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Abstract

We present a new visual parsing method based on con-

volutional neural networks for handwritten mathematical

formulas. The Query-Driven Global Graph Attention (QD-

GGA) parsing model employs multi-task learning, and uses

a single feature representation for locating, classifying, and

relating symbols. First, a Line-Of-Sight (LOS) graph is

computed over the handwritten strokes in a formula. Sec-

ond, class distributions for LOS nodes and edges are ob-

tained using query-specific feature filters (i.e., attention) in

a single feed-forward pass. Finally, a Maximum Spanning

Tree (MST) is extracted from the weighted graph. Our pre-

liminary results show that this is a promising new approach

for visual parsing of handwritten formulas. Our data and

source code are publicly available.

1. Introduction

Mathematical notation is an essential source of informa-

tion in many fields and the ability to recognize them is an

important module in OCR (Optical Character Recognition).

Math recognition is vital for several research-based and

commercial-based applications, such as educational aids,

navigational tools, digital assistance, and other tasks that

require machines to understand mathematical notation [1].

Recognizing math requires inferring a formula represen-

tation from the input (e.g. raster images, strokes, or PDFs)

that identifies symbols and their relationships. Formulas are

represented using trees: in fact, MathML and LATEX are trees

with additional formatting annotations. Formulas are gen-

erally represented visually by Symbol Layout Trees (SLTs)

giving symbols and their placement on writing lines, or se-

mantically by Operator Tree (OPTs) describing mathemati-

cal content (i.e., quantities and operations [2]).

Our work belongs to the family of visual parsers for math

that label and prune a graph over input primitives (e.g.,

handwritten strokes [3], or connected components in im-
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for stroke-level input and symbol-level output are shown.

ages [4, 5]). Graph-based parsing for math does not require

an expression grammar - the language model consists of

only node and edge labels applied to directed, rooted trees.

Defining the parser input with graphs frees us from forcing

the input into a sequence over the 2D input image, as com-

monly done for state-of-the-art RNN-based models [6, 7].

Our novel Query-Driven Global Graph Attention (QD-

GGA) parser extends traditional CNN models designed for

sequential and multi-dimensional data to graph-structured

data (see Figure 1). QD-GGA is comprised of the four mod-

ules shown in Figure 2: attention, feature extraction, clas-

sification, and MST extraction. All class distributions for

nodes and edges in a Line-of-Sight (LOS) graph are pre-

dicted at each feed-forward pass, with the help of attention-

based filtering of features defined using the LOS graph. A

Symbol Layout Tree (SLT) is extracted from the resulting

weighted graph, as a maximal spanning tree.

In the remainder of the paper, we introduce related work

(Section 2), define the QD-GGA model (Section 3), present

results on the CROHME data set (Section 4), and discuss

future work (Section 5).

Contributions:

1. End-to-end structure learning directly from a joint loss
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Figure 2. QD-GGA Architecture. The dimensions of the 2D features are channel, height and width. The dimensions of the linear features

are batch size and channel. The batch size is N which is the number of binary masks or queries (all nodes and edges) to answer (shown

in gray). The final adjacency matrix has class distributions for symbols on the diagonal, and two distributions for segmentation and

relationship labels for each edge.

computed over adjacency matrices holding class distri-

butions for stroke and stroke-pair class labels.

2. A novel attention model that queries a shared feature

representation to efficiently obtain inputs for multi-

ple classification, segmentation, and relationship de-

cisions, vs. computing features/attention dynamically

over an image (e.g., in RNN models [6, 7]).

3. QD-GGA generalizes our previous work using CNN-

based features [4], with features and attention modules

trained concurrently for multiple tasks.

2. Related Work

In the following we provide an overview of approaches

proposed for structure parsing, with a focus on methods per-

tinent to formula recognition.

2.1. Visual Parsing

Visual parsing is important for a variety of image un-

derstanding tasks, including real-world complex vision-

language tasks such as image caption generation [8, 9], vi-

sual relationship detection [10, 11, 12], scene graph gen-

eration [13, 14, 15], and table detection and form parsing

[16, 17]. We focus only on graph parsing approaches for

general structure learning in this section.

