
Abstract 

 Optical Braille Recognition methods usually use many 
designed steps, such as image de-skewing, Braille dots 
detection, Braille cell grids construction and Braille 
character recognition, which are less robust for complex 
Braille scenes. This paper proposes an optimal semantic 
segmentation framework BraUNet to directly detect and 
recognize Braille characters in the whole original Braille 
images. BraUNet adds extra auxiliary learning strategy to 
UNet network, which uses long-range connections of 
feature maps between encoder and decoder to get more 
low-level features. And auxiliary learning strategy can 
combine multi-class Braille characters segmentation with 
Braille foreground extraction, which can improve the 
feature learning ability and the Braille segmentation 
performance. Then morphological post-processing is used 
on semantic segmentation results to get the final individual 
Braille character regions. Experimental results show the 
proposed framework is robust, effective and fast for Braille 
characters segmentation and recognition on both complex 
double sided Braille image dataset and handwritten Braille 
image dataset. 

1. Introduction 
According to the latest WHO survey [1], there are about 

1.3 billion people with some degree of vision impairment in 
the world. Braille is a basic writing language for the visual 
impaired to learn knowledge and communicate with each 
other. Braille documents are constructed by Braille 
characters or Braille cells, which are lied in Braille cell 
rows and Braille cell columns according to detailed Braille 
arrangement rules. Each Braille cell is made up of six raised 
or flat Braille dots arranged in three rows and two columns. 
So there are 64 different Braille character classes including 
the empty Braille cell. 

Recently, many Optical Braille Recognition (OBR) 
systems are proposed, which focus on detecting Braille 
cells from Braille document images and converting them 
into corresponding natural language characters [2]. OBR 

systems are useful and meaningful to protect and republish 
early precious Braille books, recognize handwriting Braille 
documents and automatically evaluate examination papers 
in the special education fields, which are now mainly 
processed manually. 

Braille cell detection and recognition is the basic 
technology in OBR systems. Existing methods are mainly 
based on traditional image processing techniques [3, 4] and 
machine learning methods [5, 6]. These methods are 
usually based on several complex steps [2], such as image 
de-skewing, Braille dots detection, Braille cell grid 
construction, and Braille character recognition. These steps 
are designed carefully to achieve satisfactory performance 
according to Braille appearance and arrangement rules. 

While in some complex situations, such as the irregular 
arrangement of Braille cells suffered from Braille printing 
noise, image acquisition noise, and complex handwritten 
Braille images. It’s difficult to design appropriate rules to 
convert the Braille dots to Braille characters in above 
complex situations. Especially for handwritten Braille 
images, Braille rows or paragraphs may have different 
skew angles. These different skew angles make it difficult 
to perform image de-skewing using traditional arrangement 
rule based methods. 

With the great success of deep learning on ImageNet in 
2012 [7], deep learning has made impressive progress on 
many difficult tasks such as image classification, object 
detection and semantic segmentation. However, there are 
very few applications in optical Braille recognition. Some 
existing methods mainly focus on classification of the 
cropped Braille character images using CNN networks. 
These methods cannot directly process the whole Braille 
image, which is difficult to apply in real applications. 

This paper focuses on general and effective Braille 
characters detection and recognition on the whole original 
Braille images. We directly consider Braille characters or 
Braille cells as targets to detect and segment instead of 
Braille dots. For this task, we propose a robust OBR 
framework based on semantic segmentation network 
BraUNet and morphological post-processing method. The 
framework can process the original Braille images by end- 
to-end way without traditional complex steps. 
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Figure 1: Our proposed framework for Braille characters detection and recognition. 

 
 

The proposed BraUNet combines multi-class Braille 
characters segmentation task and auxiliary Braille cell 
foreground segmentation task to supervise the network 
learning process. And U-Net structure [8] uses long-range 
connections of feature maps between encoder and decoder 
to get more low-level features. These strategies can 
improve the feature learning ability and the whole Braille 
character segmentation performance. We further use 
morphological post-processing on semantic segmentation 
results to get the final Braille character regions. 

