This CVPR 2020 workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

Illegible Text to Readable Text: An Image-to-Image Transformation using
Conditional Sliced Wasserstein Adversarial Networks

Mostafa Karimi *
Texas A&M University

mostafa_karimi@tamu.edu

Abstract

Automatic text recognition from ancient handwritten
record images is an important problem in the genealogy do-
main. However, critical challenges such as varying noise
conditions, vanishing texts, and variations in handwriting
makes the recognition task difficult. We tackle this prob-
lem by developing a handwritten-to-machine-print con-
ditional Generative Adversarial network (HW2MP-GAN)
model that formulates handwritten recognition as a text-
Image-to-text-Image translation problem where a given im-
age, typically in an illegible form, is converted into an-
other image, close to its machine-print form. The pro-
posed model consists of three-components including a gen-
erator, and word-level and character-level discriminators.
The model incorporates Sliced Wasserstein distance (SWD)
and U-Net architectures in HW2MP-GAN for better qual-
ity image-to-image transformation. Qur experiments re-
veal that HW2MP-GAN outperforms state-of-the-art base-
line ¢cGAN models by almost 30 in Frechet Handwritten
Distance (FHD), 0.6 in average Levenshtein distance and
39% in word accuracy for image-to-image translation on
IAM database. Further, HW2MP-GAN improves handwrit-
ten recognition word accuracy by 1.3% compared to base-
line handwritten recognition models on IAM database.

1. Introduction

Text recognition from ancient handwritten record images
is an important problem in the genealogy domain helping
genealogists discover and unlock family history. Automat-
ing the text recognition process would further benefit them
in saving time, manual labor and associated cost respec-
tively. However, ancient document images suffer from crit-
ical challenges including varying noise conditions, interfer-
ing annotations, typical ancient record artifacts like fading
and vanishing texts, and variations in handwriting making
it difficult to transcribe [27]. Over the past decade, various
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approaches have been proposed to solve document analy-
sis and recognition such as optical character recognition
(OCR) [26], layout analysis [28], text segmentation [19]
and handwriting recognition [35, 10, 9, 13]. Although OCR
models have been very successful in recognizing machine
print text, they stumble upon handwriting recognition due
to aforementioned challenges and connecting characters in
the text as compared to machine print ones where the char-
acters are easily separable.

Unlike standard techniques that transcribe handwriting
images by treating them as either a classification or seg-
mentation problem [42, 21, 43, 5], depending upon the con-
text, we follow a different approach. In essence, we formu-
late handwriting recognition as a text-Image-to-text-Image
translation problem where a given image, typically in an il-
legible form, is transformed into an another image, closer
to machine-print, which can then be easily transcribed us-
ing OCR-like techniques. By doing so, high-quality results
can be achieved even on extremely challenging handwriting
images.

Generative adversarial network (GAN)-based deep gen-
erative models have shown a great success in image-to-
image translation tasks [0, 12, 25]. Basically, GAN [6]
consists of a generator network that tries to map latent
space (noise) to the true data distribution while generat-
ing fake samples resembling the real ones and a discrimi-
nator network that tries to distinguish true samples from the
fake ones. Both networks compete against each other until
they reach equilibrium. However, GAN inherently suffers
from major challenges including non-convergence, mode
collapse and a vanishing gradient problem [I1]. A variant
of GAN called sliced Wasserstein GAN (WGAN) [41] has
been introduced to address these challenges. We use a mod-
ified version of sliced WGAN into our framework to trans-
late handwritten text images. In the proposed model, we use
a U-Net architecture [33] inside the generator as it captures
low-level as well as abstract features. For the discrimina-
tor part, the proposed model accounts for both word- and
character-level errors and underlying high-dimensional dis-
tributions leveraged by Wasserstein distance with slice sam-



pling to transcribe a given text.
The key contributions of the proposed framework in-
clude:

* Develop a novel GAN model with three components
including one generator and two discriminators. The
model generator tries to fool both discriminators to
generate realistic “fake” machine print images with re-
alistic characters. The first discriminator, namely a
word-level discriminator, tries to distinguish between
”fake” machine print generated images and real ones
given a handwriting image. The second discrimina-
tor is a character level discriminator that tries to dis-
tinguish between “fake” character generation and real
ones.

e Develop conditional sliced Wasserstein GAN
(cCSWGAN) model with Lipschitz continuity con-
straint as a gradient penalty to convert handwritten
images into machine print ones.

