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Abstract

We present a new visual parsing method based on con-
volutional neural networks for handwritten mathematical
formulas. The Query-Driven Global Graph Attention (QD-
GGA) parsing model employs multi-task learning, and uses
a single feature representation for locating, classifying, and
relating symbols. First, a Line-Of-Sight (LOS) graph is
computed over the handwritten strokes in a formula. Sec-
ond, class distributions for LOS nodes and edges are ob-
tained using query-specific feature filters (i.e., attention) in
a single feed-forward pass. Finally, a Maximum Spanning
Tree (MST) is extracted from the weighted graph. Our pre-
liminary results show that this is a promising new approach
for visual parsing of handwritten formulas. Our data and
source code are publicly available.

1. Introduction

Mathematical notation is an essential source of informa-
tion in many fields and the ability to recognize them is an
important module in OCR (Optical Character Recognition).
Math recognition is vital for several research-based and
commercial-based applications, such as educational aids,
navigational tools, digital assistance, and other tasks that
require machines to understand mathematical notation [1].

Recognizing math requires inferring a formula represen-
tation from the input (e.g. raster images, strokes, or PDFs)
that identifies symbols and their relationships. Formulas are
represented using trees: in fact, MathML and ETgX are trees
with additional formatting annotations. Formulas are gen-
erally represented visually by Symbol Layout Trees (SLTs)
giving symbols and their placement on writing lines, or se-
mantically by Operator Tree (OPTs) describing mathemati-
cal content (i.e., quantities and operations [2]).

Our work belongs to the family of visual parsers for math
that label and prune a graph over input primitives (e.g.,
handwritten strokes [3], or connected components in im-

Input: LOS on primitives Output: Symbol Layout Tree

QD-GGA

Figure 1. Input and output graphs for g; = %. Adjacency matrices
for stroke-level input and symbol-level output are shown.

ages [4, 5]). Graph-based parsing for math does not require
an expression grammar - the language model consists of
only node and edge labels applied to directed, rooted trees.
Defining the parser input with graphs frees us from forcing
the input into a sequence over the 2D input image, as com-
monly done for state-of-the-art RNN-based models [6, 7].

Our novel Query-Driven Global Graph Attention (QD-
GGA) parser extends traditional CNN models designed for
sequential and multi-dimensional data to graph-structured
data (see Figure 1). QD-GGA is comprised of the four mod-
ules shown in Figure 2: attention, feature extraction, clas-
sification, and MST extraction. All class distributions for
nodes and edges in a Line-of-Sight (LOS) graph are pre-
dicted at each feed-forward pass, with the help of attention-
based filtering of features defined using the LOS graph. A
Symbol Layout Tree (SLT) is extracted from the resulting
weighted graph, as a maximal spanning tree.

In the remainder of the paper, we introduce related work
(Section 2), define the QD-GGA model (Section 3), present
results on the CROHME data set (Section 4), and discuss
future work (Section 5).

Contributions:
1. End-to-end structure learning directly from a joint loss
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Figure 2. QD-GGA Architecture. The dimensions of the 2D features are channel, height and width. The dimensions of the linear features
are batch size and channel. The batch size is N which is the number of binary masks or queries (all nodes and edges) to answer (shown
in gray). The final adjacency matrix has class distributions for symbols on the diagonal, and two distributions for segmentation and

relationship labels for each edge.

computed over adjacency matrices holding class distri-
butions for stroke and stroke-pair class labels.

2. A novel attention model that queries a shared feature
representation to efficiently obtain inputs for multi-
ple classification, segmentation, and relationship de-
cisions, vs. computing features/attention dynamically
over an image (e.g., in RNN models [6, 7]).

3. QD-GGA generalizes our previous work using CNN-
based features [4], with features and attention modules
trained concurrently for multiple tasks.

2. Related Work

In the following we provide an overview of approaches
proposed for structure parsing, with a focus on methods per-
tinent to formula recognition.

