
 

 

 

Abstract 

 

Scene text detection is one of the most challenging 

problems in computer vision and has attracted great 

interest. In general, scene text detection methods are 

divided into two categories: detection-based and 

segmentation-based methods. Recently, the segmentation-

based methods are more and more popular due to their 

superior performances and the advantages of detecting 

arbitrary-shape texts. However, there still exist the 

following problems: (a) the misclassification of the 

unexpected texts, (b) the split of long text lines, (c) the 

failure of separating very close text instances. In this paper, 

we propose an accurate segmentation-based detector, 

which is equipped with context attention and repulsive text 

border. The context attention incorporates global channel 

attention, non-local self-attention and spatial attention to 

better exploit the global and local context, which can 

greatly increase the discriminative ability for pixels. Due to 

the enhancement of pixel-level features, false positives and 

the misdetections of long texts are reduced. Besides, for the 

purpose of solving very close text instance, a repulsive pixel 

link, which focuses on the relationships between pixels at 

the border, is proposed. Experiments on several standard 

benchmarks, including MSRA-TD500, ICDAR2015, 

ICDAR2017-MLT and CTW1500, validate the superiority 

of the proposed method. 

 

1. Introduction 

Scene text detection, which refers to precisely localizing 

all the instances of texts in a scene image, has been widely 

studied.  It is a critical step in many text-related real-world 

applications, such as photo translation [1], autonomous 

driving, image retrieval [14] and augmented reality. It is 

quite challenging due to the large variations of color, size, 

aspect ratio, font, orientation, lighting conditions and 

background in scene texts [54]. 

With the development of deep learning, great progress 

has been made in the computer vision tasks such as object 

detection and segmentation [9, 10, 13, 21, 25, 42, 44, 45]. 

Scene text detection, which can be seen as a type of object  

 
Figure 1. Different types of problems in scene text detection 

and the results of our method. Note that the error detections 

are marked with Red boxes. (a) is the misclassification of 

the unexpected texts, (b) is the split of long text lines, (c) is 

the failure of separating very close text instances. (d), (e), 

(f) are the results of our method, which successfully solves 

the problems. 

 

detection applied to text, has also witnessed great success 

[11, 22, 23, 26, 27, 28, 30, 32, 33, 43, 59, 61]. In general, 

scene text detection methods can be divided into two 

categories: detection-based and segmentation-based 

methods. The detection-based methods adapt the general 

object detection framework to detect the text or text parts 

by directly regressing rectangles or quadrangles with 

certain orientations. However, these frameworks cannot 

detect the text instances with arbitrary shapes and often fail 

to detect small texts. The segmentation-based methods use 

pixel-wise segmentation to segment text areas and extract 

text instances by post-processing the segmented areas. 

They have gained more interest due to their advantages of 

detecting arbitrary-shape texts and the superior 

performances compared with detection-based methods. 

However, there still exist several problems. The first one is 

the misclassification of the unexpected texts or text-like 

patterns. The second one is the split of the long text line into 

several text instances. The third one is the failure of 

separating very close text instances. Some examples are 

shown in Fig. 1 (a)(b)(c). 

 To address these problems, in this paper, we propose an 

accurate segmentation-based text detector. Two modules:  
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context attention module and repulsive text border module 