 Utilize U-Net architecture [33] inside our model gen-
erator, similar to the pix2pix model, for good quality
image generation.

The rest of the paper is organized as follows. Section 2
reviews the related work. In Section 3, our novel cSWGAN
with word- and character-level discriminators is described.
Experiments and results are discussed in Section 4. and fi-
nal conclusions are offered in Section 5.

2. Related works

Handwriting image recognition is traditionally divided
into two groups including online [30] and offline recogni-
tion [39]. In the online case, the time series of coordinates
representing the movement of the pen tip is captured [9]
whereas in offline, the image of the text is available. We
deal with the latter case. Several computer vision and ma-
chine learning algorithms have been proposed to solve var-
ious challenges of handwriting recognition [4, 20] but the
problem is far from being solved. Some standard handwrit-
ing recognition approaches include hidden Markov mod-
els (HMM) [38], support vector machines (SVM) [3] and
sequential networks including recurrent neural networks
(RNN) and its variants.

Sequential networks outperform SVM and HMM mod-
els in handwriting recognition tasks which is explained in
the following. Long short term memory (LSTM) networks
are a type of RNN that propagate sequential information
for long periods of time and have been widely applicable
in handwriting recognition tasks [9]. Multidimensional Re-
current Neural Networks [8] are another type of sequential
networks that have been widely used in modern handwrit-
ten text recognition tasks [ 0]. Annotating handwritten text

at a character level is a challenging task. Connectionist
Temporal Classification (CTC) [7] has been developed that
avoids calculating loss of sequential networks at the char-
acter level. Further, CTC-based networks do not require
post-processing of the recognized text. Therefore sequen-
tial networks with CTC loss has gained a lot of attention
in handwriting recognition tasks. The proposed design also
uses a similar model as a part of its framework.

As mentioned earlier, Generative adversarial networks
(GANSs) have proven to be successful generative models in
many computer vision tasks. GAN formulates a generative
model as a game theory minimax game between genera-
tor and discriminator models. The Generator model tries
to generate “fake” samples as close to the real ones and
the discriminator model tries to discriminate “fake” sam-
ples from real ones. An extension of GAN is conditional
GAN where the sample generation is conditioned upon an
input which can be a discrete label [25], a text [32] or an im-
age [12]. Isola et al., [12] proposed pix2pix GAN that uti-
lizes conditional GAN framework and U-Net architecture
[33] for their generator and discriminator models. This ap-
proach tends to capture hierarchical features inside images.
Although GAN models are very successful in generating
fascinating, realistic images [!4], they are hard to train due
to their difficulty in achieving Nash equilibrium [34], low
dimensional support [2], vanishing gradient [23], and mode
collapsing [2] issues.

Existing GANs employ either Kullback-Leibler (KL) or
Jensen—Shannon (JS) divergence to model loss functions,
which could give rise to mode collapsing, gradient van-
ishing and low dimensional support problems in a high-
dimensional space. Wasserstein distance (WD) has gained
attention in computer vision and machine learning commu-
nity due to its everywhere continuous and almost every-
where differentiable nature, which can overcome the above
mentioned problems especially the low dimensional support
problem. Arjovsky et al., [2] proposed Wasserstein GAN
(WGAN), which uses Wasserstein-1 (earth mover) distance
to learn probability distributions. The underlying problem
with Wasserstein-1 distance is that its primal form is in-
tractable [2] and it is hard to enforce Lipschitz continu-
ity constraint in high-dimensional space for its dual form.
To circumvent this problem, sliced Wasserstein Distance
(SWD) [41] can be used based on the fact that Wasser-
stein distance provides a closed-form solution for one-
dimensional probability densities. Previously, SWD has
been utilized for dimensionality reduction, clustering [18],
and learning Gaussian mixture models [17]. Recently, it has
been employed in generative models such as sliced Wasser-
stein generative models [41] and sliced Wasserstein auto-
encoders [17]. SWD factorizes high-dimensional probabil-
ities to multiple marginal distributions [41]. Theoretically,
SWD can compute infinitely many linear projections of a



