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Abstract

Layout is a fundamental component of any graphic de-

sign. Creating large varieties of plausible document layouts

can be a tedious task, requiring numerous constraints to be

satisfied, including local ones relating different semantic el-

ements and global constraints on the general appearance

and spacing. In this paper, we present a novel framework,

coined READ, for REcursive Autoencoders for Document

layout generation, to generate plausible 2D layouts of doc-

uments in large quantities and varieties. First, we devise

an exploratory recursive method to extract a structural de-

composition of a single document. Leveraging a dataset of

documents annotated with labeled bounding boxes, our re-

cursive neural network learns to map the structural repre-

sentation, given in the form of a simple hierarchy, to a com-

pact code, the space of which is approximated by a Gaus-

sian distribution. Novel hierarchies can be sampled from

this space, obtaining new document layouts. Moreover, we

introduce a combinatorial metric to measure structural sim-

ilarity among document layouts. We deploy it to show that

our method is able to generate highly variable and realistic

layouts. We further demonstrate the utility of our generated

layouts in the context of standard detection tasks on docu-

ments, showing that detection performance improves when

the training data is augmented with generated documents

whose layouts are produced by READ.

1. Introduction

“Do not read so much, look about you and think of what

you see there.” -Richard Feynman

Layouts are essential for effective communication and

targeting one’s visual attention. From newspapers articles,

to magazines, academic manuscripts, websites and various

other document forms, layout design spans a plethora of real

world document categories and receives the foremost edito-

rial consideration. However, while the last few years have
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Figure 1. Given a collection of training examples – annotated lay-

outs (middle) of real-world documents (such as the fillable form

on the left) – our method generates synthetic layouts (right) re-

sembling those in the training data. Semantically labeled regions

are marked in unique colors.

experienced growing interests among the research commu-

nity in generating novel samples of images [8, 20], audio

[19] and 3D content [11, 13, 29, 30], little attention has been

devoted towards automatic generation of large varieties of

plausible document layouts. To synthesize novel layouts,

two fundamental questions must first be addressed. What

is an appropriate representation for document layouts? And

how to synthesize a new layout, given the aforementioned

representation?

The first work to explicitly address these questions is the

very recent LayoutGAN of Li et al. [12], which approaches

layout generation using a generative adversarial network

(GAN) [5]. They demonstrate impressive results in syn-

thesizing plausible document layouts with up to nine ele-

ments, represented as bounding boxes in a document. How-

ever, various types of highly structured documents can have

a substantially higher number of elements – up to tens or

even hundreds.1 Furthermore, their training data constitutes

about 25k annotated documents, which may be difficult to

obtain for various types of documents. Two natural ques-

tions therefore arise: Can one devise a generative method to

synthesize highly structured layouts with a large number of

entities? And is it possible to generate synthetic document

layouts without requiring a lot of training data?

In this work, we answer both questions affirmatively.

1As an example, consider the popular US tax form 1040; See https:

//www.irs.gov/pub/irs-pdf/f1040.pdf.



Figure 2. Overview of our RvNN-VAE framework. Training hierarchies are constructed for every document in the dataset. These hier-

archies are mapped to a compact code (in a recursive fashion according to the encoder network marked in red), the space of which is

approximated by a Gaussian distribution. Novel hierarchies can be sampled from this space (and decoded recursively according to the

decoder network marked in blue), obtaining new document layouts.

Structured hierarchies are natural and coherent with human

understanding of document layouts. We thus present READ:

a generative recursive neural network (RvNN) that can ap-

propriately model such structured data. Our method enables

generating large quantities of plausible layouts containing

dense and highly variable groups of entities, using just a

few hundreds of annotated documents. With our approach,

a new document layout can be generated from a random

vector drawn from a Gaussian in a fraction of a second, fol-

lowing the pipeline shown in Figure 2.

Given a dataset of annotated documents, where a sin-

gle document is composed of a set of labeled bounding

boxes, we first construct document hierarchies, which are

built upon connectivity and implicit symmetry of its seman-

tic elements. These hierarchies, or trees, are mapped to a

compact code representation, in a recursive bottom-up fash-

ion. The resulting fixed length codes, encoding trees of dif-

ferent lengths, are constrained to roughly follow a Gaussian

distribution by training a Variational Autoencoder (VAE).