are specifically introduced. First, context plays a critical 

role in segmentation since it is very helpful for reducing 

local ambiguities for pixel classification. We design an 

effective attention mechanism to better exploit the context 

information by sequentially applying global attention, non-

local self-attention and spatial attention. The global 

attention uses global average-pooled high-level decoder 

features to compute channel-wise attention to the low-level 

encoder features, which increases the discriminative ability 

of low-level features. Non-local attention mechanism is 

proved to be effective for capturing long range 

dependencies. For the long text lines detection, long range 

contextual information is necessary to avoid the split of 

long text line into several text instances. We use a simple 

yet effective non-local module introduced in the work of 

[60] as our non-local attention module. It embeds a pyramid 

sampling module into non-local blocks to largely reduce the 

computation. The spatial attention utilizes the local inter-

spatial relationship of features and focuses on ‘where’ is 

text, which further solve the false positives. It applies a 

convolution layer with one channel to generate a spatial -

attention map and enhances the input features by 

broadcasting the attention map. As shown in Fig. 1(d)(e), 

our method can successfully solve the false positive and the 

split of long text. Second, text border is key to separating 

very close text lines. In PixelLink [3], it learns two kinds of 

pixel-wise predictions: text/non-text prediction and link 

prediction. The pixel link is important for separating text 

instance since texts are detected by linking pixels within the 

same text instance. However, the pixel link generally pays 

attention to the link between neighbor pixels that belong to 

the same text instance. Note that the link between pixels 

located at the text border requires more attention. Therefore, 

we introduce an extra repulsive pixel link that explicitly 

represents the relationship between two pixels at the text 

border. Predicted positive pixels are then joined together by 

predicted positive pixel links and negative repulsive links.  

Fig. 1(f) is the result of our method which shows that the 

very close text instances can be separated. 

To validate the effectiveness of our proposed scene text 

detector, we conduct extensive experiments on four 

standard benchmarks and achieve an F-measure of 86.1% 

 
Figure 2. Architecture of the proposed method. The network consists of (a) Encoder, (b) Decoder, (c) Context Attention 

Module, GA is global attention, NL is non-local self-attention, and SA is spatial attention, (d) Repulsive Text Border 

Module. The red arrow line means upsample. 



 

 

on MSRA-TD500, 87.5% on ICDAR2015, 75.3% on 

ICDAR2017-MLT, 82.0% on CTW1500. The experimental 

results show that our method outperforms most of the state-

of-art methods. The contributions of this paper can be 

summarized as follows: 

(1) We propose an effective attention mechanism to 

better exploit the context information, which can effectively 

reduce the false positives and avoid the split of long text 

line into several text instances. 

(2) To further solve the very close text instance, we 

propose to learn an extra repulsive pixel link that explicitly 

represents the relationship between pixels located at text 

border. 

(3) The proposed method achieves state-of-the-art 

performance on several benchmark datasets of scene text 

including long straight, horizontal, multi-oriented and 

curved text. 

2. Related Work 

Scene text detection has been extensively studied in the 

last decades. State-of-the-art text detection algorithms are 

deep neural network based methods. Most of the deep 

learning based text detection methods can roughly be 

divided into two branches: detection-based and 

segmentation-based approaches. 

Detection-based methods treat text as a specific object 

and take advantage of the development in general object 

detection. Zhong et al. [57] proposed a text detection 

framework based on Faster-RCNN. They designed an 

inception-RPN which used multi-scale convolution filters 

to produce text region proposals. Ma et al. [34] added 

rotation to both anchors and RoIPooling in Faster R-CNN, 

to deal with the orientation of scene text. Gupta et al. [6] 

borrowed the YOLO [41] framework and employed a fully-

convolutional regression network to perform text detection 

and bounding box regression at all locations and multiple 

scales of an image. TextBoxes [22] modified anchors and 

kernels of SSD to detect large aspect-ratio scene text. 

TextBoxes++ [20] extended TextBoxes by regressing 

quadrilaterals instead of horizontal bounding boxes to 

handle arbitrary-oriented text.  Shi et al. [43] employed 

SSD framework and learned the locally detectable text 

elements, namely segments and links. RRD [23] also relied 

on SSD framework and introduced rotation-sensitive 

feature for detection branch and rotation-invariant feature 

for classification branch to learn better regression of long 

oriented text. These methods always need complex anchor 

setting and fail to detect texts with arbitrary shapes. 

