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Abstract

Scene text recognition (STR) is the task of recogniz-

ing character sequences in natural scenes. While there

have been great advances in STR methods, current meth-

ods which convert two-dimensional (2D) image to one-

dimensional (1D) feature map still fail to recognize texts

in arbitrary shapes, such as heavily curved, rotated or

vertically aligned texts, which are abundant in daily life

(e.g. restaurant signs, product labels, company logos, etc).

This paper introduces an architecture to recognize texts

of arbitrary shapes, named Self-Attention Text Recogni-

tion Network (SATRN). SATRN utilizes the self-attention

mechanism, which is originally proposed to capture the de-

pendency between word tokens in a sentence, to describe

2D spatial dependencies of characters in a scene text im-

age. Exploiting the full-graph propagation of self-attention,

SATRN can recognize texts with arbitrary arrangements

and large inter-character spacing. As a result, our model

outperforms all existing STR models by a large margin of

4.5 pp on average in “irregular text” benchmarks and also

achieved state-of-the-art performance in two “regular text”

benchmarks. We provide empirical analyses that illustrate

the inner mechanisms and the extent to which the model is

applicable (e.g. rotated and multi-line text). We will open-

source the code.1

1. Introduction

Scene text recognition (STR) addresses the following

problem: given an image patch tightly containing text taken

from natural scenes (e.g. license plates and posters on the

street), what is the sequence of characters? [34, 19] Appli-

cations of deep neural networks have led to great improve-

ments in the performance of STR models [24, 14, 31, 4, 17,

∗Corresponding author.
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Figure 1: SATRN addresses the text images of difficult shapes

(curved “BMW” logo) by adopting a self-attention mecha-

nism, while keeping intermediate feature maps two dimensional.

SATRN thus models long-range dependencies spanning 2D space,

a feature necessary for recognizing texts of irregular geometry.

3]. They typically combine a convolutional neural network

(CNN) feature extractor, designed for abstracting the in-

put patch, and recurrent neural network (RNN) encoder re-

sponsible for capturing sequential dependency, with a sub-

sequent RNN character sequence generator, responsible for

character decoding and language modeling.

While these methods have brought advances in the field,

they are built upon the assumption that input texts are writ-

ten horizontally. Cheng et al. [4] and Shi et al. [24, 25], for

example, have collapsed the height component of the 2D

image into a 1D feature map. They are conceptually inept

at interpreting texts with arbitrary shapes, which are impor-

tant challenges in realistic deployment scenarios.

Realizing the significance and difficulty of recogniz-

ing texts of arbitrary shapes, the STR community has put

more emphasis on such image types. The introduction of

“irregular shape” STR benchmarks [2] is an evidence of

such interest. On the method side, recent STR approaches

are focusing more on addressing texts of irregular shapes.

There are largely two lines of research: (1) input recti-

fication and (2) usage of 2D feature maps. Input recti-

fication [24, 25, 17, 18, 7] uses spatial transformer net-
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works (STN, [12]) to normalize text images into canonical

shapes: horizontally aligned characters of uniform heights

and widths. These methods, however, suffer from the lim-

itation that the possible family of transformations have to

be specified beforehand and it is hard to normalize extreme

case such as vertically aligned text.

Methods using 2D feature maps [5, 31, 15], on the other

hand, extract 2D feature maps from input image without

collapsing height component and sequentially retrieve char-

acters on the 2D space. While the usage of 2D feature

maps certainly increases room for more complex modelling,

specific designs of existing methods are still limited by ei-

ther the assumption that input texts are written horizontally

(SAR [15]), overly complicated model structure (AON [5]),

or requirement of ground truth character bounding boxes

(ATR [31]). These methods also solely adopted Deep CNN

based feature extractor, such as ResNet[9], to extract 2D

feature maps from image, and there are no explicit design

choices to capture the spatial dependency between charac-

ters in image, which is critical part in STR.

