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Abstract

Recognition of Handwritten Mathematical Expressions

(HMEs) is a challenging problem because of the compli-

cated structure and uncommon math symbols contained in

HMEs. Moreover, the lack of training data is a serious

issue, especially for deep learning-based systems. In this

paper, we proposed a dual loss attention model that uti-

lizes the existing latex corpus to improve accuracy. The

proposed dual loss attention has two losses, including de-

coder loss and context matching loss to learn semantic in-

variant features for the encoder and latex grammar for the

decoder from handwritten and printed MEs. The results

of experiments on the CROHME 2014 and 2016 databases

demonstrate the superiority and effectiveness of our pro-

posed model. These results are competitive compared to

others reported in recent literature.

1. Introduction

Mathematical expressions (MEs) are commonly used in

scientific documents, books, and examinations. However,

it is uneasy to input MEs into computers, since the compli-

cated structure and uncommon math symbols contained in

MEs. Handwritten is the natural way to input MEs for hu-

mans, but it is hard for computers to recognize them. Com-

plicated two-dimensional structures, ambiguous spatial re-

lations, and unstable writing style are the main challenges

on recognition of HMEs. Recognition of HMEs has re-

cently focused since it has many potential applications in

computer-assisted scoring systems, self-study math appli-

cations, and handwriting input systems for scientific writ-

ing.

Traditional recognition methods can be divided into

three main processes: symbol segmentation, symbol recog-

nition, and structural analysis. Most of them rely on a

human-defined grammar such as Context Grammar. In-

spired by recent successes of the attention-based encoder-

decoder model in neural machine translation and image cap-

tion generation, researchers focus on solving HMEs recog-

nition as an end-to-end trainable system. The end-to-end

trainable system requires only input data and their corre-

sponding Latex for training. All the processes of sym-

bol segmentation/recognition and structural analysis are in-

corporated in the attention-based encoder-decoder system.

This method outperformed the traditional method.

Many approaches have been proposed for recognizing

HMEs, especially during the last two decades. They are

summarized in the survey papers [2, 9] and the recent com-

petition papers [7, 6, 5]. Most of them employed the

Context Free Grammar (CFG) [4, 1] and attention-based

encoder-decoder [3, 10, 8]. In the following, we will review

a few recent approaches evaluated on the recent Competi-

tion on Recognition of Online Handwritten Mathematical

Expressions (CROHME).

For CFG based method, A 2D Stochastic CFG based

method was proposed by Alvaro et al.[1]. The Cocke-

Younger-Kasami parsing algorithm is modified to parse an

input online HME in two dimensions. This system was the

best system at CROHME 2011 and the best system with us-

ing only CROHME data at CROHME 2013 and 2014. Le

et al. proposed a recognition method for HMEs based on

SCFG [4]. Stroke order is employed to reduce the search

space and the CYK algorithm is used to parse a sequence

of input strokes. They extended the grammar rules to cope

with multiple symbol order variations. The system partici-

pated in CROHME 2013, 2014, and 2016.

For attention-based encoder-decoder method, Zhang et

al. proposed an end-to-end approach based on neural net-

work to recognize HMEs, which is called WAP [10]. They

employed a DenseNet encoder to extract features from an

input HME and a GRU decoder with an attention-based

parser to generate LaTeX sequences.

Le et al. proposed data generation strategies that in-

corporate with attention-based encoder-decoder system [3].

The experiment shows superior by the additional generated

data.



Recently, Wu et al. proposed a Paired Adversarial Learn-

ing to learn semantic invariant features between handwrit-

ten and printed MEs in the feature space. In this paper, we

employ similar paired images to train our proposed system.

Since the training dataset for HMEs are small and the

collection and annotation processes are labor-intensive and

time-consuming. So that improving the recognition by us-

ing other existing resources such as latex corpus is a poten-

tial research direction. For recognition of HMEs, we have

a large corpus of latex which is easy to collect from the in-

ternet. If we could take advantage of printed MEs rendered

from the latex corpus, it will be helpful. The core idea of

the paper is to learn from the printed ME domain to improve

the handwritten ME domain. The system learns not only se-

mantic invariant features between handwritten and printed

MEs, but also latex grammar from printed MEs.