The experimental results show the proposed framework 
is more general, robust and effective for Braille characters 
recognition on the public double-sided Braille image 
dataset and collected handwritten Braille document images. 

2. Related work 
Optical Braille Recognition systems are developed from 

1990s [9], which can be grouped into three categories. 
Traditional image processing techniques are widely used 

[2, 3, 4]. Antonacopoulos et al introduced a local adaptive 
thresholding method to segment the Braille image into 
three parts including shadows, light and background, and 
then identify Braille recto dots and verso dots by the 
combination rules of these parts [3]. They also constructed 
a Braille grid based on Braille arrangement rules to convert 
the Braille dots to Braille characters. However, these 
methods are sensitive to segmentation thresholds and 
designed rules. 

In order to overcome the above shortcomings, some 
methods used machine learning techniques to recognize 
Braille dots. Li et al [6] adopted the cascaded classifier with 

Haar to quickly detect the Braille dots. Li and Yan [5] used 
SVM with a sliding window strategy to recognize Braille 
dots. Recently, Li et al [6] proposed a two-stage learning 
framework for double-sided Braille images recognition. A 
cascaded classifier with Haar is used to quickly detect the 
Braille dots in the first stage. Then the detected Braille dots 
are used for images de-skewing and constructing Braille 
cell girds. They also used multiple SVM classifiers with 
HOG or LBP features to further classify each intersection 
on the grid in the second stage. Namba and Zhang [11] used 
cellular neural network to only classify 10 Braille numbers 
on the cropped Braille character images. 

Recently, some researchers use deep learning methods to 
classify the cropped Braille characters. Li et al [12] used 
stacked denoising autoencoder to classify 10 Braille 
numbers. Kawabe et al [13] trained a CNN network 
AlexNet to classify Braille recto dots, verso dots and 
background. 

Above image segmentation based methods and 
traditional machine learning based methods for OBR may 
contain several steps, such as image preprocessing, 
de-skewing, Braille dots detection, Braille grid 
construction, and Braille characters recognition. These 
methods are limited by multi-stage processing and 
designed rules, which are difficult to apply to complex 
Braille images. Some neural network and deep learning 
based methods only classify cropped Braille characters 
with few classes or Braille dots. So far, there is a lack of 
research on the recognition of 64 braille characters on the 
whole Braille image, especially for complex double-sided 
Braille images and handwritten Braille images. 



 
Figure 2: The architecture of our network BraUNet. 

3. Our proposed work 
This paper applies the semantic segmentation method in 

natural image analysis into the task of Optical Braille 
Recognition. A general and robust OBR framework is 
proposed based on the semantic segmentation network 
BraUNet and morphological post-processing techniques. 
Compared with the existing methods, the proposed 
framework can directly detect and recognize Braille 
characters in the whole original Braille images without 
relying on several steps and complicated rules. 

Fig. 1 shows our proposed framework. Original Braille 
images and the corresponding pixel-level annotations of 
Braille characters with 64 classes are input into the 
semantic segmentation network BraUNet for training and 
testing. Then morphological post-processing techniques are 
used to refine segmentation results and get the final Braille 
character bounding box regions. We will introduce our 
framework in detail in following sections.  

3.1. Network architecture of BraUNet 
We propose an optimal network BraUNet for our OBR 

task, which is based on U-Net [8] and adopts extra 
foreground extraction based auxiliary task to improve the 
feature learning ability. U-Net structure uses long-range 
connections between the encoder and decoder to connect 
the feature maps with corresponding size, which can 
enhance the accuracy of low-level edge prediction and get 
the refined pixel labels with size of original image. U-Net is 
widely used in medical image segmentation due to its 
simple structure and good performance.  

Fig. 2 shows the architecture of our network BraUNet. 
The left part is a contracting path used to extract high-level 
semantics features and the right part is an expansive path 

used to recover the original size gradually. The skip 
connection to recover the details of the segmentation result 
from the higher level is also adopted in our network. 