In this paper, we propose a STR network that adopts a 2D

self-attention mechanism to capture the spatial dependency

in 2D feature map to resolve the remaining challenging

case within STR. Our architecture is inspired by the Trans-

former [27], which has made profound advances in the nat-

ural language processing [1, 6] and vision [21] fields. Our

solution, Self-Attention Text Recognition Network (SATRN),

adopts the encoder-decoder construct of Transformer to ad-

dress the cross-modality between the image input and the

text output. The intermediate feature maps are two dimen-

sional throughout the network. By never collapsing the

height dimension, we better preserve the spatial information

than prior approaches [15]. Figure 1 describes how SATRN

preserves spatial information throughout the forward pass,

unlike prior approaches.

Since the Transformer encoder is originally designed to

capture the sequential dependency in 1D sequential input,

there are several inappropriate aspects when it is adopted to

2D image. We propose a few simple modifications which

is necessary to fully realize the benefit of self-attention in

a 2D feature map. Three new modules are introduced: (1)

Shallow CNN block, (2) Adaptive 2D positional encoding

(A2DPE), and (3) Locality-aware feedforward layer (LAF).

We will explain them in greater detail in the model section.

The resulting model, SATRN, is architecturally simple,

memory efficient, and accurate. We have evaluated SATRN

for its superior accuracy on the seven benchmark datasets

and our newly introduced rotated and multi-line texts, along

with its edge on computational cost. We note that SATRN

is the state-of-the-art model in five out of seven benchmarks

considered, with notable gain of 4.5 pp average boost on

“irregular” benchmarks over the prior state-of-the-art.

Our contributions in this paper are threefold.

• We propose a network which adopts self-attention

mechanism to resolve edge case within STR and

achieves state-of-the-art performance in all ”irregular”

benchmark datasets.

• We propose useful modifications to make the Trans-

former encoder suitable for 2D input. And we also

provide memory and speed analysis to demonstrate our

models’ superiority.

• We provide empirical analyses that illustrate how the

self-attention works well in STR, as well as experi-

ments on challenging cases, such as heavily rotated

texts and multi-line text.

2. Related Works

In this section, we present prior works on scene text

recognition, focusing on how they have attempted to ad-

dress texts of arbitrary shapes. Then, we discuss previous

works on using Transformer for visual tasks and compare

how our approach differs from them.

2.1. Scene text recognition on arbitrary shapes

Early STR models have assumed texts are horizontally

aligned. These methods have extracted width-directional

1D features from an input image and have transformed them

into sequences of characters [24, 14, 31, 4, 17, 3, 22, 2].

By design, such models fail to address curved or rotated

text. To overcome this issue, spatial transformation net-

works (STN) have been applied to align text image into a

canonical shape (horizontal alignment and uniform charac-

ter widths and heights) [24, 25, 17, 18, 7]. STN does handle

non-canonical text shapes to some degree, but is limited by

the hand-crafted design of transformation space and the loss

in fine details due to image interpolation.

Instead of the input-level normalization, recent works

have spread the normalization burden across multiple lay-

ers, by retaining two-dimensional feature maps up to certain

layers in the network and information propagation across

2D space. Cheng et al. [5] have first computed four 1D

features by projecting an intermediate 2D feature map in

four directions. They have introduced a selection module

to dynamically pick one of the four features. Their method

is still confined to those four predefined directions. Yang

et al. [31], on the other hand, have developed a 2D atten-

tion model over 2D features. The key disadvantage of their

method is the need for expensive character-level supervi-

sion. Li et al. [15] have directly applied attention mecha-

nism on 2D feature maps to generate text. However, their

method loses full spatial information due to height pool-

ing and RNN, thus being inherently biased towards hori-

zontally aligned texts. These previous works have utilized a

sequence generator sequentially attending to certain regions

on the 2D feature map following the character order in texts.



In this work, we propose a simpler solution with the self-

attention mechanism [27] applied on 2D feature maps. This

approach enables character features to be aware of their spa-

tial order and supports the sequence generator to track the

order without any additional supervision.

2.2. Transformer for visual tasks

Transformer has been introduced in the natural language

processing field [27, 6, 1]. By allowing long-range pairwise

dependencies through self-attention, it has achieved break-

throughs in numerous benchmarks. The Transformer is a

sequence-to-sequence model consisting of an encoder and

decoder pair, without relying on any recurrent module.

