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Abstract

Automatic text recognition from ancient handwritten

record images is an important problem in the genealogy do-

main. However, critical challenges such as varying noise

conditions, vanishing texts, and variations in handwriting

makes the recognition task difficult. We tackle this prob-

lem by developing a handwritten-to-machine-print con-

ditional Generative Adversarial network (HW2MP-GAN)

model that formulates handwritten recognition as a text-

Image-to-text-Image translation problem where a given im-

age, typically in an illegible form, is converted into an-

other image, close to its machine-print form. The pro-

posed model consists of three-components including a gen-

erator, and word-level and character-level discriminators.

The model incorporates Sliced Wasserstein distance (SWD)

and U-Net architectures in HW2MP-GAN for better qual-

ity image-to-image transformation. Our experiments re-

veal that HW2MP-GAN outperforms state-of-the-art base-

line cGAN models by almost 30 in Frechet Handwritten

Distance (FHD), 0.6 in average Levenshtein distance and

39% in word accuracy for image-to-image translation on

IAM database. Further, HW2MP-GAN improves handwrit-

ten recognition word accuracy by 1.3% compared to base-

line handwritten recognition models on IAM database.

1. Introduction

Text recognition from ancient handwritten record images

is an important problem in the genealogy domain helping

genealogists discover and unlock family history. Automat-

ing the text recognition process would further benefit them

in saving time, manual labor and associated cost respec-

tively. However, ancient document images suffer from crit-

ical challenges including varying noise conditions, interfer-

ing annotations, typical ancient record artifacts like fading

and vanishing texts, and variations in handwriting making

it difficult to transcribe [27]. Over the past decade, various
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approaches have been proposed to solve document analy-

sis and recognition such as optical character recognition

(OCR) [26], layout analysis [28], text segmentation [19]

and handwriting recognition [35, 10, 9, 13]. Although OCR

models have been very successful in recognizing machine

print text, they stumble upon handwriting recognition due

to aforementioned challenges and connecting characters in

the text as compared to machine print ones where the char-

acters are easily separable.

Unlike standard techniques that transcribe handwriting

images by treating them as either a classification or seg-

mentation problem [42, 21, 43, 5], depending upon the con-

text, we follow a different approach. In essence, we formu-

late handwriting recognition as a text-Image-to-text-Image

translation problem where a given image, typically in an il-

legible form, is transformed into an another image, closer

to machine-print, which can then be easily transcribed us-

ing OCR-like techniques. By doing so, high-quality results

can be achieved even on extremely challenging handwriting

images.

Generative adversarial network (GAN)-based deep gen-

erative models have shown a great success in image-to-

image translation tasks [6, 12, 25]. Basically, GAN [6]

consists of a generator network that tries to map latent

space (noise) to the true data distribution while generat-

ing fake samples resembling the real ones and a discrimi-

nator network that tries to distinguish true samples from the

fake ones. Both networks compete against each other until

they reach equilibrium. However, GAN inherently suffers

from major challenges including non-convergence, mode

collapse and a vanishing gradient problem [1]. A variant

of GAN called sliced Wasserstein GAN (WGAN) [41] has

been introduced to address these challenges. We use a mod-

ified version of sliced WGAN into our framework to trans-

late handwritten text images. In the proposed model, we use

a U-Net architecture [33] inside the generator as it captures

low-level as well as abstract features. For the discrimina-

tor part, the proposed model accounts for both word- and

character-level errors and underlying high-dimensional dis-

tributions leveraged by Wasserstein distance with slice sam-
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pling to transcribe a given text.

The key contributions of the proposed framework in-

clude:

• Develop a novel GAN model with three components

including one generator and two discriminators. The

model generator tries to fool both discriminators to

generate realistic ”fake” machine print images with re-

alistic characters. The first discriminator, namely a

word-level discriminator, tries to distinguish between

”fake” machine print generated images and real ones

given a handwriting image. The second discrimina-

tor is a character level discriminator that tries to dis-

tinguish between ”fake” character generation and real

ones.

• Develop conditional sliced Wasserstein GAN

(cSWGAN) model with Lipschitz continuity con-

straint as a gradient penalty to convert handwritten

images into machine print ones.

• Utilize U-Net architecture [33] inside our model gen-

erator, similar to the pix2pix model, for good quality

image generation.

