This CVPR 2020 workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

CLEval: Character-Level Evaluation for Text Detection and Recognition Tasks

Youngmin Baek', Dachyun Nam!, Sungrae Park', Junyeop Lee',
Seung Shin', Jeonghun Baek', Chae Young Lee? and Hwalsuk Lee*!

Clova AI Research, NAVER Corp.
2Yale University

Abstract

Despite the recent success of text detection and recog-
nition methods, existing evaluation metrics fail to provide
a fair and reliable comparison among those methods. In
addition, there exists no end-to-end evaluation metric that
takes characteristics of OCR tasks into account. Previous
end-to-end metric contains cascaded errors from the binary
scoring process applied in both detection and recognition
tasks. Ignoring partially correct results raises a gap be-
tween quantitative and qualitative analysis, and prevents
fine-grained assessment. Based on the fact that character is
a key element of text, we hereby propose a Character-Level
Evaluation metric (CLEval). In CLEval, the instance match-
ing process handles split and merge detection cases, and
the scoring process conducts character-level evaluation. By
aggregating character-level scores, the CLEval metric pro-
vides a fine-grained evaluation of end-to-end results com-
posed of the detection and recognition as well as individual
evaluations for each module from the end-performance per-
spective. We believe that our metrics can play a key role in
developing and analyzing state-of-the-art text detection and
recognition methods. The evaluation code is publicly avail-
able at https://github.com/clovaai/CLEval.

1. Introduction

Along with the progress in the field of machine learning,
the performances of text detectors and recognizers have re-
markably improved over the past few years [15, 17, 14, 2,

, 11]. However, existing detection and recognition evalu-
ation metrics fail to provide a fair and reliable comparison
among those methods. Especially when evaluating end-to-
end models, errors are aggregated due to unconvincing mea-
surements in each part. Fig. 1 illustrates common problems
encountered in end-to-end detection and recognition mod-
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Figure 1: Comparison of CLEval with previous end-to-end
metric[0]. Figures in the left column are slightly wrong
cases while figures in the right are completely wrong cases.
Red: GT. Blue: detection. Texts indicate the recognized re-
sults of the detection box, and texts in red are incorrect.

ules. The previously used instance-level binary scoring pro-
cess assigns a value of 0 on both decent(left figures) and
wrong(right figures) results.

To better understand where established text detection and
recognition evaluation metrics fail, a closer look into the in-
trinsic nature of texts is required. At a fundamental level,
text consists of words, which can further be decomposed
into an array of characters. This character array embod-
ies two intrinsic characteristics: its sequential nature and its
content. Text detection’s goal of locating words can then be
reinterpreted as finding the area that encapsulates the right
sequence and content in a group of characters. The degree to
which the right sequence and content are recognized within
the detection area denotes the granularity and correctness
issues, respectively. A more specific explanation of these
attributes follows — with examples of what they measure in
Figure 2.



(b) Merged case

Figure 2: Examples of issues for the fair evaluation of text detection and recognition tasks. (a) and (b) correspond to the issue
of granularity, (c) and (d) are related to the issue of correctness.

(a) Split case

Granularity is the degree to which the text detection
model captures the sequence of characters in exactly one
word as one unbroken sequence. Split detection results (Fig-
ure 2(a)) break the character sequence in the word and
merged detection results (Figure 2(b)) fail to capture ex-
actly one word. Both cases incur penalties proportionate to
the number of splits or merges per word.

Correctness is the degree to which the text detection and
recognition model captures the content of word. Specifi-
cally each character in that word must be detected and rec-
ognized exactly once with its right order. A penalty is in-
curred proportionate to the number of missing or overlap-
ping characters in both detection and recognition results
(Figure 2(c, d)).

Majority of the public datasets provide a word-level an-
notation since each word contains a semantic meaning.
However, as Fig. | shows, evaluating word-level boxes with
a predefined threshold provokes various issues. Despite hav-
ing appropriate box predictions, the binary scoring process
discards acceptable prediction results and produces unex-
plainable scores. To provide more detailed interpretation of
the models, recent studies have adopted a character-level
evaluation process [8, 9]. Inspired by them, our proposed
metric, named as CLEval (Character-Level Evaluation), is
designed to perform end-to-end evaluations without explicit
character annotations. The method adopts two key compo-
nents; instance matching process and character scoring pro-
cess. The instance matching process solves granularity is-
sues by pairing all possible GT and detection boxes that
share at least one character, and the character-level scoring
process solves correctness issues by calculating the longest
common subsequence between GT and predicted transcrip-
tions.