2.1. Visual Parsing

Visual parsing is important for a variety of image un-
derstanding tasks, including real-world complex vision-
language tasks such as image caption generation [8, 9], vi-
sual relationship detection [10, 11, 12], scene graph gen-
eration [13, 14, 15], and table detection and form parsing
[16, 17]. We focus only on graph parsing approaches for
general structure learning in this section.

Dai et al. [12] use a graph parsing method to detect vi-
sual relationships by first doing an object detection to gener-
ate the nodes from the input image. Second, producing a set
of object pairs from the detected objects to define relation-
ships between objects. With n detected objects, they form
a complete graph of n(n — 1) pairs (edges), with some un-
likely relations filtered out with a low-cost neural net. Each
retained pair of objects will be fed to the joint recognition

module. Taking into account multiple factors and their re-
lations, this module will produce a triplet in the form of
(subject, predicate, object), as the output.

Inspired by this work, [18] use Graph Convolutional
Networks encoder plus Long Short-Term Memory decoder
(dubbed as GCN-LSTM) architecture to encode both se-
mantic and spatial object relationships. In this work, salient
image regions (nodes) are computed implementing a Faster
R-CNN [19]. Second, two directed graphs are generated
on the detected regions, one for spatial relations (e.g. in-
side, overlap, over, etc.) and another one for semantic rela-
tions (e.g. riding, eating, biking, etc.). Graph Convolutional
Networks (GCN) are then exploited to encode region repre-
sentations and visual relationship in both graphs. Next, the
learnt relation-aware region representations are feed into in-
dividual attention LSTM decoders to generate the sentence.
To integrate outputs of two decoders, the predicted score
distributions on words from two decoders is averaged at
each time step.

The results from the two decoder are fused in an infer-
ence stage adopting a late fusion scheme to linearly fuse
the results from two decoders. The semantic graph decides
which relations should be established between objects, leav-
ing the spatial relations between image regions unused. A
second graph defining spatial regions is then generated over
the detected regions. When doing classification in the se-
mantic graph, similar to our work, a ‘NoRelation’ class
is added to the set of class labels Ng,,. They compute
the probability distribution on all the (Nse, + 1) relation
classes for each object pair. If the probability of NoRela-
tion is less than 0.5, a directed edge connects the region
vertex of parent (subject noun) to the region vertex of child
(object noun). The relation class with maximum probability



is regarded as the label of this edge.

Yang et al. [13] also use a graph parsing approach for
scene understanding. Their proposed model called Graph
R-CNN has three modules: (1) object node detection which
is done with R-CNN similar to [18], (2) relationship edge
pruning with a Relation Proposal Network (RePN), and (3)
graph context integration. RePN learns to compute ’re-
latedness’ scores between object pairs which are used to
prune unlikely scene graph connections. Next, an atten-
tional graph convolution network (aGCN) is applied on
pruned graph to encode higher-order context throughout the
graph and provide information on each object and relation-
ship representation based on its neighbors.

Our method differs in three aspects: (1) We use con-
nected components from rendered handwritten strokes as
input, generating a Line-of-Sight graph - here nodes are ob-
jects to classify and edges are relations to parse. (2) We
train our model to do object segmentation, classification and
relation prediction jointly using a multi-task classification
framework. (3) Unlike [13], our model handles multiple
queries (i.e., classification problems) using a soft attention
module, so that attention masks generated for each node and
node pair are refined through back propagation when train-
ing the model end-to-end.

2.2. Math Recognition

Visual parsing of mathematical expressions converts in-
put images to a representation of formula structure which
is a hierarchical arrangement of symbols on writing lines.
A common set of features used to represent the spatial re-
lations between components (e.g. symbols) are geometric
features. Visual features have also been used [20, 21]. In
the following, we review the main approaches in math ex-
pression recognition.