This paper inputs the whole Braille images and their 
labeled images with Braille characters to train semantic 
segmentation network as Fig. 1 shows. While pixel-level 
segmentation for 64 Braille characters is not robust in some 
complex scenes due to acquisition noise, background 
disturbance and irregular Braille arrangement. Some 
segmentation errors may influence the shape of Braille 
characters and make wrong recognition for Braille 
characters. If we regard each Braille character or Braille 
cell as the single foreground object, the task to extract 
foreground from background may be simpler than 
multi-class semantic segmentation. 

So inspired by the idea of [14], we add foreground 
extraction of the Braille cell as an auxiliary task at the end 
of the framework in our task. We train the multi-class 
Braille characters segmentation and the auxiliary Braille 
cell foreground segmentation task in the same network and 
calculate the corresponding loss. As shown in Fig.2, we 
simultaneously output the results of the foreground 
extraction and Braille character segmentation at the end of 
the network. The result of foreground extraction is used to 
improve the feature learning ability and supervise accurate 
generation of Braille cell boundary during training. 

3.2. Annotations for Braille Images 

The semantic segmentation network requires pixel-level 
annotations for model training. To alleviate the labelling 
workload, we simply use the bounding boxes to annotate 
the Braille characters on the original whole Braille images 
and directly convert the bounding boxes into the pixel-level 



annotation results. We create an empty annotation image L(i, j)  with the same height and weight of the original 
image. For each of the annotated Braille characters, we can 
get a bounding box 𝑅and its class type 𝑐. For all position i, j in the 𝑅 , we assign each pixel p(i, j) in image L(i, j) 
with the value 𝑐 . Here 𝑐  is an integer from 0 to 63 
representing 64 types of Braille character. And the 
background and empty Braille characters are all assigned as 
0. In this way, we can easily get pixel level annotations for 
Braille characters in Braille images. For auxiliary learning 
task, we just remain the background pixel as 0 value and 
change the rest pixel with 1 value as Braille cell 
foreground. 

3.3. Network training 

Different from the existing methods using the 
high-resolution Braille image such as 200dpi [6, 10] or 
even 600dpi [5], we only use 100dpi Braille images as the 
network input, which can greatly reduce the data storage, 
transmission and inference time. In the data preprocessing 
stage, we firstly down sampling the input 200dpi RGB 
Braille color image in DSBI dataset from 2338 × 1700 to 1169 × 850 pixels, which is the original size of the image 
scanned by 100 dpi. 

For 64 classes Braille characters semantic segmentation 
task, we use the combined Dice loss [15] and Cross Entropy 
(CE) loss as our loss function. They are defined as follows: 

𝐿 =  1𝐶 − 1 (1 − 2 ∑ 𝑝(𝑖)𝑔(𝑖)ே + γ∑ 𝑝(𝑖) + ∑ 𝑔(𝑖) + 𝛾ேே )ିଵ
ୀଵ  
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(2) 𝐿 = 𝐿 + 𝛼𝐿ா (3) 

Where 𝑝(𝑖) and 𝑔(𝑖) denote the predicted value and 
the ground truth respectively at the position i of the whole 
image, C denotes the class number, which is 64 in our paper, 
and N denotes the total number of pixels of the whole 
Braille image. For smoothing purposes, we add a γ factor to 
both the nominator and the denominator to avoid 
denominator is 0. In our experiments, α is set to 1. 

For the auxiliary foreground extraction task, we also use 
the combined Dice loss and CE loss, except that C is set to 2. 
Finally, the total loss is defined as follows: 𝐿௧௧ = 𝐿௨௧_௦௦ + 𝛽𝐿௨௫௬ 

 
(4) 

The weight β is set to 1 in our experiments. We train the 
network for 70 epochs in our experiments with the 
optimizer Adam and learning rate 1e-4. And the best model 
is selected according to the Dice value on the validation set 
during training process. 