Transformer has been adopted by methods solving gen-

eral vision tasks such as action recognition [29], object de-

tection [29], semantic segmentation [29, 10], and image

generation [33, 21]. There also have been attempts to adopt

a Transformer to a STR. They are, however, either limited to

1D self-attention [22] or applications of self-attention only

on the decoder [20, 30]. We fully exploit the advantages of

self-attention in the encoder on 2D feature maps.

3. SATRN Method

This section describes our model, self-attention text

recognition network (SATRN), in full detail. We will pro-

vide an overview of the SATRN architecture, and then focus

on the newly introduced modules.

3.1. SATRN Overview

Figure 2 shows the overall architecture of SATRN. It

consists of an encoder (left column), which embeds an im-

age into a 2D feature map, and a decoder (right column),

which then extracts a sequence of characters from the fea-

ture map.

Our contributions are focused on adapting the encoder to

extract sequential information embedded in images along

with arbitrary shapes. Meanwhile, most of the decoder

modules are identical to the decoder of Transformer, and

one can alternatively use the 2D LSTM decoder that is

adopted in the previous method [15]. The effects of encoder

and decoder are analyzed independently in 4.4.1.

3.1.1 Encoder

The encoder processes input image through a Shallow CNN

block that captures local patterns and textures. The feature

map is then passed to a stack of self-attention modules, to-

gether with an Adaptive 2D positional encoding, a novel

positional encoding methodology developed for STR task.

The self-attention modules are modified version of the orig-

inal Transformer self-attention modules, where the point-

wise feed forward is replaced by our locality-aware feed-

forward layer. The self-attention block is repeated Ne times
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Figure 2: SATRN architecture overview. Left column is encoder

and right column is decoder.

(without sharing weights). In the next section, we will de-

scribe in detail the components of SATRN that are newly

introduced in the encoder.

3.1.2 Decoder

The decoder retrieves the enriched 2D features from the

encoder to generate a sequence of characters. The cross-

modality between image input and text output happens at

the second multi-head attention module. The module re-

trieves the next character’s visual feature. The feature of

the current character is used to retrieve the next character’s

visual features upon the 2D feature map. Most of the de-

coder modules, such as multi-head attention and point-wise

feedforward layers, are identical to the decoder of Trans-

former [27], as the decoder in our case also deals with se-

quence of characters [1].

3.2. Designing Encoder for STR

We explain how we have designed the encoder to ef-

fectively and efficiently extract sequential information from

images. There are three useful modification on original self-

attention block. Each of them will be explained.

3.2.1 Shallow CNN block

Input images are first processed through a shallow CNN.

This stage extracts elementary patterns and textures in in-



put images for further processing in the subsequent self-

attention blocks. Unlike in natural language processing, vi-

sual inputs tend to require much more abstraction as there

are many background features to suppress (e.g. background

texture of menu plate). Therefore, directly applying the

self-attention block on the input image will be a great bur-

den in terms of computational cost. This shallow CNN

block performs pooling operations to reduce such a burden.

More specifically, the shallow CNN block consists of

two convolution layers with 3×3 kernels, each followed by

a max pooling layer with 2×2 kernel of stride 2.

3.2.2 Adaptive 2D positional encoding

The feature map produced by the shallow CNN is fed to

self-attention blocks. The self-attention block, however,

is agnostic to spatial arrangements of its input (just like a

fully-connected layer). Therefore, the original Transformer

has further injected positional information by adding po-

sitional encoding(PE) vector, which is embedded position

values, to the 1D sequential feature maps.

PE has not been essential in vision tasks [33, 29, 10]; the

focus in these cases has been to provide long-range depen-

dencies not captured by convolutions. On the other hand,

positional information plays an important role in recogniz-

ing text of arbitrary shape, since the self-attention itself is

not supplied the absolute location information: given cur-

rent character location exactly where in the image can we

find the next character? Missing the positional information

makes it hard for the model to sequentially track character

positions. SATRN thus employs a 2D extension of the PE.