Dai et al. [12] use a graph parsing method to detect vi-

sual relationships by first doing an object detection to gener-

ate the nodes from the input image. Second, producing a set

of object pairs from the detected objects to define relation-

ships between objects. With n detected objects, they form

a complete graph of n(n − 1) pairs (edges), with some un-

likely relations filtered out with a low-cost neural net. Each

retained pair of objects will be fed to the joint recognition

module. Taking into account multiple factors and their re-

lations, this module will produce a triplet in the form of

(subject, predicate, object), as the output.

Inspired by this work, [18] use Graph Convolutional

Networks encoder plus Long Short-Term Memory decoder

(dubbed as GCN-LSTM) architecture to encode both se-

mantic and spatial object relationships. In this work, salient

image regions (nodes) are computed implementing a Faster

R-CNN [19]. Second, two directed graphs are generated

on the detected regions, one for spatial relations (e.g. in-

side, overlap, over, etc.) and another one for semantic rela-

tions (e.g. riding, eating, biking, etc.). Graph Convolutional

Networks (GCN) are then exploited to encode region repre-

sentations and visual relationship in both graphs. Next, the

learnt relation-aware region representations are feed into in-

dividual attention LSTM decoders to generate the sentence.

To integrate outputs of two decoders, the predicted score

distributions on words from two decoders is averaged at

each time step.

The results from the two decoder are fused in an infer-

ence stage adopting a late fusion scheme to linearly fuse

the results from two decoders. The semantic graph decides

which relations should be established between objects, leav-

ing the spatial relations between image regions unused. A

second graph defining spatial regions is then generated over

the detected regions. When doing classification in the se-

mantic graph, similar to our work, a ‘NoRelation’ class

is added to the set of class labels Nsem. They compute

the probability distribution on all the (Nsem + 1) relation

classes for each object pair. If the probability of NoRela-

tion is less than 0.5, a directed edge connects the region

vertex of parent (subject noun) to the region vertex of child

(object noun). The relation class with maximum probability



is regarded as the label of this edge.

Yang et al. [13] also use a graph parsing approach for

scene understanding. Their proposed model called Graph

R-CNN has three modules: (1) object node detection which

is done with R-CNN similar to [18], (2) relationship edge

pruning with a Relation Proposal Network (RePN), and (3)

graph context integration. RePN learns to compute ’re-

latedness’ scores between object pairs which are used to

prune unlikely scene graph connections. Next, an atten-

tional graph convolution network (aGCN) is applied on

pruned graph to encode higher-order context throughout the

graph and provide information on each object and relation-

ship representation based on its neighbors.

Our method differs in three aspects: (1) We use con-

nected components from rendered handwritten strokes as

input, generating a Line-of-Sight graph - here nodes are ob-

jects to classify and edges are relations to parse. (2) We

train our model to do object segmentation, classification and

relation prediction jointly using a multi-task classification

framework. (3) Unlike [13], our model handles multiple

queries (i.e., classification problems) using a soft attention

module, so that attention masks generated for each node and

node pair are refined through back propagation when train-

ing the model end-to-end.

2.2. Math Recognition

Visual parsing of mathematical expressions converts in-

put images to a representation of formula structure which

is a hierarchical arrangement of symbols on writing lines.

A common set of features used to represent the spatial re-

lations between components (e.g. symbols) are geometric

features. Visual features have also been used [20, 21]. In

the following, we review the main approaches in math ex-

pression recognition.

Syntactic Methods (Constituency Parsing). These

methods are useful for interpreting complex patterns in

mathematical formulas because the notation has an obvious

division into primitives, a recursive structure, and a well-

defined syntax [22, 23, 24, 25]. Alvaro et al. [26, 27]

present an online handwritten math expression recognition

system using Stochastic Context-Free Grammars (SCFG)

defined at the symbol level. Segmentation is done by scor-

ing symbol candidates using a symbol classifier and letting

the SCFG parser determine whether they should be merged

based on confidence scores from an SVM classifier.