Syntactic Methods (Constituency Parsing). These
methods are useful for interpreting complex patterns in
mathematical formulas because the notation has an obvious
division into primitives, a recursive structure, and a well-
defined syntax [22, 23, 24, 25]. Alvaro et al. [26, 27]
present an online handwritten math expression recognition
system using Stochastic Context-Free Grammars (SCFG)
defined at the symbol level. Segmentation is done by scor-
ing symbol candidates using a symbol classifier and letting
the SCFG parser determine whether they should be merged
based on confidence scores from an SVM classifier.

Probabilities associated with grammar rules are learned
from training data. For parsing, first, lexical units are built
from the set of symbol segmentation hypotheses. Second, a
set of syntactic and spatial constraints defined by the gram-
mar guide parsing to to identify candidate parse trees, and
the most probable expression is returned.

Minimum Spanning Trees (Dependency Parsing).
Mathematical expression recognition can be posed as

searching for a tree representing symbols and their asso-
ciated spatial relationships within a graph of primitives.
Suzuki et al. [5] present MST-Based math expression recog-
nition system using virtual link networks. Recognition is
done by finding a spanning tree for the network with mini-
mum weight.

Another MST-based math parsing method is presented
by Hu et al. [3, 28] using Edmond’s algorithm to extract
a tree from a weighted LOS graph. They use an LOS
graph for representing the layout of primitives and sym-
bols in math expressions [29]. LOS graphs have a higher
maximum formula tree expressivity than many other graph
representations (e.g., Delaunay, geometric MST, k-NN for
k € {1...6}), while also reducing the search space for
parsing. They also modify the shape context feature with
Parzen window density estimation. These Parzen shape
contexts are used for symbol segmentation, symbol classifi-
cation and symbol layout analysis.

An generalization of the work done by Hu et al. [3] is
the LPGA (Line-Of-Sight Parsing with Graph-based Atten-
tion) model [4]. In LPGA individual CNNs are trained for
segmentation, classification, and parsing. A hierarchical ap-
proach is used to first segment nodes into symbols with a
binary classifier, and then generate a second graph on sym-
bols and train two separate models to learn symbol classes
and spatial relationships.

Encoder-Decoder Models. IM2TEX, inspired by the
sequence-to-sequence model designed for image caption
generation by Xu et al.[9] directly feeds a typeset formula
image generated using I£TEX into a Convolutional Network
to extract a feature grid learned by the network [7]. For
each row in the feature map, an RNN is used to encode spa-
tial layout information. The encoded fine features are then
passed to an attention-based recurrent neural network de-
coder, which then emits the final expression string.

Another encoder-decoder model by Zhang et al. [6] use
pen traces collected from handwritten strokes on a tablet for
parsing. In their model, the encoder is a stack of bidirec-
tional GRUs while the parser (decoder) combines a GRU-
based language model and a hybrid attention mechanism
consists of a coverage-based spatial attention and a temporal
attention. Unlike the attention module in IM2TEX model,
which scans the entire input feature map at pixel level, the
spatial attention in TAP learns an alignment between input
strokes and outputs. The role of temporal attention in TAP
model is to learn when to rely on the product of spatial at-
tention and when to just rely on the language model as there
is no spatial mapping for tokens representing spatial rela-
tionships e.g., superscript ‘A’ or subscript ‘.

The latest architecture in encoder-decoder networks used
for math expression recognition uses two input branches to
encode both online and offline features [30]. This Multi-
modal Attention Network (MAN), first takes dynamic tra-



jectories and static images for online and offline channels
of the encoder respectively. The output of the encoder is
then transferred to the multi-modal decoder to generate a
ISTEX sequence as the mathematical expression recognition
result. This architecture is a hybrid design of both TAP and
IM2TEX models explained earlier, except the fact that they
use CNN layers in their online channel instead of using a
stack of RNNs. Each decoder has their own attention mod-
ules. For the online branch, the attention module highlights
strokes, whereas in the offline module it weights the pixels.
Once the attention weights are calculated, the multi-modal
context vector can be obtained by concatenating the single
online and offline context vectors. A recent addition to se-
quential models [31, 32] exploits DenseNet [33] for encod-
ing images. In this work an improved attention model with
channel-wise attention is applied before spatial attention.