In STR, it is necessary to adaptively reflect the adjacency

along the two directions according to the text alignment in

image. For example, in the case of vertically aligned text,

the adjacency of the height direction becomes more impor-

tant factor than that of width direction in determining the

order between characters. On the other hand, for horizon-

tally aligned text, the adjacency in the width direction be-

comes more important. We thus propose the Adaptive 2D

positional encoding (A2DPE) to dynamically determine the

ratio between height PE and width PE element depending

on the input image.

We first describe the self-attention module without PE.

We denote the 2D feature maps produced by Shallow CNN

block as E and its entry at position (h,w) ∈ [1, ..., H] ×
[1, ...,W ] as ehw. The self-attention is computed as

att-outhw =
∑

h′w′

softmax(rel(h′w′)→(hw))vh′w′ , (1)

where the value array vhw = ehwWv is a transforma-

tion of the input feature through linear weights Wv and

rel(h′w′)→(hw) is defined as

rel(h′w′)→(hw) ∝ ehwWqWkT
eh′w′

T, (2)

1×1 Conv, 2048

1×1 Conv, 512

512-d

(a) Fully-connected

3×3 Conv, 2048

3×3 Conv, 512

512-d

(b) Convolution

1×1 Conv, 2048

1×1 Conv, 512

512-d

3×3 Depthwise, 2048

(c) Separable

Figure 3: Locality-aware feedforward layer architecture options

applied after the self-attention layer.

where Wq and Wk are linear weights that map the input

into queries qhw = ehwWq and keys khw = ehwWk. Intu-

itively, rel(h′w′)→(hw) represents attention weights on fea-

ture at (h,w) when the query is feature at (h′, w′).
We now introduce our positional encoding A2DPE phw

in this framework as below:

rel(h′w′)→(hw) ∝ (ehw + phw)W
qWkT

(eh′w′ + ph′w′)
T
.

(3)

Note that A2DPE are added on top of the input features.

Now, A2DPE itself is defined as α and β.

phw = α(E)psinu
h + β(E)psinu

w , (4)

where psinu
h and psinu

w are sinusoidal positional encoding over

height and width, respectively, as defined in [27].

psinu
p,2i = sin(p/100002i/D), (5)

psinu
p,2i+1 = cos(p/100002i/D), (6)

where p and i are indices along position and hidden dimen-

sions, respectively. The scale factors, α(E) and β(E), are

computed from the input feature map E with 2-layer per-

ceptron applied on global average pooled input feature as

follows:

α(E) = sigmoid
(

max(0, g(E)Wh
1)W

h
2

)

, (7)

β(E) = sigmoid (max(0, g(E)Ww
1 )W

w
2 ) , (8)

where Wh
1, Wh

2, Ww
1 and Ww

2 are linear weights. The g(E)
indicates an average pooling over all features in E. The out-

puts go through a sigmoid operation. The identified α(E)
and β(E) affects the height and width positional encoding

directly to control the relative ratio between horizontal and

vertical axes to express the spatial diversity. By learning to

infer α and β from the input, A2DPE allows the model to

adaptively reflect the adjacency of height and width direc-

tions when computing attention weights.

3.2.3 Locality-aware feedforward layer

For accurately recognizing characters in image, a model

should not only utilize long-range dependencies but also lo-



cal vicinity around single characters. Thanks to the full-

graph propagation characteristics, self-attention itself can

capture long and short-term dependencies in the 2D fea-

ture map without any limitations, but it might be ineffi-

cient to exploit multi-stacked self-attention blocks to cap-

ture short-term dependency. We have thus improved the

original point-wise feedforward layer (Figure 3a), consist-

ing of two 1×1 convolutional layers by utilizing 3×3 con-

volutions (Figures 3b, 3c) to efficiently capture the short-

term dependency in 2D feature map. In the experiments,

we will show that between the naive 3× 3 convolution and

the depth-wise variant, the latter gives a better performance-

efficiency trade-off.