The CLEval metric is primarily designed to evaluate end-
to-end tasks, but it can also be applied to individual detec-
tion and recognition modules. Interpretation of each module
is valuable since it allows us to discover how each compo-
nent affects overall performance. Assuming that the char-
acters are evenly placed within a word box, the detection
evaluation is conducted using pseudo-character center posi-
tions. This method was first proposed by [8], but we further
developed the idea to handle end-to-end models based on
the same scoring policy. The proposed metric also provides
quantitative indicators of recognition modules by measur-
ing correctly recognized words within detection boxes.

(c) Missing characters (d) Overlapping characters

The main contributions of this paper can be summarized
as follows. 1) We propose a character-level evaluation met-
ric that is favorable qualitative view without character-level
annotations. 2) We define granularity and correctness is-
sues, and solve them by performing instance matching and
character scoring processes. 3) We propose a unified proto-
col that could evaluate not only end-to-end tasks, but also
individual detection and recognition modules.

2. Related works

2.1. Detection evaluation

Intersection-over-Union (IoU) IoU metric originally
comes from object detection task such as Pascal VOC [5].
IoU accepts detections that match the ground truth (GT)
box in an exclusive one-to-one manner only when the over-
lapping region satisfy the predefined threshold. Although
IoU is the most widely used evaluation metric thanks to its
simplicity, its behavior is clearly not suitable for evaluating
texts as argued by [3, 13]. IoU cannot handle granularity
and correctness issues, which is critical for OCR tasks.

DetEval DetEval [16] was designed to solve the granu-
larity issue by allowing multiple relationships of a single
bounding box. Their matching processes are conducted by
accepting one-to-one, one-to-many, and many-to-one rela-
tionships. However, each instance is evaluated based on
both area recall and area precision thresholds. Area-based
threshold not only causes correctness issues, but also has a
limitation when trying to apply end-to-end evaluation.

Tightness-aware IoU (TIoU) Liu et al. recently suggested
the TTIoU metric that penalizes based on the occupation ra-
tio between detection and ground truth. By doing that, TIoU
tried to give the high score to more similar detection com-
pared to the box of ground truth. The major weakness is
that TIoU penalizes slight differences between the ground
truth and detection, even if the recognition results of those
detection boxes are same. This is far from the end user per-
spective, and it is unfair if the correct box got a different
score under the TIoU metric due to the small perturbation
of box size.

TedEval A character-level evaluation metric for text de-
tection has been proposed by [8]. The metric alleviates
qualitative disagreements, but can only be used to evaluate
text detection modules. We adopt the idea of using pseudo-
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Figure 3: Overall evaluation process of [oU+CRW and CLEval metrics. In oU+CRW, only two bounding boxes are matched
through 0.5 IoU threshold, and partially detected texts are discarded in CRW scoring process. In CLEval, all detection boxes
are matched, and correct numbers of characters are reflected to the final evaluation.

characters, and apply a character-level evaluation process to
evaluate end-to-end results.

2.2. Recognition evaluation

Correctly Recognized Words (CRW) As its term sug-
gests, the CRW is a binary score metric by judging correct
answers when the transcription and the recognition result
are exactly same. This method has a fundamental limit of a
binary score system that fails to give different scores to an
absurd recognition result and an almost accurate result.

Edit Distance [10] The Edit Distance (ED) method is a
common algorithm used to quantify how dissimilar two
given strings are. The ED of two strings is the minimum
operation required to transform one string into another. In
the most standard Levenshtein distance calculation, such
an operation involves insertion, deletion, and substitution.
Utilizing ED to evaluate scene text recognition model is
considered reasonable in that the score reflects how well
the model is performing with distance measures. Longest
Common Subsequence (LCS) is literally the longest com-
mon subsequence in a set of sequences, and is a specialized
case of ED which only uses insertion and deletion opera-
tions [12].

2.3. End-to-end evaluation

IoU and CRW The IoU and CRW are strictly a cascaded
evaluation metric. The detection stage filters out detection
results whose IoU with the corresponding GT is below the
threshold. Matches with IoU are judged by the CRW. Both
metrics in each of the stages are reported to have hindrances
for fine-grained assessment due to the binary chain scoring.