Segmentation-based methods are mostly inspired by 

fully convolutional networks (FCN) [31]. Zhang et al. [56] 

first presented a framework which used FCN to produce a 

coarse saliency map for text. Yao et al. [53] casted the 

detection task as a segmentation problem by predicting 

three kinds of score maps: text/non-text, character classes, 

and character linking orientations. PixelLink [3] performed 

pixel-wise text/non-text and link prediction, then added 

some post-processing on the linked positive pixels to obtain 

the final text boxes. PSENet [18] used FCN to predict text 

instances with multiple scales, then designed a progressive 

scale expansion algorithm to reconstruct the whole text 

instance. More recently, several works such as Mask Text 

Spotter [32] and SPCNet [50] borrowed the state-of-art 

instance segmentation approach Mask R-CNN to detect text 

instances and achieved impressive performance. The 

biggest advantage of these methods is the ability to extract 

arbitrary-shape texts. However, their performances are 

greatly affected by the segmentation results. 

Compared with previous works, our method incorporates 

context attention and repulsive text border to improve text 

detection performance. Relying on the context information, 

the misclassification of the unexpected texts or text-like 

patterns and the split of long text lines are greatly reduced, 

which are common issues for most of segmentation-based 

methods. Moreover, the proposed repulsive pixel link that 

explicitly represents the relationship between two pixels at 

the text border are verified to be effective for separating the 

very close text instances. 

3. Approach 

In this section, we describe our proposed method in detail. 

Firstly, we present the general framework of our method. 

Secondly, we elaborate the context attention and repulsive 

text border modules. Finally, the training and inferring 

details are presented. 

3.1. Overall Architecture 

The network architecture of our approach is illustrated in 

Fig. 2. It is based on a fully convolutional network with 

encoder-decoder structure. In the encoder part, VGG-16 is 

used as backbone and the last two layers fc6 and fc7 are 

converted from fully-connected layers into convolutional 

layers. Besides, three extra layers are added after fc7 layer 

in the same manner as SSD [25]. In the decoder part, the 

output feature maps are generated by fusing low-level 

decoder features with high-level encoder features. The 

fusing process is implemented by introducing a context 

attention module. As shown in Fig. 2(c), the context 

attention module uses global attention, non-local self-

attention and spatial attention to effectively model the local 

and global context, which will be detailed in Section 3.2. 

For each output feature map of the decoder (conv2_2_f, 

conv3_3_f, conv4_3_f, fc7_f, conv6_2_f), three sibling 

1x1 convolution and softmax layers are attached to generate 

three score maps for text pixel, affinity pixel link and 

repulsive pixel link (see Fig. 2(d)). Since every pixel has 8 

neighbors, the output score maps have 2, 16 and 16 

channels, respectively. The details of learning pixel links 

are presented in Section 3.3. Finally, the score maps of each 

output feature map are resized and added together to obtain 



 

 

three segmentation masks: text pixel mask, affinity link and 

repulsive link masks. Based on the segmentation results, we 

join the positive pixels with positive pixel links and 

negative repulsive links together, and obtain the detection 

results by extracting the bounding boxes of the connected 

components. 

3.2. Context Attention 

Context plays a critical role in segmentation since it is 

helpful for reducing local ambiguities for pixel 

classification. In our context attention, there are three sub-

modules: global attention, non-local self-attention and 

spatial attention. Given the low-level encoder feature map 

𝐹"#$ ∈ ℝ
'×)×*  and the high-level decoder feature map 

𝐹+,-+ ∈ ℝ
'.×).×*.

 as input, the context attention module 

sequentially goes through 1D channel attention, non-local 

self-attention and 2D spatial attention to generate the output 

feature map 𝐹'/ ∈ ℝ
'.×)×*, as illustrated in Fig.2(c). The 

overall process can be summarized as: 

     𝐹0/ = 𝐺𝐴(𝐹"#$ , 𝐹+,-+),       (1) 

      𝐹78 = 𝑁𝐿(𝐹0/),                   (2) 

             𝐹'/ = 𝐹;/ = 𝑆𝐴(𝐹78),              (3) 

where 𝐺𝐴 ∙  is global attention, 𝑁𝐿(∙)  is non-local self-

attention, and 𝑆𝐴 ∙  is spatial attention. 