Motivations for our Approach. Compared to BLSTM
in sequential models, graphs are more natural and general
for representing math equations as trees. In our model,
handwritten strokes form the nodes of the input and output
graph, while edges between strokes in the output represent
symbol segmentation and spatial relationships (e.g., right,
superscript) between symbols. Our attention module uses
this input graph to query (filter) CNN features from a sin-
gle feature representation of the input image to efficiently
obtain inputs for multiple classification, segmentation, and
relationship decisions.

Our system does not need to learn an alignment between
input strokes and outputs similar to encoder-decoder mod-
els, as we directly output a graph-based hierarchical repre-
sentation of symbols on writing lines (as a Symbol Layout
Tree (SLT)), and not a string. We also do not use expression
grammars for language models, instead relying only upon
the sets of symbol and relationship classes along with vi-
sual statistics captured by our CNN models. The language
model in our system consists of only symbol and relation-
ship labels.

3. QD-GGA

Our CNN-based model predicts all node and edge
classes at each feed-forward pass with the help of a query-
driven attention mechanism. An input LOS graph is com-
puted from handwritten strokes. Then, class probabilities
generated by the CNN classifiers are assigned to node and
edges in the input graph, symbol segmentation and classifi-
cation decisions are made, and then Edmond’s arborescence
algorithm [34] is used to extract a directed tree from the
weighted graph over symbols (see Figure 3).

During training, a joint classification loss is calculated
from the output matrix, which back-propagates through all
three classifiers responsible for segmentation, classification
and relationships, as well as the attention layers, enabling
us to train them simultaneously with shared features.
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Figure 3. Parsing the formula in Figure 1 (g; = g). Graph edges
are yellow adjacency matrix entries; strokes appear in red along
diagonals. A stroke-level line-of-sight graph is constructed, after
which strokes are classified as symbols, and edges between strokes
classified for 1) symbol detection (merge/split), and 2) relation
classification. Symbol detection decisions are applied to convert
the graph into a symbol level graph, followed by averaging sym-
bol (node) and relationship (edge) scores to obtain a new weighted
graph. Finally, Edmond’s arborescence algorithm extracts a maxi-
mal symbol layout tree.

Our CNN model is shown in Figure 2. Our architecture
is modular, independent of the CNN feature model (any fea-
ture model such as VGG or ResNet might be used), easy to
implement, and faster than recurrent approaches in training.

3.1. Graph Representation

For dependency parsing such as done in QD-GGA, we
need to identify a sub-graph with minimal cost or maximum
probability. For math recognition, the final subgraph is usu-
ally a Symbol Layout Tree. Ideally, we would like to reduce
the size of the search space by using a graph that only has
edges between the primitives having a spatial relationship
in the original setting (perfect precision) and avoid the mis-
cellaneous edges which add confusion to the problem.

A study by Hu et al. [28] on parsing handwritten formu-
las (see Section 2.2), proposes using Line of Sight (LOS)
graphs [35], which represents whether nodes can ‘see’
one another. LOS graphs can represent roughly 98% of
CROHME 2014 dataset formulas, while reducing the num-
ber of edges to 3.3n for n strokes, many fewer than the
n(n — 1)/2 edges in a complete graph.

In this work, we also also use the Line of Sight (LOS)
graphs over handwritten strokes. A stroke represents a
drawn line on a writing surface. To work with images,
an extra step of rendering strokes is needed to provide the
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nodes in our graph. Figure 3 shows edges in a complete
graph for g; = % alongside the edges in a LOS graph.
Nodes sharing an edge are marked with yellow in the adja-

cency matrix.

3.2. Network Architecture

The QD-GGA architecture is shown in Figure 2.
The network contains a convolution block (shown in
red) followed by two SE-ResNext block groups. SE-
ResNext blocks combine Squeeze-And-Excitation [36] with
a ResNext block [37]. To compute image features, each
SE-ResNext block group contains six SE-ResNext blocks
with the first SE-ResNext block having a down sample layer
(shown in blue). The receptive field of our final feature map
is 35 pixels; each point in the final feature map corresponds
to a 35 x 35 region in the input image, with the minimum
symbol height set at 64 pixels.