Probabilities associated with grammar rules are learned

from training data. For parsing, first, lexical units are built

from the set of symbol segmentation hypotheses. Second, a

set of syntactic and spatial constraints defined by the gram-

mar guide parsing to to identify candidate parse trees, and

the most probable expression is returned.

Minimum Spanning Trees (Dependency Parsing).

Mathematical expression recognition can be posed as

searching for a tree representing symbols and their asso-

ciated spatial relationships within a graph of primitives.

Suzuki et al. [5] present MST-Based math expression recog-

nition system using virtual link networks. Recognition is

done by finding a spanning tree for the network with mini-

mum weight.

Another MST-based math parsing method is presented

by Hu et al. [3, 28] using Edmond’s algorithm to extract

a tree from a weighted LOS graph. They use an LOS

graph for representing the layout of primitives and sym-

bols in math expressions [29]. LOS graphs have a higher

maximum formula tree expressivity than many other graph

representations (e.g., Delaunay, geometric MST, k-NN for

k ∈ {1 . . . 6}), while also reducing the search space for

parsing. They also modify the shape context feature with

Parzen window density estimation. These Parzen shape

contexts are used for symbol segmentation, symbol classifi-

cation and symbol layout analysis.

An generalization of the work done by Hu et al. [3] is

the LPGA (Line-Of-Sight Parsing with Graph-based Atten-

tion) model [4]. In LPGA individual CNNs are trained for

segmentation, classification, and parsing. A hierarchical ap-

proach is used to first segment nodes into symbols with a

binary classifier, and then generate a second graph on sym-

bols and train two separate models to learn symbol classes

and spatial relationships.

Encoder-Decoder Models. IM2TEX, inspired by the

sequence-to-sequence model designed for image caption

generation by Xu et al.[9] directly feeds a typeset formula

image generated using LATEX into a Convolutional Network

to extract a feature grid learned by the network [7]. For

each row in the feature map, an RNN is used to encode spa-

tial layout information. The encoded fine features are then

passed to an attention-based recurrent neural network de-

coder, which then emits the final expression string.

Another encoder-decoder model by Zhang et al. [6] use

pen traces collected from handwritten strokes on a tablet for

parsing. In their model, the encoder is a stack of bidirec-

tional GRUs while the parser (decoder) combines a GRU-

based language model and a hybrid attention mechanism

consists of a coverage-based spatial attention and a temporal

attention. Unlike the attention module in IM2TEX model,

which scans the entire input feature map at pixel level, the

spatial attention in TAP learns an alignment between input

strokes and outputs. The role of temporal attention in TAP

model is to learn when to rely on the product of spatial at-

tention and when to just rely on the language model as there

is no spatial mapping for tokens representing spatial rela-

tionships e.g., superscript ‘∧’ or subscript ‘ ’.

The latest architecture in encoder-decoder networks used

for math expression recognition uses two input branches to

encode both online and offline features [30]. This Multi-

modal Attention Network (MAN), first takes dynamic tra-



jectories and static images for online and offline channels

of the encoder respectively. The output of the encoder is

then transferred to the multi-modal decoder to generate a

LATEX sequence as the mathematical expression recognition

result. This architecture is a hybrid design of both TAP and

IM2TEX models explained earlier, except the fact that they

use CNN layers in their online channel instead of using a

stack of RNNs. Each decoder has their own attention mod-

ules. For the online branch, the attention module highlights

strokes, whereas in the offline module it weights the pixels.

Once the attention weights are calculated, the multi-modal

context vector can be obtained by concatenating the single

online and offline context vectors. A recent addition to se-

quential models [31, 32] exploits DenseNet [33] for encod-

ing images. In this work an improved attention model with

channel-wise attention is applied before spatial attention.