The rest of the paper is organized as follows. Section 2

reviews the related work. In Section 3, our novel cSWGAN

with word- and character-level discriminators is described.

Experiments and results are discussed in Section 4. and fi-

nal conclusions are offered in Section 5.

2. Related works

Handwriting image recognition is traditionally divided

into two groups including online [30] and offline recogni-

tion [39]. In the online case, the time series of coordinates

representing the movement of the pen tip is captured [9]

whereas in offline, the image of the text is available. We

deal with the latter case. Several computer vision and ma-

chine learning algorithms have been proposed to solve var-

ious challenges of handwriting recognition [4, 20] but the

problem is far from being solved. Some standard handwrit-

ing recognition approaches include hidden Markov mod-

els (HMM) [38], support vector machines (SVM) [3] and

sequential networks including recurrent neural networks

(RNN) and its variants.

Sequential networks outperform SVM and HMM mod-

els in handwriting recognition tasks which is explained in

the following. Long short term memory (LSTM) networks

are a type of RNN that propagate sequential information

for long periods of time and have been widely applicable

in handwriting recognition tasks [9]. Multidimensional Re-

current Neural Networks [8] are another type of sequential

networks that have been widely used in modern handwrit-

ten text recognition tasks [10]. Annotating handwritten text

at a character level is a challenging task. Connectionist

Temporal Classification (CTC) [7] has been developed that

avoids calculating loss of sequential networks at the char-

acter level. Further, CTC-based networks do not require

post-processing of the recognized text. Therefore sequen-

tial networks with CTC loss has gained a lot of attention

in handwriting recognition tasks. The proposed design also

uses a similar model as a part of its framework.

As mentioned earlier, Generative adversarial networks

(GANs) have proven to be successful generative models in

many computer vision tasks. GAN formulates a generative

model as a game theory minimax game between genera-

tor and discriminator models. The Generator model tries

to generate ”fake” samples as close to the real ones and

the discriminator model tries to discriminate ”fake” sam-

ples from real ones. An extension of GAN is conditional

GAN where the sample generation is conditioned upon an

input which can be a discrete label [25], a text [32] or an im-

age [12]. Isola et al., [12] proposed pix2pix GAN that uti-

lizes conditional GAN framework and U-Net architecture

[33] for their generator and discriminator models. This ap-

proach tends to capture hierarchical features inside images.

Although GAN models are very successful in generating

fascinating, realistic images [14], they are hard to train due

to their difficulty in achieving Nash equilibrium [34], low

dimensional support [2], vanishing gradient [23], and mode

collapsing [2] issues.

Existing GANs employ either Kullback–Leibler (KL) or

Jensen–Shannon (JS) divergence to model loss functions,

which could give rise to mode collapsing, gradient van-

ishing and low dimensional support problems in a high-

dimensional space. Wasserstein distance (WD) has gained

attention in computer vision and machine learning commu-

nity due to its everywhere continuous and almost every-

where differentiable nature, which can overcome the above

mentioned problems especially the low dimensional support

problem. Arjovsky et al., [2] proposed Wasserstein GAN

(WGAN), which uses Wasserstein-1 (earth mover) distance

to learn probability distributions. The underlying problem

with Wasserstein-1 distance is that its primal form is in-

tractable [2] and it is hard to enforce Lipschitz continu-

ity constraint in high-dimensional space for its dual form.

To circumvent this problem, sliced Wasserstein Distance

(SWD) [41] can be used based on the fact that Wasser-

stein distance provides a closed-form solution for one-

dimensional probability densities. Previously, SWD has

been utilized for dimensionality reduction, clustering [18],

and learning Gaussian mixture models [17]. Recently, it has

been employed in generative models such as sliced Wasser-

stein generative models [41] and sliced Wasserstein auto-

encoders [17]. SWD factorizes high-dimensional probabil-

ities to multiple marginal distributions [41]. Theoretically,

SWD can compute infinitely many linear projections of a



high-dimensional distribution to one-dimensional distribu-

tions followed by computing average Wasserstein distance

of these one-dimensional distributions [16].

We have developed a novel conditional sliced Wasser-

stein GAN with three components including a generator, a

word-level discriminator and a character-level discrimina-

tor for translating handwritten text images to corresponding

machine print forms.

