is required to avoid multiple

matches between detection and GT transcriptions. Figure

6 shows an example of SESP on split and merge cases.

D2:one D1:nanyoneD1:nany

one nany

manyone2many

nanyone

G1:oneG2:many

one

G1: one2many

Sorting

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑢𝑚*
+
= 6

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑢𝑚*
.
= 3

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑢𝑚0
.
= 3

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑢𝑚*
+
= 3

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑢𝑚0
+
= 3

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑢𝑚*
.
= 6

Figure 6: Examples of SESP on different matched cases:

split case on left, merge case on right.

Note that unlike the PopEval[9], which ignores the order

of characters for scoring, we perform SESP after ordering

detection boxes into the right sequence. Therefore, when

performing evaluation, the order of the characters are taken

into account. Our metric is almost free from having errors

due to character permutations.

Correct Number for detection evaluation

Word transcription is not available when evaluating de-

tection results. Therefore, we utilize the number of PCC in-

clusion since the detection accuracy is related to whether

a detected box covers a character or not. The number of

correct characters, CorrectNum, is defined using detection
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Scoring policy Recall =
∑|G|

i=1
(CorrectNumG

i −GranulPenaltyGi )
∑|G|

i=1
TotalNumG

i

, Precision =

∑|D|
j=1

(CorrectNumD
j −GranulPenaltyDj )

∑|D|
j=1

TotalNumD
j

Table 3: Comprehensive examples of scoring for issues in text evaluations. Note that the scores are expressed as fractions

rather than reduction because each denominator has the important meaning; that is character length. ⊕ indicates the separated

summation of each nominator and denominator.

Algorithm 1: Subsequence Elimination Scoring

Process (SESP)

1 for Gi in G

2 DGi← a set of the matched Djs with Gi
3 recog text← a serialized text from Dj in DGi

4 in the order of the matched PCCs
5 common seq← the Longest Common Subsequence(LCS)

6 between (Gtext
i , recog text )

7 CorrectNumG
i ← len(common seq)

8 for Dj in DGi

9 det seq← the characters from Dj in common seq

10 CorrectNumD
j + = len(det seq)

11 Dtext
j − = det seq

12 common seq − = det seq

13 end

14 end

statistics as follows;

CorrectNumG
i =

li
∑

k=1

I
(

gk
i ≥ 1

)

,

CorrectNumD
j =

∑

i

li
∑

k=1

I
(

gk
i ≥ 1

)

max(gk
i , 1)

.

(6)

CorrectNumG
i indicates the number of included PCC points

of Gi within detection boxes, and CorrectNumD
j represents

the number of accumulated PCC points of Dj within all the

matched Gis. Additionally, CorrectNumjD of each charac-

ter is divided by the inclusion counts gk
i to penalize over-

lapping cases. By doing this, only one of the matched char-

acters is marked correct, and this can be seen from the same

perspective of the subsequence elimination process when

measuring end-to-end results.

3.2.3 GranulPenalty: Granularity Penalty

The granularity indicates the connectivity condition be-

tween characters. We define GranulPenalty as a penalty rep-

resenting how much the detection result loses the connectiv-

ity information.

From a GT perspective, the most ideal condition is

formed when a single detection box is matched(Gi = 1).

Likewise, from a detection perspective, the most ideal con-

dition is formed when a single GT box is matched(Dj = 1).

The granularity penalty equation is shown in Eq. 7. As num-

ber of Dj and Gi grows, penalty increases proportionally.

GranulPenaltyGi = Gi − 1,

GranulPenaltyDj = Dj − 1.
(7)

This equations means that the weight of the loss of connec-

tivity is same as the failure to detect a single character.

3.2.4 Character Number of False Positive Detection

An appropriate penalty should be given to false positive(FP)

detection, but we can’t get the number of characters to

penalize FP detection explicitly for detection evaluation.

Therefore, the character length of the FP is estimated by

assuming that the number of characters is proportional to

the aspect ratio to fit into the box. As a result, the Total-

Num for FP is given through aspect ratio as shown in Eq.

8a. For end-to-end evaluation, the character length of rec-

ognized text lDj in the detection box is given, so this value

is applied to the TotalNum of FP as shown in Eq. 8b.

TotalNumD
j|Dj=0

= round(w/h) (8a)

TotalNumD
j|Dj=0

= lDj (8b)



where h indicates the minimum length of bounding box of

the detection, and w indicates the maximum length of it.

3.2.5 Scoring summary

Table 3 shows how scoring is processed on various issues.

Basically, instance matching is processed on both detection

and end-to-end evaluations. The scoring process, however,

differs depending on the level of evaluation. When estimat-

ing detection performance, we take the information of in-

clusive PCC points, and when evaluating end-to-end results,

we take the correct subsequence of recognized texts.