Motivations for our Approach. Compared to BLSTM

in sequential models, graphs are more natural and general

for representing math equations as trees. In our model,

handwritten strokes form the nodes of the input and output

graph, while edges between strokes in the output represent

symbol segmentation and spatial relationships (e.g., right,

superscript) between symbols. Our attention module uses

this input graph to query (filter) CNN features from a sin-

gle feature representation of the input image to efficiently

obtain inputs for multiple classification, segmentation, and

relationship decisions.

Our system does not need to learn an alignment between

input strokes and outputs similar to encoder-decoder mod-

els, as we directly output a graph-based hierarchical repre-

sentation of symbols on writing lines (as a Symbol Layout

Tree (SLT)), and not a string. We also do not use expression

grammars for language models, instead relying only upon

the sets of symbol and relationship classes along with vi-

sual statistics captured by our CNN models. The language

model in our system consists of only symbol and relation-

ship labels.

3. QD-GGA

Our CNN-based model predicts all node and edge

classes at each feed-forward pass with the help of a query-

driven attention mechanism. An input LOS graph is com-

puted from handwritten strokes. Then, class probabilities

generated by the CNN classifiers are assigned to node and

edges in the input graph, symbol segmentation and classifi-

cation decisions are made, and then Edmond’s arborescence

algorithm [34] is used to extract a directed tree from the

weighted graph over symbols (see Figure 3).

During training, a joint classification loss is calculated

from the output matrix, which back-propagates through all

three classifiers responsible for segmentation, classification

and relationships, as well as the attention layers, enabling

us to train them simultaneously with shared features.
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Figure 3. Parsing the formula in Figure 1 (gi =
δ
2

z
). Graph edges

are yellow adjacency matrix entries; strokes appear in red along

diagonals. A stroke-level line-of-sight graph is constructed, after

which strokes are classified as symbols, and edges between strokes

classified for 1) symbol detection (merge/split), and 2) relation

classification. Symbol detection decisions are applied to convert

the graph into a symbol level graph, followed by averaging sym-

bol (node) and relationship (edge) scores to obtain a new weighted

graph. Finally, Edmond’s arborescence algorithm extracts a maxi-

mal symbol layout tree.

Our CNN model is shown in Figure 2. Our architecture

is modular, independent of the CNN feature model (any fea-

ture model such as VGG or ResNet might be used), easy to

implement, and faster than recurrent approaches in training.

3.1. Graph Representation

For dependency parsing such as done in QD-GGA, we

need to identify a sub-graph with minimal cost or maximum

probability. For math recognition, the final subgraph is usu-

ally a Symbol Layout Tree. Ideally, we would like to reduce

the size of the search space by using a graph that only has

edges between the primitives having a spatial relationship

in the original setting (perfect precision) and avoid the mis-

cellaneous edges which add confusion to the problem.

A study by Hu et al. [28] on parsing handwritten formu-

las (see Section 2.2), proposes using Line of Sight (LOS)

graphs [35], which represents whether nodes can ‘see’

one another. LOS graphs can represent roughly 98% of

CROHME 2014 dataset formulas, while reducing the num-

ber of edges to 3.3n for n strokes, many fewer than the

n(n− 1)/2 edges in a complete graph.

In this work, we also also use the Line of Sight (LOS)

graphs over handwritten strokes. A stroke represents a

drawn line on a writing surface. To work with images,

an extra step of rendering strokes is needed to provide the



Figure 4. Attention Masks. Input binary masks for node x and

edge (x, 2) are shown in the first row. Corresponding real-valued

relevance masks applied to features are shown in the second row.

nodes in our graph. Figure 3 shows edges in a complete

graph for gi = δ
2

z
alongside the edges in a LOS graph.

Nodes sharing an edge are marked with yellow in the adja-

cency matrix.

3.2. Network Architecture

The QD-GGA architecture is shown in Figure 2.

The network contains a convolution block (shown in

red) followed by two SE-ResNext block groups. SE-

ResNext blocks combine Squeeze-And-Excitation [36] with

a ResNext block [37]. To compute image features, each

SE-ResNext block group contains six SE-ResNext blocks

with the first SE-ResNext block having a down sample layer

(shown in blue). The receptive field of our final feature map

is 35 pixels; each point in the final feature map corresponds

to a 35 × 35 region in the input image, with the minimum

symbol height set at 64 pixels.