high-dimensional distribution to one-dimensional distribu-
tions followed by computing average Wasserstein distance
of these one-dimensional distributions [16].

We have developed a novel conditional sliced Wasser-
stein GAN with three components including a generator, a
word-level discriminator and a character-level discrimina-
tor for translating handwritten text images to corresponding
machine print forms.

3. Methods
3.1. Generative adversarial networks

GAN can be represented using minimax game frame-
work [6]. Thus, its objective function can be written as:

minmax E _[log (D(x))] + _E [log (1~ D)), (1)

x~P, g

where G represents a generator, D represents a discrimina-
tor and x is the realization of true samples. PP, is the true
data distribution and P, denotes the generator’s distribution
that is modeled implicitly by X ~ G(z) and z ~ P(z) (the
latent space or noise z is sampled usually from a uniform
distribution or a spherical Gaussian distribution).

Training a GAN network is equivalent to minimizing the
Jensen-Shannon (JS) divergence between [P, and P, if the
discriminator is trained to optimality before each genera-
tor’s update [6]. However, it has been observed that Eq. (1)
tends to suffer from the gradient vanishing problem as the
discriminator saturates. Although generator’s loss function
can be replaced by maximizing %( )[log (D(G(2)))], the

z~ir(z

gradient vanishing problem is far from being solved [6].

Later, GAN has been extended to conditional GAN
(cGAN) [25] where both generator and discriminator are
conditioned on a given additional supervised event y, where
y can be any kind of auxiliary information or data such as
discrete label [25], text [32] and image [12]. Usually cGAN
is performed by feeding y into both discriminator and gen-
erator as an additional input layer. cGAN is formulated as:

minmax B, flog (D(xly)] + _E, flog (1~ D(ly))
2)

where Py, the generator’s distribution, is explicitly modeled
as X ~ G(z|y) and z ~ P(z) in cGAN.

Recently, a variant of GAN in the form of Sliced Wasser-
stein Generative adversarial network (SWGAN) with gradi-
ent penalty constraint [1 1] has been introduced to stabilize
training while generating high-quality image samples. Fur-
ther, SWGANSs provide benefits by tackling convergence
and multidimensional intractability issues over traditional

GANS [40,

minmpx [ (B (D)~ E (D) d0)+ 5

M_E (V<D + e E (V5T — 1]

]. The modified objective function is:

where 6 represents trainable parameters embedded in D, 1
is a vector with all entries equal to 1, A\; and A\ are the
hyper-parameters for balancing the gradient penalty terms
and dual SWD. Details on how we reached Eq. (3) from
Eq. (2) have been covered in the Supplementary material
section.

3.2. Proposed method

In this paper, we have developed a handwritten-to-
machine print GAN (HW2MP-GAN) model to pre-process
and convert handwritten text images to machine print ones.
We consider a three-component game between a single gen-
erator and two discriminators, which are character- and
word-level discriminators, for our conditional GAN model.
Two discriminators work together and help the generator
in producing clear words and characters in the correct or-
der. The character-level discriminator enforces each gener-
ated character to be similar to real machine-print characters.
Since the number of English characters, symbols and num-
bers is limited, the character-level discriminator’s task of
learning to generate each one of these characters correctly
is easier than the other one. The word-level discriminator
forces generated words to be similar to the real ones. Since
the number of combination of all characters, symbols and
numbers is exponential to the length of the word, word-level
discriminator does a harder task of enforcing the correct or-
der from the generated characters. The overall algorithm is
shown in figure 1 (a).