4. Experiments

We report experimental results on our model. First, we

evaluate the accuracy of our model against state-of-the-art

methods on seven benchmark datasets. Second, we assess

SATRN in terms of computational efficiency, namely mem-

ory consumption and the number of FLOPs and provide

qualitative analysis of how our model can extract informa-

tive features from the input image. Third, we conduct ab-

lation studies to evaluate our design choices including the

Shallow CNN block, Adaptive 2D positional encoding, and

the Locality-aware feedforward layer. Finally, we evaluate

our model on more challenging cases not covered by current

benchmarks, namely rotated and multi-lined texts.

4.1. STR Benchmark Datasets

Seven widely used real-word STR benchmark datasets

are used for evaluation [2]. They are divided into two

groups, “regular” and “irregular”, according to the difficulty

and geometric layout of texts.

Below are “regular” datasets that contain horizontally

aligned texts. IIIT5K contains 3,000 images collected from

the web, with mostly horizontal texts. Street View Text

(SVT) consists of 647 images collected from the Google

Street View. Many examples are severely corrupted by

noise and blur. ICDAR2003 (IC03) contains 867 cropped

text images taken in a mall. ICDAR2013 (IC13) consists of

1015 images inheriting most images from IC03.

“irregular” benchmarks contain more texts of arbitrary

shapes. ICDAR2015 (IC15) consists of 2077 images that

are taken in the wild without any specific prior action for

improving its quality in the frame, which makes it more dif-

ficult to recognize text and closer to the real world problem.

Street View Text Perspective (SVTP) consists of 645 im-

ages which text are typically captured in perspective views.

CUTE80 (CT80) includes 288 heavily curved text images

with high resolution. Samples are taken from the real world

scenes in diverse domains.

4.2. Implementation Details

4.2.1 Training set

Two widely used training datasets for STR are Mjsynth and

SynthText. Mjsynth is a 9M synthetic dataset for text recog-

nition, generated by Jaderberg et al. [11]. SynthText repre-

sents 8M text boxes from 800K synthetic scene images, pro-

vided by Gupta et al. [8]. Most previous works have used

these two synthetic datasets to learn diverse styles of syn-

thetic sets, each generated with different engines. SATRN is

trained on the combined training set, SynthText+Mjsynth,

as suggested in Baek et al. [2] for fair comparison.

4.2.2 Architecture details

Input images are resized to 32×100 both during training and

testing following common practice. The number of hidden

units for self-attention layers is 512, and the number of filter

units for feedforward layers is 4-times of the hidden unit.

The number of self-attention layers in encoder and decoder

are Ne = 12 and Nd = 6. The final output at each timestep

is a vector of 94 scores; 10 for digits, 52 for alphabets, 31

for special characters, and 1 for the end token.

4.2.3 Optimization

Our model has been trained in an end-to-end manner using

the cross-entropy loss. We have applied image rotation aug-

mentation, where the amount of rotation follows the normal

distribution N(0, (34◦)2). SATRN is trained with Adam

optimizer [13] with the initial learning rate 3e-4. Cyclic

learning rate [26] has been used, where the cycle step is

250,000. Batch size is 256, and the training is finished after

4 epochs. In our ablation study, we applied the same opti-

mization strategy on baseline models for fair comparison.

4.2.4 Evaluation

We trained our model with spacial characters, adopting the

suggestion by [2]. When we evaluate our model, we calcu-

late the case-insensitive word accuracy [25]. Such training

and evaluation method has been conducted in recent STR

papers [25, 15, 16]. In our ablation studies, we use the uni-

fied evaluation dataset of all seven benchmarks (8,539 im-

ages in total) as done in [2].

4.3. Comparison against Prior STR Methods

We compare the performance of our model against ex-

isting STR models in Table 1. The accuracies for previous

models are reported accuracies. Methods are grouped ac-

cording to the dimensionality of feature maps, and whether

the spatial transformer network (STN) has been used. The

STN module and 2D feature maps have been designed to

help recognizing texts of arbitrary shapes. We observe that



Method
Feature Training Regular test dataset Irregular test dataset

map data IIIT5K SVT IC03 IC13 IC15 SVTP CT80

CRNN [23] 1D MJ 78.2 80.8 − 86.7 − − −
RARE [24] 1D MJ 81.9 81.9 − − − 71.8 59.2
STAR-Net [18] 1D MJ+PRI 83.3 83.6 − 89.1 − 73.5 −
GRCNN [28] 1D MJ 80.8 81.5 − − − − −
FAN [4] 1D MJ+ST+C 87.4 85.9 94.2 93.3 − − −
ASTER [25] STN-1D MJ+ST 93.4 93.6 − 91.8 76.1 78.5 79.5
Comb.Best [2] STN-1D MJ+ST 87.9 87.5 94.4 92.3 71.8 79.2 74.0
ESIR [32] STN-1D MJ+ST 93.3 90.2 − − 76.9 79.6 83.3