Given a sequence of primitive feature vectors, the vec-

tors are concatenated along the length dimension of a 1D

feature tensor. Then, the temporal context module performs

a 1-by-3 convolution along the length dimension treating

each primitive as an individual element. The convolution

operation consolidates features of a primitive neighborhood

by considering the i− 1 and i+1 primitives for the i prim-

itive (in time order).

3.3. Attention Module

As seen in Figure 2, there is a side branch consists of

two attention layers which takes binary masks for nodes

and edges separately as inputs and apply convolution on

them. We performed extensive experimental analysis to un-

derstand the performance trade-offs amongst different com-

binations of shared and task-specific representations in the

main and side stream. The best configuration has a 3 con-

volutional blocks with each block having 4 kernels of size

of 7× 7, 5× 5, and 5× 5. The final relevance maps are 2D

(H ×W ) similar to input binary masks, see Figure 4.

The attention module queries a shared CNN feature map

to efficiently obtain inputs for all classification, segmenta-

tion, and relationship decisions. Spatial masks provide at-

tention, comprised of either individual node binary masks,

Algorithm 1 SLT Extraction from Adjacency Matrix

1. Use ‘Merge’ edges to group primitives into symbols

2. Classify symbols by max. mean score for member strokes

3. Score symbol relationships by avg. stroke pair distributions

4. Apply Edmond’s algorithm to obtain maximal SLT

or masks from pairs of nodes sharing an edge in the input

graph. The attention module takes binary masks and then

generates relevance maps (i.e., continuous masks) by con-

volving binary masks with kernels trained for each task (per

[38]). Figure 4 shows binary masks and their correspond-

ing relevance masks for node (single stroke) x and stroke

pair (x, 2). Attention relevance maps are downsized and

then multiplied with the global feature map. In this way,

the downsampled and normalized relevance mask weights

the feature map to focus on (‘query’) the relevant input re-

gion. Finally, the weighted feature map is average pooled to

a one dimensional feature vector which can be regarded as

the extracted feature for the primitive (stroke) or primitive

pair (stroke pair).

We normalize attention mask values using the Instance

Norm [39] with ǫ = 0.001. This converts values into a

measure of standard deviations from the mean (E[x]) :

y =
x− E[x]

√

V ar[x] + ǫ

3.4. SLT Extraction

We use Edmond’s algorithm [34] to extract a Maxi-

mum Spanning Tree (MST) from class distributions asso-

ciated with the LOS adjacency matrix output. Experiments

demonstrate that it is more accurate apply symbol segmen-

tation results before extracting relationships (see Figure 5),

rather than extract an MST directly from the stroke-level

matrix. Algorithm 1 provides the steps used to convert a

stroke-level graph to a symbol-level graph. First, primi-

tives that belong to a single symbol are merged based on the

segmenter predictions. Symbol class distributions are com-

puted by averaging symbol classifier probabilities over all

primitives belonging to a single symbol. Then, all incom-

ing and outgoing edges attached to primitives grouped into

a symbol are merged into one incoming and one outgoing

edge. Again, probabilities over merged edges are averaged

to generate the symbol-level edge probability distributions.

SLT generation is illustrated in Figure 5. In the exam-

ple, primitives belong to i and = are merged into symbols.

All edges connected to these four primitives, shown with

blue patches, should be updated in the symbol-level graph.

Average probabilities for stroke-level edges provide the dis-

tributions for symbol-level merged edges.



Figure 5. SLT Extraction. A stroke-level graph is converted to

symbol-level after applying segmentation results, and then an SLT

is extracted using Edmond’s arborescence algorithm. Red patches

in the middle matrix show primitives to be merged into symbols.

Blue patches show edges that should be updated after merging

nodes. Merged probabilities for symbols and symbol relationships

are averaged over constituent stroke-level elements.