A novel document layout can be generated by a recursive

decoder network that maps a randomly sampled code from

the learned distribution, to a full document hierarchy. To

evaluate our generated layouts, we introduce a new com-

binatorial metric (DocSim) for measuring layout similar-

ity among structured multi-dimensional entities, with doc-

uments as a prime example. We use the proposed metric

to show that our method is able to generate layouts that are

representative of the latent distribution of documents which

it was trained on. As one of the main motivations to study

synthetic data generation methods stems from their useful-

ness as training data for deep neural networks, we also con-

sider a standard document analysis task. We augment the

available training data with synthetically generated docu-

ments whose layouts are produced by READ, and demon-

strate that our augmentation boosts the performance of the

network for the aforementioned document analysis task.

2. Related Work

Analysis of structural properties and relations between

entities in documents is a fundamental challenge in the field

of information retrieval. While local tasks, like optical

character recognition (OCR) have been addressed with very

high accuracy, the global and highly variable nature of doc-

ument layouts has made their analysis somewhat more elu-

sive. Earlier works on structural document analysis mostly

relied on various types of specifically tailored methods and

heuristics (e.g., [2, 3, 9, 18] Recent works have shown that

deep learning based approaches significantly improve the

quality of the analysis; e.g., see the work of Yang et al. [32],

which uses a joint textual and visual representation, viewing

the layout analysis as a pixel-wise segmentation task. Such

modern deep learning based approaches typically require a

large amount of high-quality training data, which call for

suitable methods to synthetically generate documents with

real-looking layout [12] and content [14]. Most recently, the

LayoutVAE work of Jyothi et al. [7] uses variational autoen-

coders for generating stochastic scene layouts. Our work

continues the line of research on synthetic layout genera-

tion, showing that our synthetic data can be useful to aug-

ment training data for document analysis tasks.

Maintaining reliable representation of layouts has shown

to be useful in various graphical design contexts, which

typically involve highly structured and content-rich objects.

The most related work to ours is the very recent Layout-



GAN of Li et al. [12], which aims to generate realistic

document layouts using a generative adversarial networks

(GAN) with a wireframe rendering layer. Zheng et al. [33]

also employ a GAN-based framework in generating doc-

uments, however, their work focuses mainly on content-

aware generation, using the content of the document as an

additional prior. Unlike Convolutional Neural Networks

(CNNs) that operate on large dimensional vectors and in-

volve multiple multi-channel transformations, in our work,

we use recursive neural networks, which operate on low-

dimensional vectors and employ two-layer perceptrons to

merge any two vectors. Hence, they are computationally

cheaper, plus can learn from just a few training samples.

Deka et al. [4] use an autoencoder to perform layout

similarity search to simplify UI design for mobile appli-

cations. Ritchie et al. [23] present a design exploration

tool for layout and content based retrieval of similarly look-

ing web pages. O’Donovan et al. [17] present an interac-

tive energy-based model that allows novice designers to im-

prove their page layout design. Swearngin et al. [27] apply

layout analysis to allow designers to manipulate layouts ob-

tained from screenshots. More fundamentally, Talton et al.

[28] leverage learned visual-structural and textual patterns

learned from the data to obtain a formal grammar allowing

to probabilistically generate new, similarly looking entities.

Recursive neural networks (RvNN) were first introduced

by Socher et al. [25, 26] for parsing natural scenes and

natural language sentences. Socher et al. [24] compre-

hensively present applications of RvNNs for various tasks

in computer vision. However, RvNNs did not enjoy as

much attention as CNNs, until recently, when RvNNs cou-

pled with generative models were shown to work effectively

on previously unexplored paradigms such as generating 3D

shape structures [11, 34] and indoor 3D scenes [13]. Doc-

ument layouts structurally resemble 3D indoor-scenes, in

the sense that semantic entities are loosely related and not

bound by geometric connectivity (like parts in a 3D shape).

But unlike indoor scenes, where any permutation of valid

subscene arrangements would synthesize plausible global

scenes [15, 31], semantic entities in a document must be

placed at the right positions for the generated layout to look

realistic; e.g., title should always appear at the top. In other

words, document layouts enforce more global constraints.

3. Method

Our RvNN-VAE framework of generating layouts is

trained on a dataset of documents with semantic-based la-

bels. That is, each document is composed of a set of labeled

bounding boxes (ex., magazine-articles are labeled with ti-

tle, paragraph, and so on). We use the set of labeled bound-

ing boxes, which we call the atomic units, to build a training

hierarchy for each document in our training set. These hi-

erarchies are fed into our RvNN-VAE framework (see Fig-

Figure 3. Exploratory layout extraction of a document from the IC-

DAR2015 [1] training set. The input document and the annotated

boxes are shown on top. Note that when two boxes are merged,

the merged bounding box is the union of the two boxes.

ure 2) with a suitable training objective. Once trained, the

RvNN-VAE network is used to generate a new layout by

decoding a randomly sampled vector into a hierarchy of 2D

bounding boxes with their corresponding semantic labels.