3.4. Post processing 

In the test stage, we input the original whole Braille 
image into our trained BraUNet and get the initial 
pixel-level semantic segmentation result for Braille 
characters. Due to the segmentation noise and the small 
spacing between adjacent Braille characters, some 
segmented Braille characters areas are connected each 
other. We further use morphological processing methods to 
get the final bounding box of each Braille character. We 
binarize each class type of Braille character based on 
segmentation results. For each binary image, an erosion 
operation is used to reduce the adhesion between adjacent 
Braille characters, and the connected component analysis is 
used to extract the contour of each Braille character. To 
reduce noise, some small areas are removed. Finally, we 
take the bounding box of each contour as the detected and 
recognized results of Braille characters. 

4. Experiments and analysis 
4.1. Dataset 

Double Sided Braille Image dataset DSBI. We adopt 
public Braille image dataset DSBI [10] to evaluate our 
method, which contains 114 double-sided Braille images 
from several Braille books. Li et al [6] proposed a two stage 
learning framework TS-OBR for Braille character 
recognition based on Braille dots detection on DSBI with 
200dpi resolution. They used 26 Braille images for training, 
which is sufficient for detecting and classifying Braille dots. 
But for training deep learning models, such as the semantic 
segmentation model with 64 classes of Braille characters, 
26 images are not enough for high performance. In our 
paper, we divide DSBI into three subsets including training, 
validation and test set with 74, 10 and 30 images 
respectively. Images from each Braille book in DSBI are 
proportionally sampled to construct the three subsets. And 
recto Braille characters and verso Braille characters 
detection and recognition are all evaluated in our 
experiments. We use 200dpi resolution of Braille image for 
TS-OBR and 100dpi for U-Net and BraUNet methods 
which are obtained by down sampling images directly. 

Braille Answer Sheet Dataset BAS. To evaluate our 
method for handwritten Braille recognition, we collect 
some Braille answer sheets from a special education school. 
These answer sheets are all written by different students 
using some certain Braille boards. It is challenge for 
handwritten Braille recognition. 

The biggest problem in handwritten Braille is that 
Braille characters in different lines or paragraphs in the 
same page may have different skew angles. This is usually 
caused by the location change of the Braille writing board, 
which makes rule-based methods fail. On the other hand, 
different students may have different writing habits which 
leads to various appearance of Braille dots as shown in  



 
  

(a) Tiny Braille dots    (b) Thick dots       (c) Erased dots 

Figure 3: Some handwritten Braille dots and Braille characters. 

Fig.3(a) and Fig.3(b). Another difficulty is that many 
students modify certain Braille characters by directly 
erasing one or more Braille dots in one Braille character, 
which is more difficult to distinguish whether these Braille 
dots are erased or not by visual information as Fig.3(c). We 
collect total 50 Braille answer sheets images from 32 
students. These handwriting Braille images are single sided 
with recto Braille dots. 

4.2. Metrics 

Dice value [8] is adopted to evaluate the performance of 
semantic segmentation results with or without auxiliary 
task of U-Net model. For Braille characters detection and 
recognition performance, we also use the Precision, Recall 
and F1 values in [10] as the evaluation metrics. In addition, 
we use the Intersection over Union (IOU) to evaluate the 
degree of overlap of two Braille character boxes. For each 
predicted Braille character box, we use all the ground truth 
of Braille character boxes to calculate the IOU value. If the 
maximum IOU value is greater than threshold T, we 
assume that the predicted Braille character box is correct. 
In our experiments, T is set to 0.5. We denote the number 
of Braille characters correctly classified as TP, the number 
of Braille characters misclassified but with the correct 
position as FP, the number of Braille characters with the 
wrong position as WP, and the number of Braille 
characters missed as TN. The Precision, Recall and F1 
values can be defined as follows: Pre =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 + 𝑊𝑃 (5) 

Rec =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 (6) 

F1 =  2 × 𝑃𝑟𝑒 × 𝑅𝑒𝑐𝑃𝑟𝑒 + 𝑅𝑒𝑐  (7) 

4.3. Experimental results 

4.3.1. Experiment setting 

To evaluate our proposed method, we conduct two 
experiments to compare semantic segmentation network 
BraUNet with U-Net, and existing method TS-OBR [6]. 