PopEval PopEval was proposed to make full use of text
information from recognition results. Their character elim-
ination process is simple yet good enough from a practical
point of view. However, PopEval does not provide detec-
tion evaluation. We adopted the idea of character elimina-

tion, and enhanced by using a substring elimination scheme
to mitigate the problem of ignoring the order of texts.

3. Methodology

Fig. 3 shows comparison of our method with the IoU +
CRW metric. Detection boxes in the word “RIVERSIDE”
show the granularity issue, and boxes in the word “WALK”
show the correctness issue. While previous metrics fail to
accept decent prediction results, our metric successfully
quantifies various conditions through the matching process
and the scoring process. The matching process identifies
instance-level pairs between GT and detected boxes, and
the scoring process provides a final score by analyzing ex-
tracted statistics.

3.1. Matching process

In this section, the matching process is explained in de-
tail. First, to overcome the absence of character annotations,
we adopt the idea from [8] and calculate Pseudo-Character
Center(PCC) positions. GT and detection boxes are consid-
ered a match if they satisfy two conditions. Their overlap-
ping regions between GT and detection must share at least
one PCC in common and should also cover an adequate GT
area. Any candidates that do not satisfy the conditions are
filtered out from the matching process.

3.1.1 Pseudo-Character Center (PCC)

We first need to know the location of the characters to iden-
tify whether a character region is covered by a detection
box. However, most of the public datasets only provide
word-level bounding box annotations. To handle this issue,
we synthetically generate Pseudo-Character Center(PCC)
points using GT word box and transcription. Let G =
{G1,...,Gr} be aset of GT boxes and D = {D1,...,D;}
be a set of detected boxes where I and J denote the size of



Figure 4: An example of computing PCC of G,. Green dot:
PCC. Red dash: pseudo character box. Grey: G;.

each set. Each GT box, G;, contains a word with liG charac-
ters. As shown in Fig. 4, we compute the k-th PCC of G;
to obtain the positional information of the characters,
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where p'°ft and p’

i ; indicate midpoints located on the left
and right edges of G;. The equation allows us to construct
PCC points using both quadrilateral and polygon boxes.
PCC point generation for polygon boxes is described in the
Appendix.

The PCC points are generated under the assumption that
the characters are evenly divided within a word box. How-
ever, constructed points may not be perfectly aligned with
actual character positions because characters of different
sizes coexist in the word image. Even with this ambigu-
ity, our assumption works fairly well in most cases. Fig. 5
shows constructed PCC points on real datasets.

3.1.2 Matching based on character inclusion

The first criterion for finding a match between GT and de-
tection box is the inclusion of at least one PCC point. Here,
we define character inclusion candidate, mfj, between D;
and G; as

mf; =1I(c} in Dy) 2)

where I(A) is a conditional function that gives a value of
1 when A is satisfied and O otherwise. If mfj = 1, itis
probable that G; and D; is matched since they share at least
one PCC in common.

The second matching criterion is the area of intersection
between detection box and GT text region. Since PCC is
a single coordinate in the image, inclusion of a point does
not guarantee good localization of the ground truth text re-
gion. In order to alleviate this ambiguity, detection boxes
that cover small GT box regions are filtered out. To this end,
the area precision of D; is defined as follow

o Area(Use gijjak, mk =13 (D; N'Gi)))
AreaPrecision; = 1 (JD j ,
rea(D;
. (3)

where the union condition, {i[|Jk, 7;; = 1}, indicates a
set of GT boxes that contains at least one of its PCC points
matched with the D;. The matching process filters out can-
didates whose non-text region is larger than the text region.
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Figure 5: Visualization of PCC points on different ground-
truth annotations.

Therefore, the final box matching flags M;; are defined by
considering the character inclusion flag mfj and its area pre-
cision as

mk. = mfj x I(AreaPrecision; > 0.5),

ij

Mij = H(Z mfj > O) (4)
k

To solve the granularity issue, we need to consider one-
to-many and many-to-one cases. In our matching process,
AreaPrecision; explicitly handles one-to-one and many-
to-one cases by calculating the union of intersections be-
tween matched G;s and D;. In our metric, one-to-many
match does not need to be processed since each split de-
tection box is matched with one GT box by checking the
inclusion of at least one character.