3.5. Implementation and Training

Loss. The loss designed for an Multi-Task Learning

(MTL) model should allow tasks contribute to training

equally, without letting the easier tasks dominate the learn-

ing. We use the cross entropy loss (CE) with a softmax

layer to normalize the network outputs. The final loss is the

sum of all the errors in segmenter, parser and symbol clas-

sifier. The loss function δ is defined in equation 1. Here

N is the stroke set (nodes), and E is the set of line-of-sight

edges in the adjacency matrix. D is the set of detection

ground truth labels for edges, R is the set of relationship

ground truth labels for edges, and S is the set of ground

truth symbol labels for strokes.

δ(N,E) =
∑|E|

e=1
(CE(e,D) + CE(e,R)) +

∑|N |
n=1

CE(n, S) (1)

Tree Loss. To reduce the effect of edges not contribut-

ing to the final tree we introduce “tree loss,” where only

ground truth edges and false positive edges in the final SLT

are counted in loss calculations. Therefore, only hard neg-

atives mistaken for real relations in the output are include

in the loss computation. We tried other loss designs, e.g.,

harmonic mean of individual loss types, weighted combina-

tions of individual losses, loss defined on MST edges, but

these experiments showed the tree loss and direct sum (Eq.

1) work best. The models used for experiments in Section 4

are trained with tree loss.

Training Process. Since math expressions have differ-

ent sizes, we replace the conventional batch normalization

layers with group normalization [40] for all the blocks, as

this is more robust for small batch sizes. Group Normaliza-

tion divides the channels (in feature maps) into groups and

computes the mean and variance within each group for nor-

malization making the computation independent of batch

sizes, and its accuracy stable for a wide range of batch sizes.

The QD-GGA CNN has 13,854,478 parameters. We use

an Adam optimizer to learn the parameters. The batch size

was set to 1, momentum to 0.9 and the learning rate was ini-

tially set to 10−2, and then decreased by a factor of 10 when

the validation set accuracy stopped improving. The train-

ing was regularized by weight decay set to 0.004. The sys-

tem is built using PyTorch and experiments were run on an

8GB Nvidia 1080 GPU. Experiments were run on a server

with an 8-core Intel Xeon E5-2667 processor (3.20 GHz per

core), and 256 GB RAM was available. The time complex-

ity of our model is O(|N | + |E|) for an input graph with

E edges and N nodes. In the worst case (complete graph)

|E| = |N | × (|N | − 1).

4. Experiments

In this section, we present results on the CROHME hand-

written math dataset, using rendered formula images from

the competition. Results are compiled using the LgEval li-

brary [41]. We report recognition rates for formulas, and

F-scores for detection and classification of symbols and

relationships. Results for correct symbol/relationship lo-

cations (Detection), correct symbol/relationship detections

and classes (Det.+Class), unlabeled SLT structure, and SLT

structure with correct labels (Str.+Class) are presented in

Tables 1-4. Please note that in each of these tables, sym-

bol and relationship detection results are reported across all

formulas in CROHME, while formula recognition rates are

reported for complete formulas (i.e., input files). For bet-

ter comparisons, the similar experiment across Tables 1-3 is

indicated with an asterisk (*).

CROHME Dataset. CROHME datasets contain hand-

written formulas created online [41, 42]. Stroke data is

given as lists of (x,y) coordinates representing points sam-

pled as strokes are written. An InkML format represents

strokes and formula structure in Presentation MathML. We

render images from the (x,y) points in the CROHME InkML

files with the minimum symbol height to be set at 64 pix-

els and set the width to be the rescaled math expression

width. The training, validation and test sets in CROHME

2019 contain 9993, 986, and 1199 expressions, respectively.

The dataset includes 101 symbol classes. CROHME 2016

and CROHME 2014 test sets are used for benchmarking in

Table 5 each having 1147 and 986 expressions.