Character level: Suppose, real and generated machine
print images are x and X respectively. Assume there are
K characters in the image x. Then, we define the real
and generated machine print characters as {xi}ff;‘l and
{ii}ff;‘l respectively. Superscript ’c” and ”w” are used for
character-level and word-level respectively. x§ and X§, rep-
resent the k*" character of word x and % respectively. Our
character level discriminator is defined as D¢ := {S¢, o
E°}M” | where E° is the character level encoder, S¢, is the
m* SWD block and M€ is the number of SWD blocks for
character-level discriminator. Therefore, the character-level
loss function is formulated as:

e[ EDG) - B (D))

A E
f B

Vs DFQIIE) + A B [(|[Vag T°(%5) — 1]13]
k X
“)

where the real machine print character distribution is
PS¢ and the generated machine print character distribution



is P;. 0° represent learnable parameters and are embed-
ded in the character discriminator D¢. The last two terms
of Eq. (4) are gradient and Lipschitz regularization terms,
where hyper-parameters A\§ and A\§ are balancing between
the SWGAN’s loss function and its regularization terms,
and 1 is the vector of all ones. The gradient and Lipschitz
regularization are enforced according to the P and P dis-
tributions which are sampling across the lines between Py

and IP;.
Word level: Similarly to character-level discriminator,
our word-level discriminator is defined as D" := {S¥ o

w ; .
Ev}M7. where the E* is word level encoder, S¥ is m'"

SWD block and M™ is the number of SWD blocks. There-
fore, the word level loss function is formulated as:

b= / w7 (Y] = B [DY(Xly)]df)

~Py

XY E ([V<D"(xIy)lI3) + 25 _E (V=T (%) - 1/13]

®)

where the real machine print word distribution is P, and the
generated machine print word distribution is IP;. 6 is the
learnable parameters and embedded in the word discrimi-
nator D*. The last two terms are the gradient and Lips-
chitz regularization terms where hyper-parameters A}’ and
AY are balancing between the SWGAN’s loss function and
its regularization terms. Similarly, the gradient and Lips-
chitz regularization are enforced according to the Py and
Px distributions.

Proposed HW2MP-GAN: Our final loss function is
combined with character level model, Eq. (4), and word
level model, Eq. (5), with reconstruction loss, which is the
l1 norm between generated images Z and real images z. L
norm has been chosen over /5 norm since it encourages less
bluring both in practice [12] and theory [29] The objective
function of HW2MP-GAN is:

Ltotal — pw 4 Achar LS + AreconsxiEP | |52 - X| (6

x~Py

where Acpor and Avecons are hyper-parameters for balanc-
ing between word-level loss, character-level loss and the
reconstruction loss functions. To make sure that the pro-
jection matrices are orthogonal during training for both
character- and word-level discriminators, we follow the
Steifel manifold similar to [41].

Our whole pipeline is illustrated in figure 1 (a) and the
pseudo-code of our algorithm is written in algorithm (1).

3.3. Handwriting
HW2MP-GAN

recognition reinforced by

As explained in previous subsections, we have devel-
oped a novel conditional GAN model, HW2MP-GAN, for

Algorithm 1 HW2MP-GAN

Require: Number of dual SWD blocks for word and char-
acter level discriminators are M" and M€, batch size
b, generator G, word level discriminator D" = [S% o

EY, ... ,ng Mw © E*]T and character level discrimi-
nator D¢ = [S§, 0 E€,--- 8§ 1. o E]T, latent code
dimension for word and character level discriminators
are " and r°, Lipschitz constants k¢ and k", training
steps h, training hyper-parameters,etc.