 

Global Attention Module. High-level features always 

contain rich text category information, which can be a good 

guidance for low-level features to select text localization 

details. 

We perform global average pooling on the high-level 

decoder features 𝐹+,-+ ∈ ℝ
'.×).×*.

 and a 1×1 

convolution over the pooled features to generate the global 

attention map. The low-level encoder features 𝐹"#$ ∈

ℝ'×)×* are then multiplied by the attention map. Note that 

the channel number of the attention map and the low-level 

features may be different. A 3×3 convolution is added to 

the low-level features. Finally, the high-level features are 

upsampled and added with the weighted low-level features 

to get the output features 𝐹0/ ∈ ℝ
'.×)×* . In short, the 

output feature is computed as: 

          𝐹0/ = 𝐺𝐴 𝐹"#$ , 𝐹+,-+  

                 = 𝐺𝐴𝑡𝑡𝑀𝑎𝑝⨀𝐶𝑜𝑛𝑣H×H 𝐹"#$ + 𝑈𝑃 𝐹+,-+ ,         (4) 

          𝐺𝐴𝑡𝑡𝑀𝑎𝑝 = 𝐶𝑜𝑛𝑣L×L 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 𝐹+,-+ ,                  (5) 

where ⨀ represents element-wise multiplication, 𝑈𝑃 ∙  is 

upsample operation. 

Non-local Self-Attention Module. Non-local attention is 

potent to capture the long range dependencies that are 

crucial for pixel classification. Especially for the long text 

lines, long range contextual information is necessary to 

avoid the split of long text line into several text instances. 

Considering the large computation of non-local 

operation, we use a simple yet effective non-local module 

introduced in the work of [60]. Given the output feature 

𝐹0/ ∈ ℝ
'.×)×*  of the global attention module as input, 

three 1x1 convolutions are first used to transform the input 

to different embeddings: 𝜙 ∈ ℝ'×)×*, 𝜃 ∈ ℝ'×)×* and 

𝛾 ∈ ℝ'×)×*. Spatial pyramid pooling is then applied after 

𝜃 and 𝛾 to get sampled 𝜃R and  𝛾R. 

The 𝜙, 𝜃R and  𝛾R are flattened to 𝜙 ∈ ℝ'×7,	𝜃R ∈ ℝ
'×;, 

𝛾R ∈ ℝ
'×;. A normalized similarity matrix is calculated as: 

                               𝑉R = 𝑓(𝜙V×𝜃R),                           (6) 

where the normalizing function 𝑓 can take the form from 

softmax, rescaling, and none. The attention output is 

acquired by 

                                   𝑂R = 𝑉R×𝛾R
V,                               (7) 

and the final output 𝐹78 ∈ ℝ
'.×)×* is given by 

                     𝐹78 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑊# 𝑂R
V + 𝐹0/),              (8) 

where 𝑊#  is a 1x1 convolution operation to recover the 

channel dimension from 𝐶 to 𝐶]. 
Spatial Attention Module. The spatial attention utilizes 

the local inter-spatial relationship of features and focuses 

on ‘where’ is text, which further solve the false positives. 

Given the output feature 𝐹78 of the non-local self-

attention module as input, we perform a 3×3 convolution 

and then a 1×1 convolution with one channel to generate a 

text saliency map. A sigmoid function is further applied to 

obtain the spatial attention map 𝑆𝐴𝑡𝑡𝑀𝑎𝑝 ∈ ℝ)×* . The 

attention output 𝑂^ is calculated as: 

          𝑂^ = 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝑆𝐴𝑡𝑡𝑀𝑎𝑝)⨀𝐶𝑜𝑛𝑣H×H 𝐹78 ,    (9) 