In this way, recall and precision of each box instance are

obtained. Other evaluation metrics calculate the final score

by taking the average of all recall and precision values. This

is not the case of our evaluation since the denominator needs

to be the sum of character numbers. The final recall and pre-

cision values are obtained by separately adding numerator

and denominator scores of each instance as

Recall =

∑|G|
i=1

(CorrectNumG
i − GranulPenaltyGi )

∑|G|
i=1

TotalNumG
i

,

Precision =

∑|D|
j=1

(CorrectNumD
j − GranulPenaltyDj )

∑|D|
j=1

TotalNumD
j

.

(9)

Finally, H-Mean is calculated using Eq. 10 as usual.

H-Mean = 2×
Recall × Precision

Recall + Precision
(10)

Explicit recognition performance is also important for re-

searchers developing recognition models. Using the at-

tributes introduced in section 3.1, we measure the sole per-

formance of the recognizer.

In order to solely evaluate recognition outputs, it is nec-

essary to eliminate factors coming from detection outputs.

One element that does not affect recognition performance

is box granularity. We therefore remove granularity penalty

when evaluating recognition performance. Additionally, un-

paired prediction boxes should also be excluded. End-to-

end performance assigns a penalty if a predicted word has

no GT pair, and this is not fair since the error propagates

from the detection performance. After eliminating the fac-

tors that disrupt fair recognition performance, we obtain Eq.

11 that expresses the Recognition Score (RS).

RS =

∑|D|
j=1

CorrectNumD
j × I (Dj > 0)

∑|D|
j=1

max(TotalNumD
j ,dj)× I (Dj > 0)

(11)

The equation measures recognition performance by divid-

ing the number of correctly recognized characters by the

total number of predicted characters matched with the GT

instance.

4. Experiments

In this section, for ease of discussion, we analyze the ten-

dency of our metric using the toy-examples constructed on

ICDAR2013 dataset. The evaluation of our metric on real

detection and recognition outputs are provided in the ap-

pendix.

4.1. Toy­example experiments

To compare the characteristics of the evaluation metric, a

toyset is designed to reflect the granularity and correctness

issues. To evaluate detection performance, nine cases were

synthetically generated using ICDAR2013 dataset[7]. The

cases are categorized into three parts; crop, split and over-

lap. To simulate recognition issues, we expect that the syn-

thetic detection results have the same box as the GTs, and

modify the text to cover insert, delete, and replace cases.

Detailed toy-examples are illustrated in Figure 7.

(a) Crop 80% (b) Crop 60% (c) Crop 40%

(d) Split by 2 (e) Split by 3 (f) Split by 4

(g) Split+overlap(10%) (h) Split+overlap(20%) (i) Split+overlap(30%)

(j) Insert (k) Delete (l) Replace

“CLEvall” “OLEval”“CLEal”

Figure 7: Detailed cases for toy-example experiment. First

row shows crop cases, second row shows split cases, and

third row shows overlap cases. Recognition cases such as

insert, delete, and replace are in the last row. The number of

insertion, deletion and replacement is increased from 1 to 3.

4.2. Detection evaluation

The detection evaluation result of the toy-example exper-

iment is shown in Table 4. DetEval and IoU metrics show

typical problems encountered when using a threshold based

binary scoring policy. For example, DetEval uses an area

recall threshold value of 0.8. Any detection boxes outside

this threshold are not considered a match, and therefore, the

H-mean values under crop ratio 80% gets a value close to 0.

Similar tendency is also found in the IoU metric. The met-

ric uses a threshold value of 0.5, and thus, the H-mean value

under crop ratio 50% gets a value close to 0. This indicates

that the binary scoring process does not take into account

boxes that do not meet predefined threshold conditions.



Case
Detection Metrics

DetEval IoU CLEval

R P H R P H R P H

Original 99.7 99.9 99.8 99.8 100 99.9 99.7 98.7 99.2
Crop 80% 97.1 97.3 97.2 99.8 100 99.9 82.7 98.7 90.0
Crop 60% 0.3 0.5 0.4 99.7 99.9 99.8 60.7 98.9 75.2
Crop 40% 0.1 0.1 0.1 0.0 0.0 0.0 40.1 95.2 56.4
Split by 2 78.7 79.9 79.3 98.4 49.3 65.7 82.4 97.2 89.2
Split by 3 78.6 79.8 79.2 0.0 0.0 0.0 66.7 94.2 78.1
Split by 4 78.5 79.7 79.1 0.0 0.0 0.0 53.2 89.9 66.8

Overlap 10% 78.9 79.8 79.4 99.8 50.0 66.6 81.1 88.7 84.7
Overlap 20% 79.0 79.9 79.4 99.8 50.0 66.6 80.9 82.0 81.5
Overlap 30% 79.0 79.8 79.4 99.8 50.0 66.6 80.9 74.0 77.3

Table 4: Comparison of detection evaluation metrics on toy-

example from ICDAR2013 dataset. Some scores are high-

lighted: Red above 95, Blue below 5.