3.1. Building training hierarchies

Given labeled bounding box annotations, we first extract

a structural decomposition for every document in the train-

ing set, based on connectivity and implicit symmetry of

the atomic unit bounding boxes, by scanning the document

from left-to-right and top-to-bottom. The results are stored

as binary trees. We combine each pair of atomic elements,

which we view as leaf nodes, into a union of boxes, viewed

as an internal node, in a recursive manner, according to the

relative position between the boxes. Internal nodes are also

handled in a similar fashion. This exploratory process con-

tinues until all boxes are merged under a single root node.

Figure 3 demonstrates the result of such an exploratory pro-

cess on a single training sample. As the figure illustrates, we

employ various types of spatial relationships (see Figure 4).

As documents are designed by humans, there is a weak

symmetric structure between related atomic unit boxes;

fields that are spatially-related usually have similar box

geometry. Traversing left-to-right and top-to-bottom does

not always guarantee that atomic units with similar ge-

ometry are grouped together, e.g., boxes that are placed

one below the other with the same box geometry may not

be grouped together. However, we demonstrate that our

RvNN-VAE framework is able to effectively capture rela-

tionships among the boxes with our simple traversal strat-

egy, without any complex hand-crafted heuristics.

3.2. Recursive model for document layouts

Every atomic unit in the extracted hierarchies, to be used

for training, is initially represented using its bounding box

dimensions ([w, h] normalized in the range [0, 1]) concate-

nated with its semantic label, which is encoded as a one-hot



vector. To efficiently model document layouts using a recur-

sive model, we first use a simple single-layer neural network

to map the atomic unit bounding boxes to n-D vector repre-

sentations (we empirically set n = 300). Our recursive au-

toencoder network is comprised of spatial-relationship en-

coders (SREs) and decoders (SRDs). Each encoder and de-

coder is a multi-layer perceptron (MLP), formulated as:

xl = tanh
(

W (l) · xl−1 + b(l)
)

.

We denote by fW,b(x) an MLP with weights W =
{W (1),W (2), . . . } and biases b = {b(1), b(2), . . . } aggre-

gated over all layers, operating on input x. Each MLP in

our model has one hidden layer, and therefore, l ∈ {1, 2}.

Our SREs may operate over either (i) a pair of leaves, or

(ii) an internal node and a leaf. Regardless, we denote both

node representations as x1, x2. The merged parent code,

y, is calculated according to x1, x2 and the relative posi-

tion between the two bounding boxes, denoted by rx1x2
.

The relative position is always calculated w.r.t. the left child

(which is the internal node, when merging an internal node

and a leaf node). The i-th SRE is formulated as:

y = fWei
,bei

([x1 x2 rx1x2
]). (1)

The corresponding SRD splits the parent code y back

to its children x′
1 and x′

2 and the relative position between

them r′x′

1
x′

2

(see Figure 2, bottom right). It uses a reverse

mapping and is formulated as follows:

[x′
1 x

′
2 r

′

x′

1
x′

2
] = fWdi

,bdi
(y) . (2)

Each node in the hierarchy represents a feature vector,

which is encoded (or decoded) by one of c SREs (or SRDs).

In particular, we note that since the network is recursive, the

same encoder or decoder may be employed more than once

for different nodes. As described in more detail below, the

type of the encoder employed in each step depends on the

spatial relationship between the elements in this step.

During decoding, we determine the spatial-relationship

type i of a node so that the corresponding decoder can be

used. To this end, we jointly train an auxiliary node clas-

sifier to determine which SRD to apply at each recursive

decoding step. This classifier is a neural network with one

hidden layer that takes as input the code of a node in the

hierarchy, and outputs whether the node represents a leaf or

an internal node. In the case of an internal node, the cor-

responding SRD is invoked, and if it is a leaf, the code is

projected back onto a labeled bounding box representation

(box dimensions concatenated with a one-hot vector corre-

sponding to the semantic category) using a non-recursive

single-layer neural network.

The types of spatial relationships we consider for encod-

ing and decoding document layouts are: right, left, bot-

tom, bottom-left, bottom-right, enclosed and wide-bottom

Figure 4. Different types of spatial encoder/decoder pairs used in

learning document layouts. The left child (or the reference box) is

shown with a thick black outline. Relative positions are calculated

w.r.t. the left child.

(c = 7), see Figure 4. Note that we traverse a document

from left-to-right and top-to-bottom, and therefore, we do

not have to consider any kind of top spatial relation. The

structure of the binary tree (and the tree encoding thereof) is

dictated by the position of the atomic units in the document.