3. Methods

3.1. Generative adversarial networks

GAN can be represented using minimax game frame-

work [6]. Thus, its objective function can be written as:

min
G

max
D

E
x∼Pr

[log (D(x))] + E
x̃∼Pg

[log (1−D(x̃))], (1)

where G represents a generator, D represents a discrimina-

tor and x is the realization of true samples. Pr is the true

data distribution and Pg denotes the generator’s distribution

that is modeled implicitly by x̃ ∼ G(z) and z ∼ P(z) (the

latent space or noise z is sampled usually from a uniform

distribution or a spherical Gaussian distribution).

Training a GAN network is equivalent to minimizing the

Jensen-Shannon (JS) divergence between Pr and Pg if the

discriminator is trained to optimality before each genera-

tor’s update [6]. However, it has been observed that Eq. (1)

tends to suffer from the gradient vanishing problem as the

discriminator saturates. Although generator’s loss function

can be replaced by maximizing E
z∼P(z)

[log (D(G(z)))], the

gradient vanishing problem is far from being solved [6].

Later, GAN has been extended to conditional GAN

(cGAN) [25] where both generator and discriminator are

conditioned on a given additional supervised event y, where

y can be any kind of auxiliary information or data such as

discrete label [25], text [32] and image [12]. Usually cGAN

is performed by feeding y into both discriminator and gen-

erator as an additional input layer. cGAN is formulated as:

min
G

max
D

E
x∼Pr

[log (D(x|y))] + E
x̃∼Pg

[log (1−D(x̃|y))]

(2)

where Pg , the generator’s distribution, is explicitly modeled

as x̃ ∼ G(z|y) and z ∼ P(z) in cGAN.

Recently, a variant of GAN in the form of Sliced Wasser-

stein Generative adversarial network (SWGAN) with gradi-

ent penalty constraint [11] has been introduced to stabilize

training while generating high-quality image samples. Fur-

ther, SWGANs provide benefits by tackling convergence

and multidimensional intractability issues over traditional

GANs [40, 41]. The modified objective function is:

min
G

max
D

∫

θ∈Sn−1

( E
x∼Pr

[D(x)]− E
y∼Pg

[D(y)] dθ)+

λ1 E
x̂∼P

X̂

[||∇x̂D(x̂)||22] + λ2 E
ŷ∼Pŷ

[(||∇ŷT (ŷ)− 1||22]
(3)

where θ represents trainable parameters embedded in D, 1

is a vector with all entries equal to 1, λ1 and λ2 are the

hyper-parameters for balancing the gradient penalty terms

and dual SWD. Details on how we reached Eq. (3) from

Eq. (2) have been covered in the Supplementary material

section.

3.2. Proposed method

In this paper, we have developed a handwritten-to-

machine print GAN (HW2MP-GAN) model to pre-process

and convert handwritten text images to machine print ones.

We consider a three-component game between a single gen-

erator and two discriminators, which are character- and

word-level discriminators, for our conditional GAN model.

Two discriminators work together and help the generator

in producing clear words and characters in the correct or-

der. The character-level discriminator enforces each gener-

ated character to be similar to real machine-print characters.

Since the number of English characters, symbols and num-

bers is limited, the character-level discriminator’s task of

learning to generate each one of these characters correctly

is easier than the other one. The word-level discriminator

forces generated words to be similar to the real ones. Since

the number of combination of all characters, symbols and

numbers is exponential to the length of the word, word-level

discriminator does a harder task of enforcing the correct or-

der from the generated characters. The overall algorithm is

shown in figure 1 (a).

Character level: Suppose, real and generated machine

print images are x and x̃ respectively. Assume there are

Kx characters in the image x. Then, we define the real

and generated machine print characters as {xc
k}

Kx

k=1 and

{x̃c
k}

Kx

k=1 respectively. Superscript ”c” and ”w” are used for

character-level and word-level respectively. xc
k and x̃c

k rep-

resent the kth character of word x and x̃ respectively. Our

character level discriminator is defined as Dc := {Sc
m ◦

Ec}M
c

m=1 where Ec is the character level encoder, Sc
m is the

mth SWD block and M c is the number of SWD blocks for

character-level discriminator. Therefore, the character-level

loss function is formulated as:

Lc =

∫

θc∈Sr
c
−1

( E
xc
k
∼Pc

r

[Dc(xc
k)]− E

x̃c
k
∼Pc

g

[Dc(x̃c
k)] dθ)+

λc
1 E
x̂c
k
∼Pc

x̂

[||∇x̂c
k
Dc(x̂c

k)||
2
2] + λc

2 E
x̄c
k
∼Pc

x̄

[(||∇x̄c
k
T c(x̄c

k)− 1||22]

(4)

where the real machine print character distribution is

P
c
r and the generated machine print character distribution



is P
c
g . θc represent learnable parameters and are embed-

ded in the character discriminator Dc. The last two terms

of Eq. (4) are gradient and Lipschitz regularization terms,

where hyper-parameters λc
1 and λc

2 are balancing between

the SWGAN’s loss function and its regularization terms,

and 1 is the vector of all ones. The gradient and Lipschitz

regularization are enforced according to the P
c
x̂ and P

c
x̄ dis-

tributions which are sampling across the lines between P
c
r

and P
c
g .

Word level: Similarly to character-level discriminator,

our word-level discriminator is defined as Dw := {Sw
m ◦

Ew}M
w

m=1 where the Ew is word level encoder, Sw
m is mth

SWD block and Mw is the number of SWD blocks. There-

fore, the word level loss function is formulated as:

Lw =

∫

θw∈Sn−1

( E
x∼Pr

[Dw(x|y)]− E
x̃∼Pg

[Dw(x̃|y)] dθ)

+ λw
1 E
x̂∼Px̂

[||∇x̂D
w(x̂|y)||22] + λw

2 E
x̄∼Px̄

[(||∇x̄T
w(x̄)− 1||22]

]

(5)

where the real machine print word distribution is Pr and the

generated machine print word distribution is Pg . θw is the

learnable parameters and embedded in the word discrimi-

nator Dw. The last two terms are the gradient and Lips-

chitz regularization terms where hyper-parameters λw
1 and

λw
2 are balancing between the SWGAN’s loss function and

its regularization terms. Similarly, the gradient and Lips-

chitz regularization are enforced according to the Px̂ and

Px̄ distributions.

Proposed HW2MP-GAN: Our final loss function is

combined with character level model, Eq. (4), and word

level model, Eq. (5), with reconstruction loss, which is the

l1 norm between generated images x̃ and real images x. L1

norm has been chosen over l2 norm since it encourages less

bluring both in practice [12] and theory [29] The objective

function of HW2MP-GAN is:

Ltotal = Lw + λcharL
c + λrecons E

x∼Pr

x̃∼Pg

||x̃− x||1 (6)

where λchar and λrecons are hyper-parameters for balanc-

ing between word-level loss, character-level loss and the

reconstruction loss functions. To make sure that the pro-

jection matrices are orthogonal during training for both

character- and word-level discriminators, we follow the

Steifel manifold similar to [41].

Our whole pipeline is illustrated in figure 1 (a) and the

pseudo-code of our algorithm is written in algorithm (1).

3.3. Handwriting recognition reinforced by
HW2MP­GAN

As explained in previous subsections, we have devel-

oped a novel conditional GAN model, HW2MP-GAN, for

Algorithm 1 HW2MP-GAN

Require: Number of dual SWD blocks for word and char-

acter level discriminators are Mw and M c, batch size

b, generator G, word level discriminator Dw = [Sw
d,1 ◦

Ew, · · · , Sw
d,Mw ◦ Ew]T and character level discrimi-

nator Dc = [Sc
d,1 ◦ E

c, · · · , Sc
d,Mc ◦ Ec]T , latent code

dimension for word and character level discriminators

are rw and rc, Lipschitz constants kc and kw, training

steps h, training hyper-parameters,etc.