ATR [31] 2D PRI+C − − − − − 75.8 69.3
AON [5] 2D MJ+ST 87.0 82.8 91.5 − 68.2 73.0 76.8
CA-FCN [16] 2D ST+C 92.0 82.1 − 91.4 − − 79.9
SAR [15] 2D MJ+ST 91.5 84.5 − − 69.2 76.4 83.3

SATRN 2D MJ+ST 92.8 91.3 96.7 94.1 79.0 86.5 87.8

Table 1: Scene text recognition accuracies (%) over seven benchmark test datasets. “Feature map” indicates the output shape of image

encoder. “Regular” datasets consist of horizontally aligned texts and “irregular” datasets are made of more diverse text shapes. Accura-

cies of predicted sequences without dictionary matching are reported. In training data, MJ, ST, C and PRI denote MJSynth, SynthText,

Character-labeled, and private data, respectively.

our model outperforms other 2D approaches on all bench-

marks and that it attains the best performance on five of

them against all prior methods considered. In particular,

on irregular benchmarks that we aim to solve, SATRN im-

proves upon the second best method [32] with a large mar-

gin of 4.5 pp on average.

4.4. Comparing SATRN against SAR

Since SATRN shares many similarities with SAR [15],

where the difference is the choice of encoder (self-attention

versus convolutions) and decoder (self-attention versus

LSTM), we provide a more detailed analysis through com-

parison against SAR. We analyze the accuracy-efficiency

trade-off as well as their qualitative differences.

4.4.1 Accuracy-efficiency trade-off

We analyze the contributions of encoder and decoder in

our model, focusing both on the accuracy and efficiency.

See Table 2 for ablative analysis. The baseline model

is SAR [15] given in the first row (ResNet encoder with

Encoder Decoder Params FLOPs Total

ResNet(2D) LSTM 56M 21.9B 87.9

SATRN (2D) LSTM 44M 16.4B 88.9

ResNet(2D) SATRN 67M 41.4B 88.3

SATRN (2D) SATRN 55M 35.9B 89.2

Table 2: Impact on accuracy and efficiency (the number of pa-

rameters and FLOPs) incurred by SATRN encoder and decoder.

The first row corresponds to SAR [15] and the last is the proposed

SATRN (ours). “Total” means word accuracy in unified seven

benchmark datasets.
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Figure 4: Accuracy-efficiency trade-off plots for SAR and

SATRN. We have made variations, small, middle, and big, to con-

trol over the number of layers.

2D attention LSTM decoder), and one can partially update

SAR by replacing either only the encoder or the decoder of

SATRN.

We observe that replacing ResNet encoder to SATRN

encoder improve the accuracy by 1.0 pp and 0.9 pp over

LSTM and SATRN decoders, respectively, while actually

improving the space and time efficiency (reduction of 12M

parameters and 5.5B FLOPs in both cases). This is the re-

sult of inherent computational efficiency enjoyed by self-

attention layers and careful design of SATRN encoder to

reduce FLOPs by modeling long-term and short-term de-

pendencies of the features efficiently. This result shows that

a self-attention based encoder can extract more informa-

tive feature maps from the input image compared to ResNet

while reducing the number of parameters and FLOPs. The

SATRN decoder, which is nearly identical to the original

Transformer decoder, does provide further gain of 0.3 pp

accuracy boost, but at the cost of increased memory con-

sumption (+11M) and FLOPs (+19.5B).