    𝑆𝐴𝑡𝑡𝑀𝑎𝑝 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣L×L(𝐶𝑜𝑛𝑣H×H 𝐹78 )),  (10) 

where 𝑆𝐴𝑡𝑡𝑀𝑎𝑝 is broadcast to the same 𝐶] channel as 𝐹78, 

⨀  represents element-wise multiplication. The output 

𝐹;/ ∈ ℝ
'.×)×* of the spatial attention, also the final output 

𝐹'/ ∈ ℝ
'.×)×* of the context attention, is given by  

                          𝐹'/ = 𝐹;/ = 𝐹78 + 𝑂^.                        (11) 

3.3. Repulsive Text Border 

Text border is critical for scene text detection since the 

border is actually the splitting mark for different text 

instances. Especially for the very close text instances and 

the curved texts, which often appear in scene text, more 

accurate text border is required. Inspired by the work of 

PixelLink [3], which learns 8-neighbor links for a pixel and 

uses the links to determine the text border, we also use 8-

neighbor link to learn the text border. We introduce two 

kinds of 8-neighbor links: affinity and repulsive pixel links 

for each pixel. 

 As shown in Fig. 3(a), for a given pixel and one of its 

neighbors, if they lie within the same text instance, the 

affinity pixel link between them is labeled as positive, and 

otherwise negative. We only focus on the positive pixels 

and the loss for affinity pixel links is calculated by: 

               𝐿e",fg = 	
8hijkl_nop

^qr(e",fg_R#^)
+

8hijkl_kst

^qr(e",fg_fu-)
,          (12) 

where 𝐿e",fg_R#^ and 𝐿e",fg_fu- are the cross-entropy losses 



 

 

on the positive and negative affinity links, respectively; 

𝑠𝑢𝑚(𝑎𝑙𝑖𝑛𝑘_𝑝𝑜𝑠) and 𝑠𝑢𝑚(𝑎𝑙𝑖𝑛𝑘_𝑛𝑒𝑔) are the number of 

the positive and negative affinity links, respectively. 

The affinity pixel links generally pay attention to the link 

between neighbor pixels that belong to the same text 

instance. However, the links between pixels located at the 

text border require more attention. As illustrated in Fig. 3(b), 

we shrink the annotated text box 𝐺 with the offset 𝐷 to 𝐺y 

and consider the gap between 𝐺 and 𝐺y as the text border 

(gray area in Fig. 3(b)). The offset 𝐷 is computed from the 

perimeter 𝐿 and area 𝐴 of the box 𝐺:  

                                   𝐷 = 	
/(Lz{|)

8
,                               (13) 

where 𝑟 is the shrink ratio, set to 0.4 empirically. We only 

focus on the positive pixels in the text border and ignore the 

other positive pixels. For a pixel in the text border and one 

of its neighbors, if they lie within different text instances or 

the neighbor pixel is non-text, the repulsive pixel link 

between them is labeled as positive, and otherwise negative. 

Similarly, we also use class-balanced cross-entropy loss as 

the loss for repulsive pixel links: 

      𝐿{",fg = 	
8}ijkl_nop

^qr(*}ijkl_nop)
+

8}ijkl_kst

^qr(*}ijkl_nop)
,         (14) 

where 𝐿{",fg_R#^ and 𝐿{",fg_fu- are the cross-entropy losses 

on the positive and negative repulsive links, respectively; 

𝑠𝑢𝑚(𝑊{",fg_R#^)and 𝑠𝑢𝑚(𝑊{",fg_fu-) are the sum of the 

weighted positive and negative repulsive links, respectively. 

For the positive repulsive links in which the two neighbor 

pixels lie in two text instances, they are assigned larger 

weight (2.0) while for other repulsive links, their weight is 

set to 1.0. 

3.4. Training and Inference 

The objective function of learning pixels and links is 

defined as follows: 

                 𝐿^u- = 𝜆𝐿R,�u" + 𝐿e",fg + 𝐿{",fg,                 (15) 

where 𝐿R,�u" is the loss on pixel classification task, 𝐿e",fg 

and 𝐿{",fg are the link losses.	𝜆 is the weight of pixel loss 

and set to 2.0. 