1: foriter=1---n,qs do

2: for t=1-- - ngpitic do

3: Sample real data {x(?) y(}m  ~ P,

4 Sample noise {z()}7, ~ p(z)

5: Sample random number {e{" 7, {e{Pym  ~
Ulo,1]

6 (X {Go (2 y D)},

7 EOYy e (x4 (1 - g)xOy,

5 (=0}, e {ex 4+ (1 - g0,

9 L" is defined in Eq. (5)

10: 0 + Adam(Vgw L 31" L, 6%, o, By, B2)

11: end for

12: for t=1- - - npiic do

13: Sample real character data {x>()} ™ ~ P,

14: Sample noise {zV}7, ~ p(z)

15: Sample random number {e@};’;h {eéi)};-il ~
UJ0,1]

16: (O}, {Go(2)}

7 RO e e xe 0+ (- g )R O

15 (xR0 e xe® 4 (1 - ef)xe),

19: L€ is defined in Eq. (4)

20: 0° < Adam(Vge = 3" | L¢, 6 o, B, B2)

21 end for

22: Sample a batch of noises {z(9)}7, ~ p(z)

23: Ltotel is defined in Eq. (6)

24: 09 < Adam(Vgg % 2111 Ltotal’ 09, a, B, 62)
25: end for

converting handwritten images to machine print ones. We
have further developed a novel attention-based handwrit-
ing recognition model that exploits both handwritten im-
ages and their HW2MP-GAN generated machine print ones
for the handwriting recognition task. As a proof-of-concept,
we have modified a standard handwriting recognition model
developed by Shi et al. [36] to exploit both handwritten and
generated machine print images. The baseline model con-
sists of CNN layers followed by bidirectional LSTM layers
followed by a Connectionist Temporal Classification (CTC)
loss [7]. Further, for posterior decoding of CTC loss to pre-
dict the words, we used the recently proposed Word beam
search algorithm [35].

We have developed a novel joint attention handwriting
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Figure 1: (a) Overall pipeline for HW2MP-GAN (b) Joint attention handwriting recognition reinforced by HW2MP-GAN

recognition model reinforced by HW2MP-GAN as illus-
trated in Figure 1(b). Our model consists of two paral-
lel series of convolutional layer followed by batch nor-
malization, ReLU nonlinearity and max pooling which is
repeated 5 times. These two paths of information have
been merged together with a novel joint attention model
followed by two layers of Bidirectional LSTMs and CTC
loss. The joint attention layer consists of two inputs:
1) features learned from handwritten images denoted by
H = (Hy, - ,H;,--- ,Hy) € RT*%, and 2) features
learned from generated machine print images denoted by
P= (P, ,P;, -, Pr) € RT*% where T is the max-
imum length of the word, and d; and ds represent the num-
ber of features for handwritten images and generated ma-
chine ones respectively. Therefore, the joint attention layer
is formulated as:

exp(Nij) o
N;; =tanh(HWP;), q;j = =———— V1,
J ( J) J Ek exp(Nik) J -
I:Ii = Zaijpj Vi B A= COTlCCLt(H,ﬁ)

J

where «;; represents the similarity between the it" hand-
written image character and the j** generated machine
print character. H; is the projection features learned from
the generated machine print image to the handwritten one
through attention model. Finally, the output of the attention
layer denoted by A € RT*(41+42) j5 a concatenation of the

features of handwritten images and their projected ones.

4. Experimental Evaluation
4.1. Data

We evaluated HW2MP-GAN and our joint attention
handwriting recognition models on the IAM handwritten
database [24]. The IAM database contains 115,320 isolated
and labeled words. We randomly chose 95% of the data for
our training set and the remaining 5% for our test set. Be-
cause IAM images have varying sizes, we resized them to
32 x 128 pixels. Further, we preprocessed all images by
standardizing them to zero-mean and unit-variance.

Training of the HW2MP-GAN model requires handwrit-
ten text images and corresponding manually generated ma-
chine print forms (i.e., “real” machine print images), which
can be created through the ground truth labeled words.
Since machine print images contain individual characters,
they are used to calculate character-level model loss. Be-
cause we have created the “real” machine print images man-
ually, the position of each character is known. Because the
number of characters in words varies, we only extracted real
or generated characters and ignored the background by en-
forcing loss zero for the backgrounds.