1: for iter=1 · · ·nmax do

2: for t=1· · ·ncritic do

3: Sample real data {x(i),y(i)}mi=1 ∼ Pr

4: Sample noise {z(i)}mi=1 ∼ p(z)

5: Sample random number {ǫ
(i)
1 }

m
i=1, {ǫ

(i)
2 }

m
i=1 ∼

U [0, 1]
6: {x̃(i)}mi=1 ← {Gθ(z

(i)|y(i))}mi=1

7: {x̂(i)}mi=1 ← {ǫ
(i)
1 x(i) + (1− ǫ

(i)
1 )x̃(i)}mi=1

8: {x̄(i)}mi=1 ← {ǫ
(i)
2 x(i) + (1− ǫ

(i)
2 )x̃(i)}mi=1

9: Lw is defined in Eq. (5)

10: θw ← Adam(∇θw
1
m

∑m
i=1 L

w, θw, α, β1, β2)
11: end for

12: for t=1· · ·ncritic do

13: Sample real character data {xc,(i)}mi=1 ∼ Pr

14: Sample noise {z(i)}mi=1 ∼ p(z)

15: Sample random number {ǫ
(i)
1 }

m
i=1, {ǫ

(i)
2 }

m
i=1 ∼

U [0, 1]
16: {x̃c,(i)}mi=1 ← {Gθ(z

(i))}mi=1

17: {x̂c,(i)}mi=1 ← {ǫ
(i)
1 xc,(i) + (1− ǫ

(i)
1 )x̃c,(i)}mi=1

18: {x̄c,(i)}mi=1 ← {ǫ
(i)
2 xc,(i) + (1− ǫ

(i)
2 )x̃c,(i)}mi=1

19: Lc is defined in Eq. (4)

20: θc ← Adam(∇θc
1
m

∑m
i=1 L

c, θc, α, β1, β2)
21: end for

22: Sample a batch of noises {z(i)}mi=1 ∼ p(z)
23: Ltotal is defined in Eq. (6)

24: θg ← Adam(∇θg
1
m

∑m
i=1 L

total, θg, α, β1, β2)
25: end for

converting handwritten images to machine print ones. We

have further developed a novel attention-based handwrit-

ing recognition model that exploits both handwritten im-

ages and their HW2MP-GAN generated machine print ones

for the handwriting recognition task. As a proof-of-concept,

we have modified a standard handwriting recognition model

developed by Shi et al. [36] to exploit both handwritten and

generated machine print images. The baseline model con-

sists of CNN layers followed by bidirectional LSTM layers

followed by a Connectionist Temporal Classification (CTC)

loss [7]. Further, for posterior decoding of CTC loss to pre-

dict the words, we used the recently proposed Word beam

search algorithm [35].

We have developed a novel joint attention handwriting



Figure 1: (a) Overall pipeline for HW2MP-GAN (b) Joint attention handwriting recognition reinforced by HW2MP-GAN

recognition model reinforced by HW2MP-GAN as illus-

trated in Figure 1(b). Our model consists of two paral-

lel series of convolutional layer followed by batch nor-

malization, ReLU nonlinearity and max pooling which is

repeated 5 times. These two paths of information have

been merged together with a novel joint attention model

followed by two layers of Bidirectional LSTMs and CTC

loss. The joint attention layer consists of two inputs:

1) features learned from handwritten images denoted by

H = (H1, · · · , Hi, · · · , HT ) ∈ R
T×d1 , and 2) features

learned from generated machine print images denoted by

P = (P1, · · · , Pj , · · · , PT ) ∈ R
T×d2 where T is the max-

imum length of the word, and d1 and d2 represent the num-

ber of features for handwritten images and generated ma-

chine ones respectively. Therefore, the joint attention layer

is formulated as:

Nij = tanh(HiWPj), αij =
exp(Nij)

∑

k exp(Nik)
∀ i, j

Ĥi =
∑

j

αijPj ∀i , A = Concat(H, Ĥ)
(7)

where αij represents the similarity between the ith hand-

written image character and the jth generated machine

print character. Ĥi is the projection features learned from

the generated machine print image to the handwritten one

through attention model. Finally, the output of the attention

layer denoted by A ∈ RT×(d1+d2) is a concatenation of the

features of handwritten images and their projected ones.

4. Experimental Evaluation

4.1. Data

We evaluated HW2MP-GAN and our joint attention

handwriting recognition models on the IAM handwritten

database [24]. The IAM database contains 115,320 isolated

and labeled words. We randomly chose 95% of the data for

our training set and the remaining 5% for our test set. Be-

cause IAM images have varying sizes, we resized them to

32 × 128 pixels. Further, we preprocessed all images by

standardizing them to zero-mean and unit-variance.

Training of the HW2MP-GAN model requires handwrit-

ten text images and corresponding manually generated ma-

chine print forms (i.e., ”real” machine print images), which

can be created through the ground truth labeled words.