Given a sequence of primitive feature vectors, the vec-
tors are concatenated along the length dimension of a 1D
feature tensor. Then, the temporal context module performs
a 1-by-3 convolution along the length dimension treating
each primitive as an individual element. The convolution
operation consolidates features of a primitive neighborhood
by considering the ¢ — 1 and ¢ + 1 primitives for the ¢ prim-
itive (in time order).

3.3. Attention Module

As seen in Figure 2, there is a side branch consists of
two attention layers which takes binary masks for nodes
and edges separately as inputs and apply convolution on
them. We performed extensive experimental analysis to un-
derstand the performance trade-offs amongst different com-
binations of shared and task-specific representations in the
main and side stream. The best configuration has a 3 con-
volutional blocks with each block having 4 kernels of size
of 7 x 7,5 x 5, and 5 x 5. The final relevance maps are 2D
(H x W) similar to input binary masks, see Figure 4.

The attention module queries a shared CNN feature map
to efficiently obtain inputs for all classification, segmenta-
tion, and relationship decisions. Spatial masks provide at-
tention, comprised of either individual node binary masks,

Algorithm 1 SLT Extraction from Adjacency Matrix
1. Use ‘Merge’ edges to group primitives into symbols
2. Classify symbols by max. mean score for member strokes
3. Score symbol relationships by avg. stroke pair distributions
4. Apply Edmond’s algorithm to obtain maximal SLT

or masks from pairs of nodes sharing an edge in the input
graph. The attention module takes binary masks and then
generates relevance maps (i.e., continuous masks) by con-
volving binary masks with kernels trained for each task (per
[38]). Figure 4 shows binary masks and their correspond-
ing relevance masks for node (single stroke) x and stroke
pair (x,2). Attention relevance maps are downsized and
then multiplied with the global feature map. In this way,
the downsampled and normalized relevance mask weights
the feature map to focus on (‘query’) the relevant input re-
gion. Finally, the weighted feature map is average pooled to
a one dimensional feature vector which can be regarded as
the extracted feature for the primitive (stroke) or primitive
pair (stroke pair).

We normalize attention mask values using the Instance
Norm [39] with ¢ = 0.001. This converts values into a
measure of standard deviations from the mean (E[z]) :

x — E[z]

3.4. SLT Extraction

We use Edmond’s algorithm [34] to extract a Maxi-
mum Spanning Tree (MST) from class distributions asso-
ciated with the LOS adjacency matrix output. Experiments
demonstrate that it is more accurate apply symbol segmen-
tation results before extracting relationships (see Figure 5),
rather than extract an MST directly from the stroke-level
matrix. Algorithm 1 provides the steps used to convert a
stroke-level graph to a symbol-level graph. First, primi-
tives that belong to a single symbol are merged based on the
segmenter predictions. Symbol class distributions are com-
puted by averaging symbol classifier probabilities over all
primitives belonging to a single symbol. Then, all incom-
ing and outgoing edges attached to primitives grouped into
a symbol are merged into one incoming and one outgoing
edge. Again, probabilities over merged edges are averaged
to generate the symbol-level edge probability distributions.

SLT generation is illustrated in Figure 5. In the exam-
ple, primitives belong to ¢ and = are merged into symbols.
All edges connected to these four primitives, shown with
blue patches, should be updated in the symbol-level graph.
Average probabilities for stroke-level edges provide the dis-
tributions for symbol-level merged edges.
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Figure 5. SLT Extraction. A stroke-level graph is converted to
symbol-level after applying segmentation results, and then an SLT
is extracted using Edmond’s arborescence algorithm. Red patches
in the middle matrix show primitives to be merged into symbols.
Blue patches show edges that should be updated after merging
nodes. Merged probabilities for symbols and symbol relationships
are averaged over constituent stroke-level elements.