4.1. Graph Representations

We first studied the effect of using different input

graph representations. In previous studies on handwritten

math recognition [28], the Line-Of-Sight graph has shown

promising results. Results using LOS graphs for typeset for-

mula images [4] support this observation. However, error

analysis in both models shows that a long superscript may

block the field of view of two symbols with a connection

and cause a missing ground-truth edge in LOS graphs.

To address this, we tried using complete graphs. Table

1 shows our results. We believe LOS graphs are better rep-



Table 1. Effect of graph representations.
Symbols Relationships Formulas

Detection Det.+Class Detection Det.+Class Structure Str.+Class

*LOS graph 97.81 87.35 89.55 88.16 58.84 31.35

Complete graph 97.89 87.27 84.41 83.21 46.10 24.81

Table 2. Effect of Attention Models on Recognition Accuracy.
Symbols Relationships Formulas

Detection Det.+Class Detection Det.+Class Structure Str.+Class

*Binary Mask 97.81 87.35 89.55 88.16 58.84 31.35

Trained Mask (1 kernel) 97.63 88.44 90.13 88.63 60.52 34.62

Trained Mask ( 3 blocks ) 97.43 88.72 91.16 89.83 62.53 36.13

Table 3. Effect of Parent Stroke Features and Number of Clas-

sifiers. Last row: separate classifier for segmentation added

(merge/split).

Symbols Relationships Formulas

Detection Det.+Class Detection Det.+Class Structure Str.+Class

2 class. 73.38 66.18 51.25 50.13 24.06 13.5

2 class. + p. 82.21 74.54 66.99 66.19 40.15 23.30

*3 class. + p. 97.81 87.35 89.55 88.16 58.84 31.35

resentations since the complete graph contains more edges,

resulting in more variation in features and a larger search

space for spatial relationships. Our results are computed on

the CROHME 2019 test set using a CNN with separate clas-

sifiers for symbol classification, stroke segmentation, and

stroke relationships.

4.2. Attention Module

We then examined different attention models, trying both

static binary masks (hard attention) and trainable attention

masks (soft attention) (see Table 2). As we expected, the

trainable masks allow attention to be more powerful. It is

interesting that with only training one kernel (7× 7) per bi-

nary mask, formula recognition rates are boosted 3%, and

symbol classification and relationship detection both are

improved. Additional experiments showed that attention

layers with three convolution blocks provides the best per-

formance, and that stacking more blocks does not improve

the performance.

4.3. Classification: Features and Tasks

In an earlier design we had two classifiers: one respon-

sible for classifying strokes (nodes), and the other for clas-

sifying edges, with “Merge” added to the spatial relation-

ship classes (including “NoRelation”). In this setup, we did

not differentiate features generated for directed edges be-

tween nodes (i.e., visual features for (A,B) matched those

for (B,A)).

Since features were identical for both edge directions,

we decided to add features to signal which node is the par-

ent for each edge, by concatenating the stroke pair masked

features with the parent stroke masked features when clas-

sifying edges. Figure 6 shows that each feature vector for

edges is concatenated with the features generated by par-

ent mask. The feature vector for edge classification then

Figure 6. Concatenating parent features with edge pairs to intro-

duce visual difference for directed edges shown with their corre-

sponding binary masks.

Table 4. Comparison against State-of-the-art math recognition

models. Expression rates are reported for comparisons.
CROHME 2014 CROHME 2016

System ExpRate ≤ 1 ≤ 2 ExpRate ≤ 1 ≤ 2 Spatial att. Temporal att. Grammar

IM2TEX 35.90 - - - - - Yes Yes No

TAP 48.47 63.28 67.34 44.81 59.72 62.77 Yes Yes Yes

WAP 48.38 66.13 70.18 46.82 64.64 65.48 Yes Yes Yes

MAN 54.05 68.76 72.21 50.56 64.78 67.13 Yes Yes Yes

LPGARF 26.88 36.63 42.50 - - - Yes No No

QD-GGA 32.04 45.06 55.23 32.84 46.88 59.12 Yes No No

becomes 1024 elements, while remaining 512 elements for

the node classifier. This makes the parsing more accurate as

seen in the first two rows of Table 3.