As shown in Table. 4 DetEval and IoU metric produces

unreasonable values. DetEval scores in split and overlap

cases are almost identical. We expect the scores to be dif-

ferent, but we get the same results because a penalty of 0.8

is assigned in all cases. On the other hand, the IoU recall

precision values are strange in split and overlap cases. This

is because only one of the detection boxes is paired with the

GT box. Recall value of the matched detection box is close

to 1 and the precision value of the mismatched detection box

is close to 0.5. Also, the DetEval and IoU scores remain the

same regardless of the change in overlapping ratio.

While DetEval and IoU metrics fail to cover acceptable

detection results, CLEval metric performs fine-grained eval-

uation on detection results. The calculated recall score in

CLEval is proportional to the size of the cropped box re-

gion. For the overlapping case, a precision penalty relative

to the size of the overlapping region is given. The recall

scores in three overlapping cases are almost the same. This

is reasonable because every GT character is detected, and

the number of detected duplicate characters decrease the

precision score.

During the CLEval evaluation process, intermediate at-

tributes directly related to CorrectNum, TotalNum, and

GranulPenalty are extracted. These are the number of split

and merge, frequency of missing and overlapping charac-

ters, and estimated character numbers in false positives. Ta-

ble 5 shows a summary of extracted intermediate attributes

on ICDAR2013 toy dataset. Each quantified attribute con-

veys a practical view to researchers and end-users. The in-

formation can be used by the researchers to further analyze

and develop detection models.

4.3. End­to­end evaluation

In end-to-end evaluation, the strength of using CLEval

metric is much more apparent. We insert, delete, and re-

place characters in GT transcriptions to form end-to-end test

samples. When using IoU+CRW metric, all H-mean val-

ues become 0 since CRW fails to evaluate partially recog-

nized texts. On the other hand, CLEval metric assigns par-

Case
Attibutes from CLEval

Split Merge Miss Overlap FP

Original 15 9 0 61 0
Crop 80% 15 9 996 50 0
Crop 60% 12 8 2292 27 0
Crop 40% 9 7 3499 12 96
Split by 2 1014 12 0 60 93
Split by 3 1014 16 0 61 276
Split by 4 1014 19 0 60 581

Overlap 10% 1085 15 0 710 10
Overlap 20% 1093 15 0 1252 2
Overlap 30% 1093 15 0 2020 2

Table 5: Detection attributes from CLEval on ICDAR2013

dataset.

Case
End-to-end Metrics

IoU + CRW CLEval

R P H R P H RS

Original 99.6 99.8 99.7 99.7 99.7 99.7 98.9
Insert 1 0.0 0.0 0.0 99.7 84.0 91.2 83.6
Insert 2 0.0 0.0 0.0 99.7 73.1 84.4 73.1
Insert 3 0.0 0.0 0.0 99.7 65.7 79.2 65.6
Delete 1 0.0 0.0 0.0 81.0 99.7 89.4 80.4
Delete 2 0.0 0.0 0.0 63.7 99.6 77.7 63.3
Delete 3 0.0 0.0 0.0 48.0 99.5 64.8 47.8

Replace 1 0.0 0.0 0.0 81.0 81.0 81.0 80.4
Replace 2 0.0 0.0 0.0 64.1 64.2 64.1 63.7
Replace 3 0.0 0.0 0.0 49.9 49.9 49.9 49.7

Table 6: Comparison of end-to-end metrics on toy-example.

Some scores are highlighted: Red above 95, Blue below 5.

tial scores according to the conditions. In the case of inser-

tion, recall value becomes 1 because predicted transcription

contains all GT characters. In the case of deletion, precision

value becomes 1 because recognized texts are marked all

correct. In the case of replacement, the score is affected by

the penalty added to the character that is incorrectly recog-

nized.

While performing CLEval end-to-end evaluation, we can

also obtain Recognition Score (RS). The RS value is ob-

tained regardless of the detection result by mathematically

removing the detection-related terms. A detailed description

of RS is provided in the appendix with actual examples.

5. Conclusion

Fair and detailed evaluation of OCR models is needed,

and yet, no robust evaluation metric was proposed in the

OCR community. The proposed CLEval metric could eval-

uate text detection, recognition, and end-to-end results. This

is done by solving the granularity and correctness issues

by performing instance matching and character scoring pro-

cess. Our metric allows fine assessment, and alleviates qual-

itative disagreement. We expect researchers and end-users

to take advantage of the metric to conduct thorough end-to-

end evaluation.
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