3.5. Implementation and Training

Loss. The loss designed for an Multi-Task Learning
(MTL) model should allow tasks contribute to training
equally, without letting the easier tasks dominate the learn-
ing. We use the cross entropy loss (CE) with a softmax
layer to normalize the network outputs. The final loss is the
sum of all the errors in segmenter, parser and symbol clas-
sifier. The loss function ¢ is defined in equation 1. Here
N is the stroke set (nodes), and F is the set of line-of-sight
edges in the adjacency matrix. D is the set of detection
ground truth labels for edges, R is the set of relationship
ground truth labels for edges, and S is the set of ground
truth symbol labels for strokes.

§(N,E) = Y1 (CE(e, D) + CE(e, R)) + Y, CE(n,8) (1)

Tree Loss. To reduce the effect of edges not contribut-
ing to the final tree we introduce “tree loss,” where only
ground truth edges and false positive edges in the final SLT
are counted in loss calculations. Therefore, only hard neg-
atives mistaken for real relations in the output are include
in the loss computation. We tried other loss designs, e.g.,
harmonic mean of individual loss types, weighted combina-
tions of individual losses, loss defined on MST edges, but
these experiments showed the tree loss and direct sum (Eq.
1) work best. The models used for experiments in Section 4
are trained with tree loss.

Training Process. Since math expressions have differ-
ent sizes, we replace the conventional batch normalization
layers with group normalization [40] for all the blocks, as
this is more robust for small batch sizes. Group Normaliza-
tion divides the channels (in feature maps) into groups and
computes the mean and variance within each group for nor-
malization making the computation independent of batch
sizes, and its accuracy stable for a wide range of batch sizes.

The QD-GGA CNN has 13,854,478 parameters. We use
an Adam optimizer to learn the parameters. The batch size

was set to 1, momentum to 0.9 and the learning rate was ini-
tially set to 10~2, and then decreased by a factor of 10 when
the validation set accuracy stopped improving. The train-
ing was regularized by weight decay set to 0.004. The sys-
tem is built using PyTorch and experiments were run on an
8GB Nvidia 1080 GPU. Experiments were run on a server
with an 8-core Intel Xeon E5-2667 processor (3.20 GHz per
core), and 256 GB RAM was available. The time complex-
ity of our model is O(|N| 4 |E|) for an input graph with
E edges and N nodes. In the worst case (complete graph)
|E| = |N| x (IN| - 1).

4. Experiments

In this section, we present results on the CROHME hand-
written math dataset, using rendered formula images from
the competition. Results are compiled using the LgEval li-
brary [41]. We report recognition rates for formulas, and
F-scores for detection and classification of symbols and
relationships. Results for correct symbol/relationship lo-
cations (Detection), correct symbol/relationship detections
and classes (Det.+Class), unlabeled SLT structure, and SLT
structure with correct labels (Str.+Class) are presented in
Tables 1-4. Please note that in each of these tables, sym-
bol and relationship detection results are reported across all
formulas in CROHME, while formula recognition rates are
reported for complete formulas (i.e., input files). For bet-
ter comparisons, the similar experiment across Tables 1-3 is
indicated with an asterisk (¥).

CROHME Dataset. CROHME datasets contain hand-
written formulas created online [41, 42]. Stroke data is
given as lists of (X,y) coordinates representing points sam-
pled as strokes are written. An InkML format represents
strokes and formula structure in Presentation MathML. We
render images from the (x,y) points in the CROHME InkML
files with the minimum symbol height to be set at 64 pix-
els and set the width to be the rescaled math expression
width. The training, validation and test sets in CROHME
2019 contain 9993, 986, and 1199 expressions, respectively.
The dataset includes 101 symbol classes. CROHME 2016
and CROHME 2014 test sets are used for benchmarking in
Table 5 each having 1147 and 986 expressions.

4.1. Graph Representations

We first studied the effect of using different input
graph representations. In previous studies on handwritten
math recognition [28], the Line-Of-Sight graph has shown
promising results. Results using LOS graphs for typeset for-
mula images [4] support this observation. However, error
analysis in both models shows that a long superscript may
block the field of view of two symbols with a connection
and cause a missing ground-truth edge in LOS graphs.