To provide a broader view on the computational effi-

ciency due to self-attention layers, we have made variations

over SAR [15] and SATRN with varying number of lay-



(a) Character ROI (b) SA at depth 1 (c) SA at depth 2

Figure 5: Visualization of the self-attention maps.

ers. The original SAR contains ResNet34 as an encoder

(SAR-middle), and we consider replacing the encoder with

ResNet18 (SAR-small) and ResNet101 (SAR-big). Our

base construct SATRN is considered SATRN-big which is

identical with the model reported in Table 1. We con-

sider reducing the channel dimensions in self-attention lay-

ers from 512 to 256 (SATRN-middle) and further reducing

the number of encoder layers Ne = 9 and that of decoder

layers Nd = 3 (SATRN-small).

Figure 4 compares the accuracy-efficiency trade-offs

of SAR [15] and SATRN. We observe more clearly that

SATRN design involving self-attention layers provides a

better accuracy-efficiency trade-offs than SAR approach.

We conclude that for addressing STR problems, our design

is a favorable choice.

4.4.2 Qualitative comparison

We provide a qualitative analysis of how the 2D self-

attention in encoder extract informative features from the

input image. Figure 5 shows the human-defined character

region of interest (ROI) as well as the corresponding self-

attention heatmaps (SA) at depth n, generated by propagat-

ing the character ROI from the last layer to n layers below

through self-attention weights. It shows the supporting sig-

nals relations at n for recognizing the designated character.

We observe that for character ‘M’ the last self-attention

layer identifies the dependencies with the next character ‘A’.

SA at depth 2 already propagates the supporting signal glob-

ally, taking advantage of long-range connections in self-

attention. By exploiting the long-range dependency, our

model achieves high performance while removing redun-

dancies created when stacking the deep convolution layer.

4.5. Ablation Studies on Proposed Modules

SATRN encoder is made of many design choices to adapt

Transformer to the STR task. We report ablative studies

on those factors in the following part, and experimentally

analyze alternative design choices. The default model used

hereafter is SATRN-small.

4.5.1 Adaptive 2D positional encoding (A2DPE)

This new positional encoding is necessary for dynamically

adapting to overall text alignment (horizontal, diagonal, or

vertical). As alternative options, we consider not doing any

Model PE CT80 Total

SATRN-small None 73.6 83.8

SATRN-small 1D-Flat 78.5 85.8

SATRN-small 2D-Concat 80.2 85.8

SATRN-small A2DPE 81.3 86.5

Table 3: Performance of SATRN-small with different positional

encoding (PE) schemes.

(a) r ∈ (0, 0.6) (b) r ∈ (0.6, 0.8) (c) r ∈ (0.8,∞)

Figure 6: Example of three groups of images separated by the

weighting ratio of the height to width encoding vectors, r =
||α(E)||1/||β(E)||1.

positional encoding at all (“None”) [33, 29], using 1D posi-

tional encoding over flattened feature map (“1D-Flatten”),

using concatenation of height and width positional encod-

ings (“2D-Concat”) [21]. In Table 3 we provides perfor-

mance comparison between the proposed method and the

baseline methods. In addition to the results on unified seven

datasets, we also provide results on CUTE80 which con-

tains heavily curved and irregularly aligned text images.

The results show that A2DPE provides the best accuracy

among four options considered and the improvement is

more pronounced in the CUTE80.

We provide additional visualization results to determine

that A2DPE is working as we thought. Figure 6 is the result

of dividing the images from benchmarks into three groups

according to the weighting ratio of the height to width en-

coding vectors, r = ||α(E)||1/||β(E)||1. As expected, Low

ratio group(Figure 6a), which reflects the height encoding

vector relatively less than width encoding vector, contains

mostly horizontal samples, while high ratio group(Figure

6c) contains mostly vertical samples. By dynamically ad-

justing the reflection ratio of height encoding and width en-

coding, A2DPE reduces the representation burden for the

other modules, leading to a performance boost.

4.5.2 Locality-aware feedforward layer

We proposed the locality-aware feedforward layers to cap-

ture the short-term dependency in 2D feature maps. To an-

alyze their effects, we provide the performance comparison

with the two alternatives described in Figure 3, with varying

the number of encoder layers (3 or 9).