In this paper, we propose a new method for recogniz-

ing HMEs, named dual loss attention. As shown in Figure

1, the proposed dual loss attention has two losses includ-

ing decoder loss (the loss to map context vectors to target

symbols) and context matching loss (the loss to map con-

text vectors between handwritten and printed MEs to ex-

tract semantic invariant features). To learn semantic invari-

ant features, we train the network with paired handwritten

and printed MEs. To learn grammar-based features for the

decoder, we train the network with printed MEs from the

latex corpus.

We summarize our contributions as follows: We propose

a dual loss attention for robust HMEs recognition, which

could learn semantic invariant features and grammar-based

features between handwritten and printed MEs. We propose

a context matching module to map context vectors cross

domains. We proposed two scenarios: paired MEs train-

ing scenario to learn semantic invariant features and printed

MEs training scenario to learn grammar-based features for

mathematics. We show the effectiveness of our proposed

model and training scenarios though experiments. The re-

sults are competitive compared to others reported in recent

literature.

2. Dual loss attention network

In this paper, we develop dual loss attention for robust

recognition of HMEs. We have paired images of handwrit-

ten and printed MEs from the CROHME training set and

printed MEs rendered from the Latex corpus. Formally, we

assume that there are N paired annotated samples Xpair =
(xh

i , x
p
i ) with the corresponding labels Ypair = (yi) and

M printed MEs rendered from latex corpus X̄ = (x̄i) with

the corresponding labels Ȳ = (ȳ). Where xh
i is HMEs im-

ages, x
p
i and x̄i are printed MEs images. Given a training

set D = (Xpair, Ypair), (X̄, Ȳ ), we try to maximize the

prediction probability w.r.t. parameters θ of the recognition

system. As shown in Figure 1, the proposed dual loss at-

tention encodes a pair of handwritten and printed MEs into

two sequences of context vectors (attended math symbol-

level features). The sequence of context vector is used for

predicting the target latex sequence by a GRU decoder. The

context vectors are the representation of handwritten and

printed math symbols. We employ the Mean Squared Error

(MSE) as Context Matching to map the corresponding rep-

resentation of handwritten and printed math symbols. When

the representation of handwritten and printed math sym-

bols are mapped, we can train the network for recognizing

HMEs by printed MEs. Figure 2 shows the illustration of

the representation of handwritten and printed domains be-

fore and after using Context Matching. The role of Context

Matching is to make the representation of handwritten and

printed symbols closer. As a result, the decoder can predict

target symbols from whatever handwritten or printed MEs.

2.1. Attention based ME Recognition

Our recognition system is based on the attention-based

encoder-decoder. It contains three modules: a convolution

neural network for feature extraction, attention module for

generating context vectors, and a GRU decoder for generat-

ing the target latex symbols. In this research, we employ the

open source of the related work [10] as the baseline system.

DenseNet based Feature Extraction: DenseNet out-

performs the VGG and ResNet by proposing direct connec-

tions from any preceding layers to succeeding layers. The

ith layer receives the feature maps of all preceding layers,

x0, . . . , xi−1, as input:

xi = Hi([x0, x1, ..., xi−1]) (1)

where Hi refers to the convolutional function of the ith

layer. The detail setting of the DenseNet is described in [].

The extracted features from an input x is F (x). The size of

the extracted features is H ×W × C, where C denotes the

number of channels, H and W are the height and width of

extracted features, respectively.

Attention Module: The role of the attention model is

to learn the corresponding between a location in an input

image and a decoding symbol. At time-step t, the context

vector ct is a result of a weighted sum of the extracted fea-

tures F and the attention probability α.

ct =
∑

u,v

αt(u,v) ∗ Fu,v (2)

where, the attention probability αu,v is calculated by the

following softmax function:

αt(u,v) =
exp(et(u,v))∑
i,j exp(et(i,j))

(3)

where et(u,v) denotes the energy of Fu,v at time step t. The

energy is calculated from the input feature Fu,v , the previ-

ous hidden state of the decoder ht−1, and coverage vector



Figure 1. The structure of dual loss attention.