Considering the extreme imbalance of text and non-text 

pixels, we use online hard example mining (OHEM) to 

select negative pixels and adopt the weighted cross-entropy 

loss to supervise pixel classification: 

                          𝐿R,�u" =
L

(L�{);
𝑊𝐿R,�u"_'�,                     (16) 

where 𝐿R,�u"_'�  is the cross-entroy loss on text/non-text 

prediction, 𝑟 is the negative-positive ratio and is set to 3. 	𝑆 

is the total number of the positive pixels. 𝑊 is pixel weight 

matrix. For the negative pixels, their weights are set to 1.0, 

and for each positive pixel 𝑖, its weight is calculated as: 

                                     𝑤, =
;

7∙;j
,               (17) 

where 𝑁 is the number of text instances, 𝑆, is the number of 

pixels of the text instance that the positive pixel lies in. 

Given predictions on pixels, affinity links and repulsive 

 

links, three different thresholds are applied to them. The 

pixel above the pixel threshold is regarded as positive. The 

link between two neighbor pixels is regarded as positive if 

the affinity link score is above the affinity link threshold 

and the repulsive link score is below the repulsive link 

threshold. Positive pixels are then grouped together using 

positive links, resulting in a collection of text instances. 

4. Experiments 

We evaluate our method on four public datasets: MSRA-

TD500 [52], ICDAR2015[15], ICDAR2017-MLT [37] and 

CTW1500 [29], and compare it with several state-of-art 

methods. 

4.1. Datasets 

SynthText [6] is a synthetically generated dataset 

containing 800 thousand images and about 8 million word 

instances. It is created by blending natural images with texts 

of random sizes and fonts. We only use the dataset for pre-

training our network. 

MSRA-TD500 [52] includes 300 training images and 

200 test images collected from natural scenes. It is a dataset 

with multilingual, arbitrary-oriented and long text lines. 

ICDAR2015 [15] is the most commonly used 

benchmark for detecting scene text in arbitrary directions. 

It contains 1000 training images and 500 testing images. 

The images are collected by Google Glass without taking 

care of positioning, image quality, and viewpoint. 

Therefore, text in these images is of various scales, 

orientations, contrast, blurring, and viewpoint, making it 

challenging for detection. Annotations are provided as 

word quadrilaterals. 

ICDAR2017-MLT [37] is a large-scale multilingual text 

dataset, which includes 7200 training images, 1800 

validation images and 9000 test images. The dataset 

Figure 3. An illustration of affinity and repulsive pixel link. 

Green lines in (a) and (b) denote positive affinity and 

repulsive pixel links, respectively; red lines in (a) and (b) 

denote negative affinity and repulsive pixel links, 

respectively. 



 

 

consists of scene text images which come from 9 languages.  

Image annotations are labeled as word-level quadrangles. 

CTW1500 [29] is a recent challenging dataset for curve 

text detection. It has 1000 training images and 500 testing 

images with over 10 thousand text annotations. Text 

instances are annotated by 14 vertices of polygons. 

4.2. Implementation Details 

We pre-train our network on SynthText and then finetune 

it on the real datasets. The models are optimized by SGD 

with momentum = 0.9. For training, images are resized to 

512*512 after random cropping. Batch size is set to 12 

owing to the GPU memory limitation and the learning rate 

is fixed to 1e-4 and set to 1e-5 for the last several epochs. 

VGG16 is used as the backbone of our network. Thresholds 

on pixel and links are crucial for detecting performance. We 

find the thresholds for each dataset via a grid search with 

0.05 step on a hold-out validation set. The whole algorithm 

is implemented in Tensorflow 1.8.0 and pure Python. 

4.3. Ablation Study 

To verify the effectiveness of our design, we conduct all 

experiments of ablation studies on the ICDAR2015 dataset 

(an oriented text dataset) and CTW1500 dataset (a curved 

text dataset). The scale of test image for ICDAR2015 and 

CTW1500 is 1280x768. 

Baseline. We implement the method with no context 

attention and only affinity pixel link as our baseline method. 