To address this, we tried using complete graphs. Table
1 shows our results. We believe LOS graphs are better rep-



Table 1. Effect of graph representations.

Symbols Relationships Formulas
| Detection Det.+Class | Detection Det+Class | Structure  Str+Class
*LOS graph 97.81 87.35 89.55 88.16 58.84 31.35
Complete graph 97.89 87.27 84.41 83.21 46.10 2481

Table 2. Effect of Attention Models on Recognition Accuracy.

Y S Formulas
‘ Detection  Det.+Class ‘ Detection  Det.+Class ‘ Structure  Str.+Class

*Binary Mask 97.81 87.35 89.55 88.16 58.84 31.35
Trained Mask (1 kernel) 97.63 88.44 90.13 88.63 60.52 34.62
Trained Mask ( 3 blocks ) 97.43 88.72 91.16 89.83 62.53 36.13

Table 3. Effect of Parent Stroke Features and Number of Clas-
sifiers. Last row: separate classifier for segmentation added
(merge/split).
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Figure 6. Concatenating parent features with edge pairs to intro-
duce visual difference for directed edges shown with their corre-
sponding binary masks.

Table 4. Comparison against State-of-the-art math recognition
models. Expression rates are reported for comparisons.

Symbols Relationships Formulas
Detection  Det.+Class | Detection Det.+Class | Structure  Str.+Class
2 class. 73.38 66.18 51.25 50.13 24.06 13.5
2 class. +p. 82.21 74.54 66.99 66.19 40.15 23.30
*3 class. +p. 97.81 87.35 89.55 88.16 58.84 31.35

resentations since the complete graph contains more edges,
resulting in more variation in features and a larger search
space for spatial relationships. Our results are computed on
the CROHME 2019 test set using a CNN with separate clas-
sifiers for symbol classification, stroke segmentation, and
stroke relationships.

4.2. Attention Module

We then examined different attention models, trying both
static binary masks (hard attention) and trainable attention
masks (soft attention) (see Table 2). As we expected, the
trainable masks allow attention to be more powerful. It is
interesting that with only training one kernel (7 x 7) per bi-
nary mask, formula recognition rates are boosted 3%, and
symbol classification and relationship detection both are
improved. Additional experiments showed that attention
layers with three convolution blocks provides the best per-
formance, and that stacking more blocks does not improve
the performance.

4.3. Classification: Features and Tasks

In an earlier design we had two classifiers: one respon-
sible for classifying strokes (nodes), and the other for clas-
sifying edges, with “Merge” added to the spatial relation-
ship classes (including “NoRelation”). In this setup, we did
not differentiate features generated for directed edges be-
tween nodes (i.e., visual features for (A, B) matched those
for (B, A)).

Since features were identical for both edge directions,
we decided to add features to signal which node is the par-
ent for each edge, by concatenating the stroke pair masked
features with the parent stroke masked features when clas-
sifying edges. Figure 6 shows that each feature vector for
edges is concatenated with the features generated by par-
ent mask. The feature vector for edge classification then

CROHME 2014 CROHME 2016
System | ExpRate <1 <2 | ExpRate <1 <2 | Spatial awt. | Temporal att. | Grammar

IM2TEX 35.90 - - - - - Yes Yes No
TAP 48.47 63.28 67.34 44.81 59.72 62.77 Yes Yes Yes
WAP 48.38 66.13  70.18 46.82 64.64  65.48 Yes Yes Yes
MAN 54.05 68.76  72.21 50.56 64.78  67.13 Yes Yes Yes
LPGAgr 26.88 36.63  42.50 - - - Yes No No
QD-GGA 32.04 45.06 55.23 32.84 46.88  59.12 Yes No No

becomes 1024 elements, while remaining 512 elements for
the node classifier. This makes the parsing more accurate as
seen in the first two rows of Table 3.