The resulting accuracy-performance trade-offs are

shown in Table 4. Compared to the point-wise feedfor-

ward(“FC”), naive convolution(“Conv”) results in improved



Model Ne Block Params FLOPs Total

SATRN 3 FC 5M 3.90B 83.3

SATRN 3 Conv 18M 8.93B 85.7

SATRN 3 Separable 5M 3.91B 84.1

SATRN 9 FC 9M 5.57B 86.5

SATRN 9 Conv 47M 20.67B 88.3

SATRN 9 Separable 9M 5.60B 87.0

Table 4: Performance comparison of feedforward block ac-

cording to the number of parameters and FLOPs.

Model
Rotated (IC13)

Multi-line
0◦ 90◦ 180◦ 270◦

FAN (1D) 87.0 81.9 86.8 84.1 44.7

SAR (2D) 88.5 88.4 89.1 88.8 46.7

SATRN (2D) 90.7 90.5 91.6 91.5 63.8

Table 5: The results on two challenging text datasets; heavily

rotated text and mutli-line text.

accuracy, but roughly with four times more parameters and

FLOPs. We alleviate the computation cost with separable

convolutions (“Separable”) and achieve a better accuracy at

nearly identical computational costs.

4.6. More Challenges: Rotated and Multi­Line Text

Irregular text recognition benchmarks (IC15, SVTP, and

CT80) are attempts to shift the focus of STR research to

more difficult challenges yet to be address by the field.

While these datasets contain texts of more difficult shapes,

it is not easy to analyze the impact of the type and amount of

shape distortions. We have thus prepared new synthetic test

sets (transformed from IC13) that consists purely of single

type and degree of perturbation. Specifically, we measure

the performance against texts with varying degrees of rota-

tions (0◦, 90◦, 180◦, and 270◦) as well as multi-line texts.

We compare against two representative baseline models,

FAN [4] and SAR [15]. Optimization and pre-processing

details including training dataset and augmentation are uni-

fied for fair comparison.

4.6.1 Rotated text

Most STR models based upon the horizontal text assump-

tion cannot handle heavily rotated texts. SATRN on the

other hand does not rely on any such inductive bias; its abil-

ity to recognize rotated texts purely depends upon the ratio

of such cases shown during training. To empirically val-

idate this, we have trained the models with wider range of

rotations: Uniform(0◦, 360◦). Input images are then resized

to 64 × 64. Second column group in Table 5 shows the re-

sults of rotated text experiments. We confirm that SATRN

outperforms FAN and SAR while retaining stable perfor-

mances for all rotation levels.

4.6.2 Multi-line text

We analyze the capability of models on recognizing multi-

line texts, which would require the functionality to change

line during inference. We have synthesized multi-line texts

by concatenating SynthText and MJSynth along height di-

mension for training the models. For evaluation we have

utilized multi-line text manually cropped from the scene

images in IC13. Last column in Table 5 shows the results.

SATRN indeed performs better than the baselines, showing

its capability to make a long-range jump to change line dur-

ing inference.

Figure 7 shows the attention map of the SATRN decoder

to retrieve 2D features. SATRN distinguishes the two lines

and successes to track the next line. The results show that

SATRN enables the 2D attention transition from the current

region to a non-adjacent region on the image.

Figure 7: The 2D attention maps on a multi-line example.

The 2D attention follows the first text line and then moves

to the next line.

5. Conclusions

Scene text recognition (STR) field has seen great ad-

vances in the last couple of years. Models are now work-

ing well on texts of canonical shapes. We argue that the

important remaining challenge for STR is the recognition

of texts with arbitrary shapes. To address this problem, we

have proposed the Self-Attention Text Recognition Network

(SATRN). By allowing long-range dependencies through

self-attention layer, SATRN is able to sequentially locate

next characters even if they do not follow canonical arrange-

ments. We have proposed several useful modules to adapt

self-attention mechanism to STR task. We have achieved

the new state of the art performances on irregular text recog-

nition benchmarks with great margin (4.5 pp boost on aver-

age). SATRN has shown particularly good performance on

our more controlled experiments on rotated and multi-line

texts, ones that constitute the future STR challenges. We

will open source the code.
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