Context Attention. We implement the model with 

context attention and only affinity pixel link. Considering 

that there are three modules in context attention, we 

implement three models: GA, GA+NL, GA+NL+SA. From 

Tab. 1, the GA achieves 2.2% improvement on 

ICDAR2015 and 1.5% improvement on CTW1500 than 

baseline; the GA+NL achieves 0.5% improvement on 

ICDAR2015 and 1.4% improvement on CTW1500 than 

GA; the GA+NL+SA achieves 0.9% improvement on 

ICDAR2015 and 1.1% improvement on CTW1500 than 

GA+NL. The results demonstrate that the attention modules 

used in context attention are all useful. Overall, the model 

with context attention makes 3.6% improvement on 

ICDAR2015 and 4.0% improvement on CTW1500. 

The effectiveness of repulsive link. To investigate the 

effectiveness of repulsive link, we implement the model 

(GA+NL+SA+RL) with context attention and the affinity 

and repulsive link. From Tab. 1, the model with repulsive 

link achieves 0.4% improvement on ICDAR2015 and 0.7% 

improvement on CTW1500, in comparison to the model 

without repulsive link (GA+NL+SA). 

4.4. Results on Scene Text Benchmarks 

Long straight text detection. We evaluate the 

performance of our method on MSRA-TD500, which cont- 

Table 1. Ablation experiments of validating the 

effectiveness of different modules on ICDAR2015 and 

CTW1500 dataset. “GA” means global attention, “GA+NL” 

means global attention + non-local self-attention, 

“GA+NL+SA” means context attention, “GA+NL+SA+RL” 

means context attention + repulsive link. 

 

ains multi-lingual, arbitrary-oriented and long text lines. 

Images are resized to 768x768 for testing. Thresholds of 

text pixel, affinity pixel link and repulsive pixel link are set 

to (0.9, 0.85, 0.8). As shown in Tab. 2, our method achieves 

F-measure of 86.1%, which is better than all the other 

methods. The results also demonstrate the advantages of 

our method for dealing with long text lines. Some of the 

detection results are visualized in Fig. 4(a). 

Oriented text detection. We evaluate our method on the 

ICDAR 2015 to test its ability of detecting oriented text. 

Thresholds of text pixel, affinity pixel link and repulsive 

link are set to (0.85,0.85,0.8). We use a single scale of 

1280x768 for test images and achieve 90.0, 85.1 and 87.5 

in precision, recall and F-measure, respectively. As shown 

in Tab. 3, except for the end-to-end method FOTS which 

combines text detection and recognition, our method 

outperforms the state-of-art methods. Also note that the 

very high precision (90.0%) is obtained, which verifies that 

our method can suppress false positives effectively. Some 

of the detection results are visualized in Fig. 4(b). 

Multilingual text detection. To verify the 

generalization ability of our method on multilingual scene 

text detection, we evaluate our method on ICDAR2017-

MLT. We use a single scale of 1536x1536 for test images. 

The 7200 training images are used for training and the 1800 

validation images are used for selecting the models and 

thresholds. Thresholds of text pixel, affinity link and 

repulsive link are set to (0.9,0.45,0.8). We achieve an F-

measure of 75.3%, which is comparable to the best reported 

result in literature. Some of the detection results are 

visualized in Fig.  4(c). 

Curved text detection. We evaluate the ability of our 

model to detect curved text on CTW1500 dataset. Our 

method can be flexibly applied to curved text without 

special modifications. The only modification lies in the 

interface of reading text polygons with 14 vertices. We use 

a single scale of 1280x768 for test images. Thresholds of 

text pixel, affinity link and repulsive link are set to 

Method ICDAR2015 CTW1500 

P R F P R F 

Baseline 85.1 82.0 83.5 81.1 73.9 77.3 

GA 87.5 83.9 85.7 82.8 75.1 78.8 

GA+NL 88.0 84.5 86.2 83.9 76.8 80.2 

GA+NL+ 

SA 
89.7 84.6 87.1 85.3 77.7 81.3 

GA+NL+ 

SA+RL 

90.0 85.1 87.5 85.8 78.6 82.0 



 

 

(0.75,0.8,0.8). As shown in Tab. 5, our method achieves the 

state-of-the-art results and outperforms some existing 

methods such as TextSnake [30] and LOMO [55]. Some of 

the detection results are visualized in Fig. 4(d). 