We then looked at separating the segmentation and rela-
tionship decisions into separate tasks, adding a third classi-
fier responsible for symbol detection (segmentation). The
merge/split classification is binary, making this an easier
task than when adding the ‘merge’ label to the set of spatial
relations and classifying them altogether. Edge features are
fed to a segmenter for a binary classification and to a parser
for relation classification. This improves both symbol and
relationship recognition substantially, as seen in the last row
of Table 3.

Finally, to study the benefit of jointly training the clas-
sifiers, we compare our results with our baseline model
in which individual classifiers are trained for each task in
isolation using the same input graph. Experiments on the
CROHME 2014 test set shows that jointly training classi-
fiers with our attention module increases the expression rate
by 5%, with improvements in both segmentation and spatial
relationship classification rates.

Table 5. Benchmarking QD-GGA against CROHME2019 partici-
pating systems. Models evaluated using SymLG metrics.

Structure + Symbol Labels | Structure

CROHME 2019 ExpRate <1 <2 Correct
USTC-iFLYTEK 80.73 88.99  90.74 91.49
Samsung R&D 79.82 87.82 89.15 89.32
MyScript 79.15 86.82 89.82 90.66
QD-GGA 40.65 60.01 64.96 60.22

4.4. Benchmark

We benchmark our proposed model against state-of-the-
art systems. Table 4 shows the results of current configu-
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Figure 7. Example QD-GGA Results for CROHME 2019. Column
at left shows the typical error cases; large subscripts mistaken with
baseline (first row), visually similar symbols classified incorrectly
(d instead of a and z instead of 2).

ration of our model against state-of-the-arts on CROHME
2014 and 2016 datasets. Table 5 compares our preliminary
results on CROHME 2019 against the winners of the com-
petition. Please notes that recognition rates are not com-
parable across these two table as the latter computed us-
ing SymLG [43]. The main experimental results show that
Line-Of-Sight Parsing with Query-Driven Global Graph At-
tention (QD-GGA) is effective for math expressions recog-
nition.

Figure 6 presents recognition results from QD-GGA, in-
cluding correctly recognized equations along with examples
of common errors. Most structure recognition failures are
caused by missing edges in LOS graphs, or incorrect base-
line detection as a result of size variations in handwritten
characters, e.g., the “subscript” relation between a and 3 is
classified as “right.” Most symbol classification errors are
among visually similar classes such as (X,x), (m,n), («, a),
(d,a), (z,2), etc. Lastly, the second row shows a segmen-
tation error in which two strokes in an X have not been
merged.

The current model is equipped with a only simple soft
attention module which we plan to improve. Although the
main results show that we do less well than other systems,
we think that there is promise for the approach taken in QD-
GGA. Our current model has no temporal attention, or any
record of sequential information. We also do not apply any
grammatical rules.

The training time reported for Tap [0] system is 780
sec/epoch for the base model and it is even longer to train
the ensemble models, whereas the training for our best con-
figuration takes 254 sec/epoch. Execution time reported on
CROHMEZ2014 for TAP model is 377 sec, the WAP system
[44] and the ensemble of TAP+WAP each takes 196 and
564 sec respectively. The execution time for QD-GGA on
the same dataset is 59 sec which is much faster.

5. Conclusion

In this work, we introduced the Query-Driven Global
Graph Attention (QD-GGA) parsing model, a new CNN-
based variant of graph-based visual parsing. Our novel
graph-based attention module allows multiple classification
queries for nodes and edges to be computed in one feed-
forward pass. By using a Multi Task Learning (MTL)
framework, it is possible to train our CNN for different tasks
simultaneously from an output adjacency matrix containing
class distributions at each entry. This provides generaliza-
tion for feature representations, and a more global view for
classifiers through a shared joint loss.

In the future, we would like to improve our attention
modules, and explore adding a temporal attention similar to
GCNs to learn from a sequential order over nodes and edges
in the input graph. We also would like to apply QD-GGA to
similar visual parsing problems e.g., parsing chemical dia-
grams.
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