3.1.3 Summarized matching statistics

Table. 1 shows matching flags and statistics. The upper
and lower cases mean box-level and the character-level in-
stances, respectively. The subscript indicates the box in-
dex, and the superscript represents the character index. The
statistics are written in the script font, and they represent
row wise and column wise summations.

H Dy [[ D; “ Stat. [Recall
T T T T
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Precision P P;

Table 1: Table of box-level and character-level matching
flags and their statistics.

Matching statistics are summarized in Table 2. The val-
ues are obtained using the character inclusion flag mfj and



the box matching flag M;;. By aggregating matching statis-
tics, we could identify total number of box matches and
character inclusions. The value of §; and &; show the num-
ber of matched box candidates on each G; and D;. The num-
ber g ¥ denotes matched detection boxes on k-th PCC point
of G;, and < ; shows the number of PCC points covered
by a detection box D;. These statistics are finally used to
calculate character scores and granularity penalties.

Stat.| Eq.
G; |>. M;; |number of D matched with G;
J

Description

D; > M;; |number of G matched with D;
i

gk > mfj number of D including k-th character of G;
J

d; > mfj number of characters in G;s matched with D;
ik

Table 2: Description of matching statistics.

3.2. Scoring process

Once the matching candidates are obtained, we now
evaluate character-level correctness. Eq. 5 is the ground rule
to calculate recall and precision.

CorrectNum — GranulPenalty
TotalNum

Score = ()
TotalNum represents the number of GT or detected charac-
ters, and CorrectNum denotes the number of correct char-
acters. GranulPenalty is proportional to the split number of
GT or detection boxes. Each attribute will be explained in
the following subsections.

3.2.1 TotalNum: Total Number of Characters

TotalNum, the denominator in Eq. 5, indicates the num-
ber of target characters. When evaluating the recall of G,
TotalNumiG is set to the GT text length, liG . However, note
that the value of text length is absent when measuring de-
tector accuracy. The value of TotalNumjD differs depending
on the availability of word transcriptions.

For end-to-end evaluation, ljD , which is the length of the

predicted text in D, can be used to represent TotalNumf .
However, for detection evaluation, the length of predicted
word transcription is unknown. In this case, we define
TotalNum? using < ; in Table. 2, where it defines the num-

J
ber of included PCC points of all the matched GT boxes.

3.2.2 CorrectNum: Correct Number of Characters

Correct Number for end-to-end evaluation Since word
transcriptions are available when performing an end-to-end
evaluation, the number of correct characters can be mea-
sured by finding a subsequence between the transcriptions

of matched GTs and detection boxes. However, multiple
matches could occur during the instance matching process,
and thus, a character score could be calculated multiple
times. To avoid this problem, we introduce Subsequence
Elimination Scoring Process (SESP) that calculates each
character score once and eliminates the matched subse-
quences in both GTs and predictions.

SESP is described in Algorithm 1. For each GT
box, a set of matched detection boxes are collected and
sorted according to the order of included PCC points.
Given sorted detection boxes, word transcriptions are as-
sembled together to form a single word(recog_text). We
then extract common_seq, which is the Longest Common
Sequence(LCS)[12] between GT and recog_text. The length
of common_seq is directly used as CorrectN um? . For
each matched detection box, det_seq is extracted between
the common_seq and D, and the length of det_seq within all
matched GTs is accumulated to CorrectN um;-j . Finally,
the det_seq gets eliminated in both D}*** and common_seq.
This elimination process is required to avoid multiple
matches between detection and GT transcriptions. Figure
6 shows an example of SESP on split and merge cases.

G1: one2many G2:many G1:one

D2:one D1:nany D1:nanyone
\\ Sorting,”
on¢ | nany nanyone
L one2mdny L oe”) | many i
CorrectNum{ = 6 CorrectNum{ =3
{CorrectNumf’ =3 {Cmecthng =3
CorrectNum? =3 CorrectNum? = 6

Figure 6: Examples of SESP on different matched cases:
split case on left, merge case on right.

Note that unlike the PopEval[9], which ignores the order
of characters for scoring, we perform SESP after ordering
detection boxes into the right sequence. Therefore, when
performing evaluation, the order of the characters are taken
into account. Our metric is almost free from having errors
due to character permutations.