Table 2. Quantitative results of different methods on 

MSRA-TD500 (long straight text) dataset. Our method 

achieves the best performance over all the other methods, 

showing the advantages of dealing with long text lines. 

 

Table 3. Quantitative results of different methods on 

ICDAR 2015 (oriented text) dataset. Except for the end-

to-end method FOTS, our method outperforms all the other 

methods. 

Table 4. Quantitative results of different methods on 

ICDAR2017-MLT (multilingual text) dataset. MS means 

multi-scale testing. 

 

Table 5. Quantitative results of different methods on 

CTW1500 (curved text) dataset. 

5. Conclusion and Future Work 

In this paper, we propose an accurate segmentation-

based scene text detector with context attention and 

repulsive text border. We design an effective attention 

mechanism to better exploit the context information by 

sequentially applying global attention, non-local self-

attention and spatial attention. The context is helpful for 

reducing local ambiguities for pixel classification, which 

can greatly reduce false positives and the misdetections of 

Method Precision Recall F-measure 

RRPN [34] 82.0 68.0 74.0 

SegLink [43] 86.0 70.0 77.0 

PixelLink [3] 83.0 73.2 77.8 

Lyu et al. [33] 87.6 76.2 81.5 

MCN [27] 88.0 79.0 83.0 

PAN [48] 84.4 83.8 84.1 

OURS 88.8 83.5 86.1 

Method Precision Recall F-measure 

SegLink[43] 73.1 76.8 75.0 

RRPN[34] 84.0 77.0 80.0 

EAST[59] 83.3 78.3 80.7 

TextBoxes++ [20] 87.2 76.7 81.7 

TextSnake [30] 84.9 80.4 82.6 

PixelLink [3] 85.5 82.0 83.7 

PSENet-1s [18] 86.9 84.5 85.7 

Mask Textspotter 

[32] 

91.6 81.0 86.0 

LOMO [55] 91.3 83.5 87.2 

SPCNet [50] 88.7 85.8 87.2 

FOTS [26] - - 88.0 

OURS 90.0 85.1 87.5 

Method Precision Recall F-measure 

E2E-MLT [38] 64.6 53.8 58.7 

He et al. [12] 76.7 57.9 66.0 

Lyu et al. [33] 83.8 56.6 66.8 

FOTS [26] 81.0 57.5 67.3 

Border [51] 77.7 62.1 69.0 

AF-RPN [58] 75.0 66.0 70.0 

PSENet-1s [18] 77.0 68.4 72.5 

LOMO MS [55] 80.2 67.2 73.1 

SPCNet [50] 80.6 68.6 74.1 

OURS 83.7 68.4 75.3 

Method Precision Recall F-measure 

SegLink [43] 42.3 40.0 40.8 

EAST [59] 78.7 49.1 60.4 

CTD [29] 74.3 65.2 69.5 

CTD+TLOC [29] 77.4 69.8 73.4 

TextSnake [30] 67.9 85.3 75.6 

LOMO MS [55] 85.7 76.5 80.8 

PSENet-1s [18] 84.8 79.7 82.2 

OURS 85.8 78.6 82.0 



 

 

long text lines. To further solve the very close text instance, 

we propose to learn an extra repulsive pixel link that 

explicitly represents the relationship between pixels located 

at text border. The robustness and effectiveness of our 

approach are verified on several public benchmarks 

including long, curved, oriented and multilingual text cases. 

In the future, we would like to further focus on the text 

border and develop a two-stream segmentation network to 

simultaneously learn text pixels and text boundaries. 
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