4.2. Evaluation metrics

For comprehensive evaluation of our model against the
state-of-art generative models, we considered three metrics
for 1) image-to-image translation problem and 2) handwrit-
ing text recognition task. First, Frechet Inception Distance
(FID) is the state-of-the-art metric for evaluating the per-
formance of image-to-image generative models. It com-
pares distances between a pair of Inception embedding fea-
tures from real and generated images [37]. In this paper,
we extended the FID score to Frechet Handwritten Dis-
tance (FHD) to calculate the distance between embedded
features of real and model generated text images. The em-
bedded features are computed from the output of bidirec-
tional LSTM layers of the pre-trained handwriting recog-
nition model !. Formally, FHD is defined as Frechet dis-
tance d(-,-) between the Gaussian (m,., C,.) from the em-
bedded features of real machine print images and the Gaus-
sian (m,,, C,,) from the embedded features of GAN gener-
ated machine print images which is formulated as:

d2((mr7 Cr)y (mwa Cw)) = ||mT - meg
+Tr(C, — Cy + 2(C,C,)"/?)
®)

where Tr is the trace of matrix. FHD=0 is the best and it
signifies that the embedded features are identical. For the
handwritten text recognition task, this paper used average
Levenshtein distance (LD=0 is the best) [22] and word ac-
curacy. Levenshtein distance or "edit distance” is defined as
the minimum cost of transforming one string into another
through a sequence of weighted edit operations such as in-
sertions, substitutions, and deletions [22].

4.3. Implementation

As explained earlier, our HW2MP-GAN consists of
three components: generator, character-level discrimina-
tor, and word-level discriminator. Our generator architec-
ture comprise a U-Net model [33] with 5 layers of encoder
and decoder each, where encoder and decoder are inter-
connected through skip connections. The architecture of
encoders for both character-level and word-level discrimi-
nators are similar to the discriminator in WGAN-GP [11]
minus the last linear projection layer. The character-level
and word-level encoders embed images to ' = 128 and
r¢ = 32 features respectively. Similar to the original
SWGAN [41], we used M¢ = M"™ = 4 SWD blocks
for both character-level and word-level discriminator . We
chose hyper-parameters based on grid search over a limited
set and our results can be further improved by increasing
the search space of hyper-parameters. We chose A.pqr = 2,

'We pre-trained handwriting recognition model [36] using manually
generated machine print images from Sec. 4.1, i.e., built an OCR-like
recognition model, whose accuracy > 99% on machine print text images.

Arecons = 100, A§ = AP = 20 and A§ = Ay = 10. Adam
optimizer [ 15] with initial learning rate of 0.0001 was used
for training the generator and two discriminators.

4.4. Text-Image-to-Text-Image translation problem
using HW2MP-GAN

This section talks about the performance of the proposed
HW2MP-GAN for solving the Text-Image-to-Text-Image
translation problem. The experiments include 1) measur-
ing the distance between real machine print images and
HW2MP-GAN generated text images, and 2) the legibil-
ity of HW2MP-GAN generated text images. To evaluate
the legibility, we used a pretrained handwriting recogni-
tion model ! to recognize the HW2MP-GAN generated
text images. We compared the HW2MP-GAN model with
state-of-the-art GANs that include DCGAN [31], LSGAN
[23], WGAN [2], WGAN-GP [ 1], CTGAN [40], SWGAN
[41] and Pix2Pix [12]. In order to put these GANs (except
Pix2Pix) in a framework of converting handwriting text im-
ages to machine print ones, we further extended them to
conditional GAN by embedding handwritten images to a
latent space and then concatenating them with noise for ma-
chine print generation.