Correct Number for detection evaluation

Word transcription is not available when evaluating de-
tection results. Therefore, we utilize the number of PCC in-
clusion since the detection accuracy is related to whether
a detected box covers a character or not. The number of
correct characters, CorrectNum, is defined using detection



Evaluation Detection End-to-end
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Table 3: Comprehensive examples of scoring for issues in text evaluations. Note that the scores are expressed as fractions
rather than reduction because each denominator has the important meaning; that is character length. & indicates the separated

summation of each nominator and denominator.

Algorithm 1: Subsequence Elimination Scoring
Process (SESP)

1 for G;in G
DG ; < aset of the matched D;s with G;
recog_text <— a serialized text from D; in DG
in the order of the matched PCCs
common_seq <— the Longest Common Subsequence(LCS)
between (G, recog-text )
Correct N um? < len(common_seq)
for D; in DG,
det_seq <— the characters from D; in common_seq
CorrectNumjDJr = len(det_seq)
th’“— = det_seq
common_seq — = det_seq
end

e ® N A U kW

13
14 end

statistics as follows;

l;
CorrectNum§ = Z I (gZ >1
B (6)
g_l > 1
C tN
orrec um ; Z max(gF,

CorrectNum indicates the number of included PCC points
of G; within detectlon boxes, and C()rnectNum;-D represents
the number of accumulated PCC points of D; within all the
matched G;s. Additionally, CorrectNumj D of each charac-
ter is divided by the inclusion counts g¥ to penalize over-
lapping cases. By doing this, only one of the matched char-
acters is marked correct, and this can be seen from the same
perspective of the subsequence elimination process when

measuring end-to-end results.

3.2.3 GranulPenalty: Granularity Penalty

The granularity indicates the connectivity condition be-
tween characters. We define GranulPenalty as a penalty rep-
resenting how much the detection result loses the connectiv-
ity information.

From a GT perspective, the most ideal condition is
formed when a single detection box is matched(§; = 1).
Likewise, from a detection perspective, the most ideal con-
dition is formed when a single GT box is matched(%; = 1).
The granularity penalty equation is shown in Eq. 7. As num-
ber of @; and G; grows, penalty increases proportionally.

GranulPenaltin =%; — 1,

7
=9, — 1. @

GranulPenalty]D

This equations means that the weight of the loss of connec-
tivity is same as the failure to detect a single character.

3.2.4 Character Number of False Positive Detection

An appropriate penalty should be given to false positive(FP)
detection, but we can’t get the number of characters to
penalize FP detection explicitly for detection evaluation.
Therefore, the character length of the FP is estimated by
assuming that the number of characters is proportional to
the aspect ratio to fit into the box. As a result, the Toral-
Num for FP is given through aspect ratio as shown in Eq.
8a. For end-to-end evaluation, the character length of rec-
ognized text Zf in the detection box is given, so this value
is applied to the TotalNum of FP as shown in Eq. 8b.

TotalNumﬁ@j _o = round(w/h) (8a)

TotalNumﬁ%jzo = ljD (8b)



where h indicates the minimum length of bounding box of
the detection, and w indicates the maximum length of it.

3.2.5 Scoring summary

Table 3 shows how scoring is processed on various issues.
Basically, instance matching is processed on both detection
and end-to-end evaluations. The scoring process, however,
differs depending on the level of evaluation. When estimat-
ing detection performance, we take the information of in-
clusive PCC points, and when evaluating end-to-end results,
we take the correct subsequence of recognized texts.

In this way, recall and precision of each box instance are
obtained. Other evaluation metrics calculate the final score
by taking the average of all recall and precision values. This
is not the case of our evaluation since the denominator needs
to be the sum of character numbers. The final recall and pre-
cision values are obtained by separately adding numerator
and denominator scores of each instance as

E'Zgll (CorrectNumiG — GranulPenaltin )

Recall = ’

Zli‘l TOtalNumiG
Precision — legll (CorrectNumjD - GmnulPenaltij )
recision = Zl I S— .

j=1 J

)

Finally, H-Mean is calculated using Eq. 10 as usual.
H-Mean — 2 Recall x Precision (10)

X
Recall + Precision

Explicit recognition performance is also important for re-
searchers developing recognition models. Using the at-
tributes introduced in section 3.1, we measure the sole per-
formance of the recognizer.