Figure 2. Illustration of the representation of handwritten and

printed domains before and after using Context Matching. Cir-

cle points and X point represent the context vectors of handwritten

and printed symbols, respectively.

covt(u,v). The coverage vector is initialized as a zero vector

and we compute it based on the summation of all past atten-

tion probabilities α. vTatt, Wh, WF , and Wcov are learnable

parameters.

et(u,v) = vTatt tanh(Wh∗ht−1+WF ∗Fu,v+Wcov∗covt(u,v))
(4)

covt(u,v) =
t−1∑

l=1

αl(u,v) (5)

GRU Decoder: The GRU decoder predicts one symbol at

a time. At each time step t, the decoder predicts symbol

yt based on the embedding vector of the previous decoded

symbol Eyt−1
, the current hidden state of the decoder ht,

and the current context vector ct as the following equation:

p(yt) = softmax(WE ∗Eyt−1
+Wh ∗ ht +Wc ∗ ct) (6)

where WE , Wh, Wc are learnable parameters. The hidden

state is calculated by a GRU. It is based on the previous

hidden state of the LSTM, the context vector, and the em-

bedding vector of the previous decoded symbol Eyt-1 as the

following equation:

ht = GRU(ht−1, ct, Eyt−1
) (7)

We employ cross-entropy as the objective function to max-

imize the probability of predicted symbols for a target latex

sequence.

Ldec(y|x) = −

|y|∑

i=1

log p(yi|F (x)) = −

|y|∑

i=1

log p(yi|yi−1, ci)

(8)

2.2. Context Matching

Given a pair of handwritten and printed MEs

(MEh,MEp), they are represented as two sequences

of context vectors Context(MEh) and Context(MEp)
after feature extraction and attention processes. Note

that Context(MEh) and Context(MEp) have the same

length. The ith elements of the two sequences of context

vectors are corresponding to each other and aligned with

the target symbols yi. If we can make the distance between

each pair of the context vectors Context(MEp)i and

Context(MEp)i become zero, the decoder can learn to

recognize handwritten MEs by printed MEs and vice versa.

Therefore, we can improve the handwritten ME recognition

by using printed ME rendered from the latex corpus. We

employ simple Mean Squared Error for Context Matching

module. The context matching loss is calculated by the

following equation:

LMatch(MEh,MEp) =
1

n

n∑

i=1

(pi − qi)
2 (9)

where p and q are Context(MEh) and Context(MEp),
respectively.

2.3. Training algorithm

Given N paired annotated samples Xpair = (Xh, Xp)
and M printed MEs rendered from latex corpus X̄ , we train

the dual loss attention model by minimizing the following



loss function:

L = LD(Xh) + LD(Xp) + LD(X̄) + λLMatch(X
h, Xp)

(10)

where λ is a hyperparameter that controls the trade-off be-

tween decoder loss and context matching loss. We employ

the AdaDelta algorithm with gradient clipping to learn the

parameters. The batch size is set to 8. The training pro-

cess is stopped when the expression rate on the validation

set does not improve after 15 epochs.

3. Evaluation

3.1. Datasets

We employed the CROHME training dataset and printed

MEs rendered from latex corpus for training, the CROHME

2013 test set for validation, and the CROHME 2014 as well

as CROHME 2016 test sets for testing. The CROHME

training dataset contains 8,835 online HMEs for training,

and the CROHME 2013, 2014 and 2016 testing datasets

contain 671 online HMEs, 986 online HMEs, and 1127 on-

line HMEs, respectively. We select 40,000 latex equations

in the latex corpus. Then, we render them to get printed

MEs (X̄). From the CROHME training dataset, we render

ground truth latex to get printed MEs (Xpair). The training

datasets are presented in Table 1. The number of symbol

classes is 101.

Num. of MEs

Xpair
Handwritten MEs 8,835

Printed MEs from training set 8,835

X̄ Printed MEs from latex corpus 40,000

Table 1. Training datasets.

3.2. Experimental results

In order to measure the performance of our proposed sys-

tem, we employ Word Error Rate (WER) and Expression

Rate (Exp. Rate) metrics which are generally employed for

evaluating attention based HME recognition systems. An

HME was judged to be recognized correctly in terms of

Exp. Rate if all of its symbols, relations, and structures were

recognized correctly. WER and Exp. Rate are calculated as

the following equations:

WER =
Nsub +Ndel +Nins

NY

(11)

WER =
Ncorrect

|Y |
(12)

where Nsub, Ndel, and Nins are the number of substitu-

tions, deletions, insertions. NY is the number of symbol in

the target set Y . Ncorrect is the number of equations recog-

nized correctly.