U-Net means the original network [8] and BraUNet 
means our U-Net with auxiliary foreground segmentation 
task. U-Net and BraUNet are all deep learning based 
methods. We also compare our method with the recent 
method TS-OBR [6] based on traditional machine learning 
method. TS-OBR uses a cascaded classifier to quickly 
detect the Braille dots and then de-skews image to construct 
a Braille cells grid, and further adopts SVMs to classify 
each intersection on the grid for Braille dots. This method 
relies on the construction of Braille cells grid, which is 
sensitive to noise and irregular arrangement. We retrain and 
test TS-OBR method on our newly divided sets of DSBI 
with 200dpi resolution of Braille images. 

All the models of U-Net, BraUNet and TS-OBR are 
trained only on the public double-sided Braille dataset 
DSBI. We evaluate the semantic segmentation and 
detection performance including recto Braille characters 
and verso Braille characters on DSBI. 

We further use single-sided Braille answer sheet dataset 
BAS as test set to evaluate the generalization ability of 
Braille character detection and segmentation methods, 
which are trained on DSBI dataset. 

4.3.2. Results of semantic segmentation 

Table 1 shows the results of pixel-level semantic 
segmentation performance of Braille characters for U-Net 
and BraUNet on both DSBI and BAS datasets. Fig.4 shows 
the Dice columns figure on DSBI and BAS datasets. Dice 
value is used to evaluate the result of semantic 
segmentation performance without any post-processing. 
On DSBI dataset, the Dice value of our BraUNet improves 
5.48% for recto Braille characters than U-Net, and 
improves 3.17% for verso Braille characters. From table 1, 
we can also find the Dice value of BraUNet drop from 
0.9508 on DSBI to 0.9048 on BAS, which maybe some 
data distribution of single-sided handwritten Braille 
characters are different from those of double-sided printed 
Braille documents. This problem can be resolved by adding 
training sample from BAS for fine tuning model. And on 
BAS dataset, the Dice value of BraUNet improves 5.43% 
compared with U-Net for recto Braille characters 
segmentation. Fig.4 also shows above conclusion. 

Table:1 Semantic segmentation results of Braille characters for 
U-Net and BraUNet. 

Dataset Type Method Dice 
DSBI Recto Braille 

character 
U-Net 0.8960 

BraUNet 0.9508 
Verso Braille 

character 
U-Net 0.9040 

BraUNet 0.9357 
BAS Recto Braille 

character 
U-Net 0.8505 

BraUNet 0.9048 



 
Figure 4: Braille character segmentation performance. 

 
(a) Local region of source Braille image in DSBI. 

 
   (b) Manual labels with 64 classes of Braille characters. 

 
(c) Semantic segmentation results based on U-Net. 

 
(d) Semantic segmentation results based on BraUNet. 

Figure 5: Semantic segmentation results from a local regions of 
Braille images in DSBI. Different color means different class of 
Braille characters. 

The above results show the effectiveness and generation 
performance of our optimal for both recto and verso Braille 
character segmentation. 

Fig.5 shows some semantic segmentation results of recto 
Braille characters from a local part of one Braille image on 
DSBI dataset. Fig.5(a) is a local region of an original 
double-sided Braille image and Fig.5(b) is the ground truth 
label of recto Braille character with 64 different colors. 
Fig.5(c) is the semantic segmentation results of U-Net 
model, which shows many noise and wrong segmentation 
pixels especially on the edge region of each Braille 
character. Fig.5(d) is the results of BraUNet, which adds 
auxiliary foreground segmentation task to U-Net. It’s clear 
that the outline of Braille characters are improved 
compared with the results of U-Net in Fig.5(c). And the 
segmentation and recognition noises and errors of some 
Braille characters in Fig.5(c) are improved in Fig.5(d).  