In order to solely evaluate recognition outputs, it is nec-
essary to eliminate factors coming from detection outputs.
One element that does not affect recognition performance
is box granularity. We therefore remove granularity penalty
when evaluating recognition performance. Additionally, un-
paired prediction boxes should also be excluded. End-to-
end performance assigns a penalty if a predicted word has
no GT pair, and this is not fair since the error propagates
from the detection performance. After eliminating the fac-
tors that disrupt fair recognition performance, we obtain Eq.
11 that expresses the Recognition Score (RS).

Zlfz)ll CorrectNumjD x 1(D; > 0)

RS = S D
> j=1 max(TotalNumy , o ;) x 1(2; > 0)

(1)

The equation measures recognition performance by divid-
ing the number of correctly recognized characters by the
total number of predicted characters matched with the GT
instance.

4. Experiments

In this section, for ease of discussion, we analyze the ten-
dency of our metric using the toy-examples constructed on
ICDAR2013 dataset. The evaluation of our metric on real
detection and recognition outputs are provided in the ap-
pendix.

4.1. Toy-example experiments

To compare the characteristics of the evaluation metric, a
toyset is designed to reflect the granularity and correctness
issues. To evaluate detection performance, nine cases were
synthetically generated using ICDAR2013 dataset[7]. The
cases are categorized into three parts; crop, split and over-
lap. To simulate recognition issues, we expect that the syn-
thetic detection results have the same box as the GTs, and
modify the text to cover insert, delete, and replace cases.
Detailed toy-examples are illustrated in Figure 7.

(g) Splittoverlap(10%) (h) Split+toverlap(20%) (i) Split+overlap(30%)

CCLEvall  _ _ _ . CLEal" _ _ _ _ O
|| 8 I & I .
|| || I I I
1 1 I
L e L e
(j) Insert (k) Delete (1) Replace

Figure 7: Detailed cases for toy-example experiment. First
row shows crop cases, second row shows split cases, and
third row shows overlap cases. Recognition cases such as
insert, delete, and replace are in the last row. The number of
insertion, deletion and replacement is increased from 1 to 3.

4.2. Detection evaluation

The detection evaluation result of the toy-example exper-
iment is shown in Table 4. DetEval and IoU metrics show
typical problems encountered when using a threshold based
binary scoring policy. For example, DetEval uses an area
recall threshold value of 0.8. Any detection boxes outside
this threshold are not considered a match, and therefore, the
H-mean values under crop ratio 80% gets a value close to 0.
Similar tendency is also found in the IoU metric. The met-
ric uses a threshold value of 0.5, and thus, the H-mean value
under crop ratio 50% gets a value close to 0. This indicates
that the binary scoring process does not take into account
boxes that do not meet predefined threshold conditions.



Detection Metrics Case Attibutes from CLEval

Case DetEval TIoU CLEval Split | Merge ‘ Miss ‘ Overlap FP
R|P|H|[R[P|H|[R]|P]H Original 5 9 0 61 0

Original ][ 99.7]99.9[99.8[99.8] 100 [99.9[99.7]98.799.2 Crop 80% 15 9 996 50 0
Crop 80% || 97.1[97.3[97.2[99.8 100 [99.09[82.7 [98.7[90.0 Crop 60% 12 8 2292 27 0
Crop60% | 0.3 | 0.5 | 0.4 [99.7]99.9|99.8|60.7|98.975.2 Crop 40% 9 7 3499 12 96
Crop40% || 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 |40.1[95.2|56.4 Split by 2 1014 12 0 60 93
Splitby 2 ([ 787799 79.3 [98.4 [49.3[65.7 824 [97.2[89.2 Split by 3 1014 16 0 6l 276
Splitby 3 |/ 78.6(79.8|79.2| 0.0 | 0.0 | 0.0 |66.7 |94.2|78.1 Split by 4 1014 19 0 60 581
Splitby 4 |/78.5(79.7|79.1| 0.0 | 0.0 | 0.0 |53.2(89.9|66.8 Overlap 10% || 1085 15 0 710 10
Overlap [0% || 78.9(79.8 [79.4[99.8 [ 50.0| 66.6 | SI.T [ 88.7 [84.7 Overlap 20% || 1093 15 0 1252 2
Overlap 20% || 79.0 | 79.9 | 79.4 | 99.8 | 50.0 | 66.6 | 80.9 | 82.0 | 81.5 Overlap 30% || 1093 15 0 2020 2

Overlap 30% || 79.0 | 79.8 | 79.4199.8 | 50.0 | 66.6 | 80.9 | 74.0 | 77.3

Table 4: Comparison of detection evaluation metrics on toy-
example from ICDAR2013 dataset. Some scores are high-
lighted: Red above 95, Blue below 5.