The results of IAM dataset evaluation based on the three
metrics including FHD, average LD and word accuracy
have been reported in Table 1. Based on our results, we
can categorize them into four groups. First, DCGAN and
LSGAN models didn’t converge due to gradient vanishing
problem; Second, WGAN and Pix2Pix models were bet-
ter than category-1 GAN models since they have improved
the GAN model through a better distance metric (Wasser-
stein in comparison to JS) and better architecture (U-Net
model) but have the worst performances compared to other
three models. Third, WGAN-GP, CTGAN and SWGAN
turned out to be the best baseline models which have com-
parable results among themselves and outperformed other
baseline models. These models as explained, they either
have better WD approximation (SWGAN) or better enforc-
ing of Lipschitz continuity constraint (WGAN-GP and CT-
GAN). Fourth, HW2MP-GAN model outperformed others
with a large margin by using all the three metrics. The su-
perior performance of HW2MP-GAN is due to the three-
component game, exploiting SWD distance, U-Net archi-
tecture and L1 reconstruction loss. However, none of these
factors considering alone led to this improvement since for
example U-Net architecture and L1 reconstruction loss exist
in Pix2Pix model and the SWD distance exists in SWGAN.

Test examples have been illustrated in Figure 2. Based
on these results, we can observe that generated machine
print images are very similar to the “real” machine print
ones. Some errors have been noticed in generating machine
print images for example 1) ”d” instead of ”0” in the word
”Almost” 2) ”r” instead of ”1” in the word “appealed” 3)
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u” instead of ”0” in word “without”. All of these charac-
ters drawn mistakenly are similar to each other which makes
it challenging for the generative models.

average LS, 62.12% word accuracy and 0.3 average LD by
only machine print. Next, the proposed model trained us-
ing both results in 85.4% word accuracy and 0.07 average
LD. These results demonstrate the potential of exploiting

’ model \ FHD \ ave. LD \ word accuracy ‘ the generated machine print images as an extra source of in-
WGAN 874.76 1.57 0.12% formation to further boost the handwriting recognition task.
Pix2Pix 814.24 0.85 5.34%

‘ model [ ave. LD [ word accuracy |
WGAN-GP 68.57 0.92 16.82% Handwritten images 0.08 84.08%
CTGAN 51.55 0.92 15.48% Generated machine print images only 0.30 62.12%
SWGAN 60.78 0.94 14.949% Generated machine print + handwritten images 0.07 85.4%
’ Proposed method \ 21.42 \ 0.36 \ 55.36% ‘

Table 1: Comparison of GAN models for IAM dataset

4.5. Effect of hidden dimension of LSTM on evalu-
ation metrics

This section talks about evaluating FHD, average LD and
word accuracy metrics using different bidirectional LSTM’s
hidden dimensions in pretrained handwriting recognition
models '. It also shows that our model consistently
outperforms baselines. In Figure 3, hidden dimension
{16, 32, 64,128,256} were used and results showed that
1) HW2MP-GAN, SWGAN, CTGAN and WGAN-GP
models maintain consistency in their performance and 2)
HW2MP-GAN was superior over all of them for all the hid-
den dimensions.

4.6. Handwriting recognition reinforced with
HW2MP-GAN

We also evaluated the performance of the proposed
attention-based handwriting recognition that has been dis-
cussed in Section 3.3 on the IAM dataset. The proposed
model has been compared against these baselines: hand-
writing recognition (HWR) models trained by 1) handwrit-
ten images alone and 2) generated machine print only. Ta-
ble 2 shows that the recognition model trained by handwrit-
ten text images gains a word accuracy of 84.08% and 0.08

Table 2: Comparison of HWR models for [AM dataset

5. Conclusion

In this paper, we have demonstrated the advantage of
incorporating generative adversarial networks (GANs) in
handwriting recognition problems. It has been shown that
GAN-based document preprocessing such as handwritten
to machine-print image transformation can further improve
the accuracy of current handwritten recognition models.
Our results on IAM database reveal the superiority of the
proposed model on state-of-the-art conditional GAN mod-
els for handwritten image to machine-print image trans-
lation. Further improvements can be made over the pro-
posed HW2MP-GAN model. Firstly, the model considers
image preprocessing and handwritten recognition as sepa-
rate tasks that can be combined into one. Secondly, current
SWD with linear projections can be replaced by generalized
SWD with nonlinear projections for more accurate estimate
of distances between probabilities.
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