4.3.3. Results of Braille characters detection 

Table 2 shows the detection performance of Braille 
characters for U-Net, BraUNet and TS-OBR on both DSBI 
and BAS datasets. The metrics of precision, recall and F1 
are used to evaluate detection performance. Based on above 
semantic segmentation results, we further use 
morphological post-processing methods in section 3.4 to 
get the final bounding box of each Braille character. 

On DSBI dataset, despite the disturbance of the Braille 
dots on the back page and the insufficient amount of 
training data, original U-Net network still can achieve 
0.9751 and 0.9768 F1 values for the recto and verso Braille 
character recognition. These results show that the 
end-to-end semantic segmentation model is useful for 
Optical Braille Recognition. With the help of auxiliary task, 
our BraUNet network finally gets 0.9966 and 0.9893 F1 
values for recto and verso Braille characters respectively. 

On BAS dataset, we get 0.9425 and 0.9638 F1 value for 
recto Braille characters detection for U-Net and BraUNet 
respectively. Nearly 2% improvements of F1 value shows 
our auxiliary task is effective, which improves the feature 
learning ability and segmentation performance for complex 
double-sided Braille and handwritten Braille images. 

Table 2 also shows the comparative results of our deep 
learning method and existing TS-OBR method [6]. The F1 
values are similar for BraUNet and TS-OBR on DSBI 
dataset including recto and verso Braille character 
detection. While TS-OBR used 200dpi resolution of Braille 
images which are double size of width and height compared 
with our 100dpi for BraUNet.  

On BAS dataset, TS-OBR just gets the 0.9408 F1 value, 
which is about 2.3% lower than BraUNet. This maybe there 
are many irregular arrangements of Braille characters in 
handwritten Braille documents, which will bring error to 
construct the accurate Braille cell grid using TS-OBR, so 
some Braille characters could not be obtained correctly. 
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Table 2: Comparative results of Braille characters detection. 

Dataset Type Method Dpi Pre-% Rec-% F1 
DSBI Recto 

Braille 
character 

U-Net 100 98.35 96.69 0.9751 
BraUNet 100 99.43 99.88 0.9966 
TS-OBR 200 99.28 99.96 0.9962 

Verso 
Braille 

character 

U-Net 100 98.31 97.06 0.9768 
BraUNet 100 98.81 99.05 0.9893 
TS-OBR 200 98.44 99.70 0.9906 

BAS Recto 
Braille 

character 

U-Net 100 92.90 95.64 0.9425 
BraUNet 100 93.50 99.44 0.9638 
TS-OBR 200 89.47 99.19 0.9408 

Figure 6: Braille character detection performance. 

While our proposed BraUNet is more robust and can 
end-to-end get the Braille character recognition results 
without multiple complex steps and designed rules in 
TS-OBR. Fig.6 shows the F1 columns figure of U-Net, 
BraUNet and TS-OBR for Braille characters detection on 
DSBI and BAS datasets, which also shows the 
effectiveness of our optimal BraUNet compared with 
U-Net and TS-OBR methods. 

We implement our BraUNet framework using the deep 
learning framework PyTorch with one GPU 1080Ti. The 
average processing time of Braille character segmentation 
and recognition is about 0.25s for one Braille image.  

5. Conclusion 
This paper introduces an effective Braille segmentation 

and recognition framework for whole Braille images. We 
propose an optimal semantic segmentation network 
BraUNet with auxiliary learning task by end-to-end way. 
This auxiliary learning task can combine multi-class Braille 
characters segmentation and Braille cell foreground 
extraction, which can improve the feature learning ability 
and segmentation performance of Braille characters. The 
morphological processing algorithms are used to get the 
final Braille detection results. The proposed framework is 
effective and general, which can directly detect and 
recognize Braille characters in the original Braille images 
without relying on Braille dots detection, image 
de-skewing and Braille arrangement rules. The 
experimental results on public double-sided Braille image 
dataset and collected Braille answer sheet dataset show the 
robustness and effectiveness of BraUNet. In the future, we 

will collect more complex Braille images to test and 
improve OBR performance. 
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