We then looked at separating the segmentation and rela-

tionship decisions into separate tasks, adding a third classi-

fier responsible for symbol detection (segmentation). The

merge/split classification is binary, making this an easier

task than when adding the ‘merge’ label to the set of spatial

relations and classifying them altogether. Edge features are

fed to a segmenter for a binary classification and to a parser

for relation classification. This improves both symbol and

relationship recognition substantially, as seen in the last row

of Table 3.

Finally, to study the benefit of jointly training the clas-

sifiers, we compare our results with our baseline model

in which individual classifiers are trained for each task in

isolation using the same input graph. Experiments on the

CROHME 2014 test set shows that jointly training classi-

fiers with our attention module increases the expression rate

by 5%, with improvements in both segmentation and spatial

relationship classification rates.

Table 5. Benchmarking QD-GGA against CROHME2019 partici-

pating systems. Models evaluated using SymLG metrics.

Structure + Symbol Labels Structure

CROHME 2019 ExpRate ≤ 1 ≤ 2 Correct

USTC-iFLYTEK 80.73 88.99 90.74 91.49

Samsung R&D 79.82 87.82 89.15 89.32

MyScript 79.15 86.82 89.82 90.66

QD-GGA 40.65 60.01 64.96 60.22

4.4. Benchmark

We benchmark our proposed model against state-of-the-

art systems. Table 4 shows the results of current configu-



Figure 7. Example QD-GGA Results for CROHME 2019. Column

at left shows the typical error cases; large subscripts mistaken with

baseline (first row), visually similar symbols classified incorrectly

(d instead of a and z instead of 2).

ration of our model against state-of-the-arts on CROHME

2014 and 2016 datasets. Table 5 compares our preliminary

results on CROHME 2019 against the winners of the com-

petition. Please notes that recognition rates are not com-

parable across these two table as the latter computed us-

ing SymLG [43]. The main experimental results show that

Line-Of-Sight Parsing with Query-Driven Global Graph At-

tention (QD-GGA) is effective for math expressions recog-

nition.

Figure 6 presents recognition results from QD-GGA, in-

cluding correctly recognized equations along with examples

of common errors. Most structure recognition failures are

caused by missing edges in LOS graphs, or incorrect base-

line detection as a result of size variations in handwritten

characters, e.g., the “subscript” relation between a and β is

classified as “right.” Most symbol classification errors are

among visually similar classes such as (X,x), (m,n), (α, a),

(d,a), (z,2), etc. Lastly, the second row shows a segmen-

tation error in which two strokes in an X have not been

merged.

The current model is equipped with a only simple soft

attention module which we plan to improve. Although the

main results show that we do less well than other systems,

we think that there is promise for the approach taken in QD-

GGA. Our current model has no temporal attention, or any

record of sequential information. We also do not apply any

grammatical rules.

The training time reported for Tap [6] system is 780
sec/epoch for the base model and it is even longer to train

the ensemble models, whereas the training for our best con-

figuration takes 254 sec/epoch. Execution time reported on

CROHME2014 for TAP model is 377 sec, the WAP system

[44] and the ensemble of TAP+WAP each takes 196 and

564 sec respectively. The execution time for QD-GGA on

the same dataset is 59 sec which is much faster.

5. Conclusion

In this work, we introduced the Query-Driven Global

Graph Attention (QD-GGA) parsing model, a new CNN-

based variant of graph-based visual parsing. Our novel

graph-based attention module allows multiple classification

queries for nodes and edges to be computed in one feed-

forward pass. By using a Multi Task Learning (MTL)

framework, it is possible to train our CNN for different tasks

simultaneously from an output adjacency matrix containing

class distributions at each entry. This provides generaliza-

tion for feature representations, and a more global view for

classifiers through a shared joint loss.

In the future, we would like to improve our attention

modules, and explore adding a temporal attention similar to

GCNs to learn from a sequential order over nodes and edges

in the input graph. We also would like to apply QD-GGA to

similar visual parsing problems e.g., parsing chemical dia-

grams.
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