Since machine print images contain individual characters,

they are used to calculate character-level model loss. Be-

cause we have created the ”real” machine print images man-

ually, the position of each character is known. Because the

number of characters in words varies, we only extracted real

or generated characters and ignored the background by en-

forcing loss zero for the backgrounds.



4.2. Evaluation metrics

For comprehensive evaluation of our model against the

state-of-art generative models, we considered three metrics

for 1) image-to-image translation problem and 2) handwrit-

ing text recognition task. First, Frechet Inception Distance

(FID) is the state-of-the-art metric for evaluating the per-

formance of image-to-image generative models. It com-

pares distances between a pair of Inception embedding fea-

tures from real and generated images [37]. In this paper,

we extended the FID score to Frechet Handwritten Dis-

tance (FHD) to calculate the distance between embedded

features of real and model generated text images. The em-

bedded features are computed from the output of bidirec-

tional LSTM layers of the pre-trained handwriting recog-

nition model 1. Formally, FHD is defined as Frechet dis-

tance d(·,·) between the Gaussian (mr,Cr) from the em-

bedded features of real machine print images and the Gaus-

sian (mw,Cw) from the embedded features of GAN gener-

ated machine print images which is formulated as:

d2((mr,Cr), (mw,Cw)) = ||mr −mw||
2
2

+Tr(Cr −Cw + 2(CrCw)
1/2)

(8)

where Tr is the trace of matrix. FHD=0 is the best and it

signifies that the embedded features are identical. For the

handwritten text recognition task, this paper used average

Levenshtein distance (LD=0 is the best) [22] and word ac-

curacy. Levenshtein distance or ”edit distance” is defined as

the minimum cost of transforming one string into another

through a sequence of weighted edit operations such as in-

sertions, substitutions, and deletions [22].

4.3. Implementation

As explained earlier, our HW2MP-GAN consists of

three components: generator, character-level discrimina-

tor, and word-level discriminator. Our generator architec-

ture comprise a U-Net model [33] with 5 layers of encoder

and decoder each, where encoder and decoder are inter-

connected through skip connections. The architecture of

encoders for both character-level and word-level discrimi-

nators are similar to the discriminator in WGAN-GP [11]

minus the last linear projection layer. The character-level

and word-level encoders embed images to rw = 128 and

rc = 32 features respectively. Similar to the original

SWGAN [41], we used M c = Mw = 4 SWD blocks

for both character-level and word-level discriminator . We

chose hyper-parameters based on grid search over a limited

set and our results can be further improved by increasing

the search space of hyper-parameters. We chose λchar = 2,

1We pre-trained handwriting recognition model [36] using manually

generated machine print images from Sec. 4.1, i.e., built an OCR-like

recognition model, whose accuracy > 99% on machine print text images.

λrecons = 100, λc
1 = λw

1 = 20 and λc
2 = λw

2 = 10. Adam

optimizer [15] with initial learning rate of 0.0001 was used

for training the generator and two discriminators.

4.4. Text­Image­to­Text­Image translation problem
using HW2MP­GAN

This section talks about the performance of the proposed

HW2MP-GAN for solving the Text-Image-to-Text-Image

translation problem. The experiments include 1) measur-

ing the distance between real machine print images and

HW2MP-GAN generated text images, and 2) the legibil-

ity of HW2MP-GAN generated text images. To evaluate

the legibility, we used a pretrained handwriting recogni-

tion model 1 to recognize the HW2MP-GAN generated

text images. We compared the HW2MP-GAN model with

state-of-the-art GANs that include DCGAN [31], LSGAN

[23], WGAN [2], WGAN-GP [11], CTGAN [40], SWGAN

[41] and Pix2Pix [12]. In order to put these GANs (except

Pix2Pix) in a framework of converting handwriting text im-

ages to machine print ones, we further extended them to

conditional GAN by embedding handwritten images to a

latent space and then concatenating them with noise for ma-

chine print generation.