As shown in Table. 4 DetEval and IoU metric produces
unreasonable values. DetEval scores in split and overlap
cases are almost identical. We expect the scores to be dif-
ferent, but we get the same results because a penalty of 0.8
is assigned in all cases. On the other hand, the IoU recall
precision values are strange in split and overlap cases. This
is because only one of the detection boxes is paired with the
GT box. Recall value of the matched detection box is close
to 1 and the precision value of the mismatched detection box
is close to 0.5. Also, the DetEval and IoU scores remain the
same regardless of the change in overlapping ratio.

While DetEval and IoU metrics fail to cover acceptable
detection results, CLEval metric performs fine-grained eval-
uation on detection results. The calculated recall score in
CLEval is proportional to the size of the cropped box re-
gion. For the overlapping case, a precision penalty relative
to the size of the overlapping region is given. The recall
scores in three overlapping cases are almost the same. This
is reasonable because every GT character is detected, and
the number of detected duplicate characters decrease the
precision score.

During the CLEval evaluation process, intermediate at-
tributes directly related to CorrectNum, TotalNum, and
GranulPenalty are extracted. These are the number of split
and merge, frequency of missing and overlapping charac-
ters, and estimated character numbers in false positives. Ta-
ble 5 shows a summary of extracted intermediate attributes
on ICDAR2013 toy dataset. Each quantified attribute con-
veys a practical view to researchers and end-users. The in-
formation can be used by the researchers to further analyze
and develop detection models.

4.3. End-to-end evaluation

In end-to-end evaluation, the strength of using CLEval
metric is much more apparent. We insert, delete, and re-
place characters in GT transcriptions to form end-to-end test
samples. When using [oU+CRW metric, all H-mean val-
ues become 0 since CRW fails to evaluate partially recog-
nized texts. On the other hand, CLEval metric assigns par-

Table 5: Detection attributes from CLEval on ICDAR2013
dataset.

End-to-end Metrics
Case ToU + CRW CLEval
R | P | H R | P | HJRS
Original ][ 99.6 | 99.8 [ 99.7 [ 99.7 | 99.7 | 99.7 | 98.0
Tnsert [ 00 [ 00 | 0.0 | 99.7 | 840 | 912 | 83.6
Insert 2 00 | 00 | 00 | 997|731 844 | 73.1
Insert 3 00 | 00 | 00 | 99.7 | 65.7 | 792 | 65.6
Delete I |[ 0.0 | 0.0 | 0.0 | 8.0 [ 99.7 | 89.4 | 804
Delete2 || 0.0 | 00 | 00 | 63.7 | 99.6 | 77.7 | 63.3
Delete3 || 0.0 | 0.0 | 0.0 | 48.0 | 99.5 | 64.8 | 47.8
Replace T || 0.0 | 0.0 | 0.0 | 81.0 | ST.0 | S1.0 | 804
Replace2 || 0.0 | 0.0 | 00 | 64.1 | 64.2 | 64.1 | 63.7
Replace 3 || 0.0 | 0.0 | 0.0 | 499 | 49.9 | 499 | 49.7

Table 6: Comparison of end-to-end metrics on toy-example.
Some scores are highlighted: Red above 95, Blue below 5.

tial scores according to the conditions. In the case of inser-
tion, recall value becomes 1 because predicted transcription
contains all GT characters. In the case of deletion, precision
value becomes 1 because recognized texts are marked all
correct. In the case of replacement, the score is affected by
the penalty added to the character that is incorrectly recog-
nized.

While performing CLEval end-to-end evaluation, we can
also obtain Recognition Score (RS). The RS value is ob-
tained regardless of the detection result by mathematically
removing the detection-related terms. A detailed description
of RS is provided in the appendix with actual examples.

5. Conclusion

Fair and detailed evaluation of OCR models is needed,
and yet, no robust evaluation metric was proposed in the
OCR community. The proposed CLEval metric could eval-
uate text detection, recognition, and end-to-end results. This
is done by solving the granularity and correctness issues
by performing instance matching and character scoring pro-
cess. Our metric allows fine assessment, and alleviates qual-
itative disagreement. We expect researchers and end-users
to take advantage of the metric to conduct thorough end-to-
end evaluation.
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