The first experiment is to evaluate the attention-based

ME recognition as the baseline system. We employ hand-

written MEs from the CROHME training dataset for this ex-

periment. Table 2 shows the results on the CROHME 2014

and 2016 test sets.

Testing set
Metrics

WER Exp. Rate

2014 16.63 46.65

2016 15.82 44.64

Table 2. Performance of the attention based ME recognition as

baseline system.

The second experiment is to evaluate the dual loss atten-

tion with different values of the hyperparameter λ. We train

the recognition system on Xpair which contains handwrit-

ten and printed MEs. We set λ = 0.0, 0.1, 0.2, 0.3, 0.4 for

the experiment. We achieved the best Exp. rates (49.85 on

the CROHME 2014 test set) and (47.34 on the CROHME

2016 test set) which are better than Exp rates of baseline

system.

Testing set Metrics
Hyperparameterλ

0.1 0.2 0.3 0.4

2014
WER 14.52 14.70 15.48 13.9

Exp. Rate 49.85 46.8 47.01 49.44

2016
WER 15.08 15.58 16.70 15.45

Exp. Rate 47.34 43.94 42.46 43.59
Table 3. Performance of the dual loss attention on Xpair set.

The third experiment is to evaluate the dual loss attention

with different values of the hyperparameter λ on Xpair and

X̄ . We set λ = 0.0, 0.1, 0.2, 0.3, 0.4 for the experiment.

We achieved the best Exp. rates (51.88 on the CROHME

2014 test set) and (51.53 on the CROHME 2016 test set).

In conclusion, the context matching loss leads to a 3% ac-

curacy improvement while the context matching loss and

additional printed MEs lead to a 5% - 7% accuracy improve-

ment over the baseline system.

Testing set Metrics
Hyperparameterλ

0.1 0.2 0.3 0.4

2014
WER 12.48 12.16 12.99 12.74

EXP Rate 50.66 51.88 50.15 49.44

2016
WER 12.34 12.28 13.62 12.77

EXP Rate 49.78 51.09 48.3 51.53

Table 4. Performance of the dual loss attention on Xpair and X̄

sets.



Figure 3. Visualize the context vectors extracted by the baseline

system on the CROHME 2016 test set.

In the final experiment, we compare the proposed model

with three best participants of CROHME 2014, 2016 and

other recently attention-based models. The system with the

sign * used extra handwritten MEs for training. For a fair

comparison, all the systems do not utilize the ensemble of

multiple models. Our proposed dual loss attention outper-

forms Alvaro et al., IRCCyN (2014), TUAT (2016), End-

to-End, WAP, and PAL-V2. Moreover, Myscript, PAL-v2

systems employed a statistical language model as a post

processing while our proposed model does not employ any

post processing.

System
Exp. rate

2014 2016

Myscript* 62.68 67.65

Alvaro et al. 37.22 49.61

IRCCyN (2014), TUAT (2016) 26.06 43.94

End-to-End (Le and

Nakagawa 2017)*
48.78 45.60

WAP (Zhang et al.

2017)
48.38 46.82

PAL-v2 (Wu et al. 2020) 48.88 49.61

Dual loss attention (our) 51.88 51.53
Table 5. Comparison of our proposed system and the state-of-the-

art recognition systems on CROHME 2014 and 2016.

To visualize the learned features between baseline sys-

tem and the proposed system (the best system in table 4),

we show the context vectors of each symbol class in the

CROHME 2016 test set. We employ t-SNE to visualize

context vectors from D dimensions to 2 dimensions. We

observed that the proposed system provides better represen-

tation for context vectors. The distance between classes in

figure 4 is larger than that in figure 3. Therefore, the decoder

is easier to recognize them.

Figure 4. Visualize the context vectors extracted by the proposed

system on the CROHME 2016 test set.

4. Conclusion

In this paper, we have proposed the dual loss attention to

recognize HMEs. The proposed model has two losses, in-

cluding decoder loss and context matching loss to learn se-

mantic invariant features and grammar-based features from

handwritten and printed MEs. The efficiency of the pro-

posed model was demonstrated through experiments. The

recognition rate is improved when we employ the dual loss

and printed MEs generated from the latex corpus. Our

best recognition system is competitive with state-of-the-art

recognition systems in recent literature.
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