The results of IAM dataset evaluation based on the three

metrics including FHD, average LD and word accuracy

have been reported in Table 1. Based on our results, we

can categorize them into four groups. First, DCGAN and

LSGAN models didn’t converge due to gradient vanishing

problem; Second, WGAN and Pix2Pix models were bet-

ter than category-1 GAN models since they have improved

the GAN model through a better distance metric (Wasser-

stein in comparison to JS) and better architecture (U-Net

model) but have the worst performances compared to other

three models. Third, WGAN-GP, CTGAN and SWGAN

turned out to be the best baseline models which have com-

parable results among themselves and outperformed other

baseline models. These models as explained, they either

have better WD approximation (SWGAN) or better enforc-

ing of Lipschitz continuity constraint (WGAN-GP and CT-

GAN). Fourth, HW2MP-GAN model outperformed others

with a large margin by using all the three metrics. The su-

perior performance of HW2MP-GAN is due to the three-

component game, exploiting SWD distance, U-Net archi-

tecture and L1 reconstruction loss. However, none of these

factors considering alone led to this improvement since for

example U-Net architecture and L1 reconstruction loss exist

in Pix2Pix model and the SWD distance exists in SWGAN.

Test examples have been illustrated in Figure 2. Based

on these results, we can observe that generated machine

print images are very similar to the ”real” machine print

ones. Some errors have been noticed in generating machine

print images for example 1) ”d” instead of ”o” in the word

”Almost” 2) ”r” instead of ”l” in the word ”appealed” 3)



Figure 2: Some test examples of converting handwritten images to machine print ones. First row illustrate the handwritten

images. Second row shows the generated machine print images and third shows the ”real” machine print ones.

”u” instead of ”o” in word ”without”. All of these charac-

ters drawn mistakenly are similar to each other which makes

it challenging for the generative models.

model FHD ave. LD word accuracy

WGAN 874.76 1.57 0.12%

Pix2Pix 814.24 0.85 5.34%

WGAN-GP 68.57 0.92 16.82%

CTGAN 51.55 0.92 15.48%

SWGAN 60.78 0.94 14.94%

Proposed method 21.42 0.36 55.36%

Table 1: Comparison of GAN models for IAM dataset

4.5. Effect of hidden dimension of LSTM on evalu­
ation metrics

This section talks about evaluating FHD, average LD and

word accuracy metrics using different bidirectional LSTM’s

hidden dimensions in pretrained handwriting recognition

models 1. It also shows that our model consistently

outperforms baselines. In Figure 3, hidden dimension

{16, 32, 64, 128, 256} were used and results showed that

1) HW2MP-GAN, SWGAN, CTGAN and WGAN-GP

models maintain consistency in their performance and 2)

HW2MP-GAN was superior over all of them for all the hid-

den dimensions.

4.6. Handwriting recognition reinforced with
HW2MP­GAN

We also evaluated the performance of the proposed

attention-based handwriting recognition that has been dis-

cussed in Section 3.3 on the IAM dataset. The proposed

model has been compared against these baselines: hand-

writing recognition (HWR) models trained by 1) handwrit-

ten images alone and 2) generated machine print only. Ta-

ble 2 shows that the recognition model trained by handwrit-

ten text images gains a word accuracy of 84.08% and 0.08

average LS, 62.12% word accuracy and 0.3 average LD by

only machine print. Next, the proposed model trained us-

ing both results in 85.4% word accuracy and 0.07 average

LD. These results demonstrate the potential of exploiting

the generated machine print images as an extra source of in-

formation to further boost the handwriting recognition task.

model ave. LD word accuracy

Handwritten images 0.08 84.08%

Generated machine print images only 0.30 62.12%

Generated machine print + handwritten images 0.07 85.4%

Table 2: Comparison of HWR models for IAM dataset

5. Conclusion

In this paper, we have demonstrated the advantage of

incorporating generative adversarial networks (GANs) in

handwriting recognition problems. It has been shown that

GAN-based document preprocessing such as handwritten

to machine-print image transformation can further improve

the accuracy of current handwritten recognition models.

Our results on IAM database reveal the superiority of the

proposed model on state-of-the-art conditional GAN mod-

els for handwritten image to machine-print image trans-

lation. Further improvements can be made over the pro-

posed HW2MP-GAN model. Firstly, the model considers

image preprocessing and handwritten recognition as sepa-

rate tasks that can be combined into one. Secondly, current

SWD with linear projections can be replaced by generalized

SWD with nonlinear projections for more accurate estimate

of distances between probabilities.
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