We show, in Section 5 that our model successfully learns to

generate novel layouts, including plausible co-occurrences

of atomic units.

3.3. Training details

The total training loss of our RvNN-VAE network is:

Ltotal = Lleaf + Lpos + Lce + LKL (3)

where the first term is the leaf-level reconstruction loss:

Lleaf =
1

N

N
∑

k=1

(x′
k − xk)

2. (4)

Here, x′
k and xk are the n-D leaf vectors at the decoder and

the encoder, respectively, and N is the number of leaves.

The second term is the relative-position reconstruction

loss between the bounding boxes (leaf-leaf or an internal

node box and a leaf box):

Lpos =
1

N − 1

N−1
∑

k=1

(r′x′

k
x′

k+1
− rxkxk+1

)2 (5)

where r′x′

k
x′

k+1

and rxkxk+1
represent the relative position

vectors at the decoder and encoder end, respectively.

The third term is a standard categorical cross-entropy

loss:

Lce(a, i) = log σ (a)i , (6)

where σ is the softmax function, a is a feature vector

mapped from the output of an internal (or a root) node at

which the node classifier is applied, and i ∈ [0, c − 1] cor-

responds to the ground truth spatial-relationship type at the

node.



Finally, the last term in Eq. 3 is the KL-divergence loss

for approximating the space of all root codes (encoder out-

put of the RvNN-VAE):

LKL = DKL(q(z)||p(z)) (7)

where p(z) is the latent space and q(z) is the standard nor-

mal distribution N (0, 1).
To train our RvNN-VAE network, we randomly initial-

ize the weights sampled from a Gaussian distribution. To

output document layouts that are more spatially balanced,

we developed a few (optional) post processing steps.

4. Evaluating Document Layouts

To evaluate how our method performs in terms of ap-

pearance and variability, we propose a new combinatorial

layout similarity metric we call DocSim. Inspired by how

the BLEU metric (bilingual evaluation understudy) for ma-

chine translation [21] measures sentences similarity, we aim

to obtain a simple and easy-to-compute structural similarity

measure between documents; one that resembles what hu-

mans perceive as similarity, yet is not too over-specified.2

We introduce our metric through the following interpreta-

tion of BLEU: consider a bipartite graph between all words

w in the first sentence S and all words w′ in the second

sentence S′, where there is an edge between w and w′ if

both represent the same word (or, say, are synonyms). The

BLEU score is then calculated by computing the number

of edges in a maximum matching between these two sen-

tences. Our metric, DocSim, similarly compares two given

document layouts D,D′ as follows: to any pair of bound-

ing boxes B ∈ D and B′ ∈ D′, we assign a weighted edge

that indicates how similar B and B′ are in terms of shape,

location, and “role” within the document. The final score is

then calculated as the aggregated weight of the maximum

(weighted) matching between the layouts D and D′.

Formally, suppose we are given two documents, D1 and

D2, each viewed as a set of bounding boxes of one or more

“types” (examples of such types in real-world documents

can be a paragraph, title, figure, and so on). Each bounding

box is represented as a quadruple consisting of its minimum

and maximum x and y coordinates within the document.

The coordinates are normalized to fit in the unit 1×1 square.

The similarity measure between two normalized documents

D1 and D2 is calculated in two steps: weight assignment to

box pairs, and maximum weight matching among boxes.

Assigning weights to box pairs. We would like to as-

sign weights to pairs of boxes, so that similar pairs, that

2Generally speaking, there cannot exist a “one-size-fits-all” similarity

metric ideal for all possible settings, as was discussed extensively regard-

ing BLEU (see e.g. [16]). Thus, the quantitative evaluation of our paper

combines DocSim-based comparisons with other evaluation methods, so

as to try providing a complete picture of the efficacy of our approach.

Training sample Probabilistic [32] Ours

Figure 5. Given a document layout from ICDAR2015, we show

the nearest neighbor obtained from the probabilistic approach de-

scribed in [32] and the nearest neighbor using our approach. Color

legend: title, Paragraph, footer, page number, figure.

are roughly co-located and have approximately the same

area, will have a higher weight. In the next step, we shall

use these weights to assign a maximum weight matching

between boxes of D1 and boxes of D2; the total similar-

ity score would simply be the total weight of the matching.

Let B1 and B2 be two normalized bounding boxes, where

the x-coordinates of box Bi are denoted ai ≤ bi and its

y-coordinated are ci ≤ di. If B1 and B2 have different

types, then the weight between them is W (B1, B2) = 0
(this essentially means that boxes of different types cannot

be matched). Otherwise, we calculate the weight as

W (B1, B2) = α(B1, B2)2
−∆C(B1,B2)−CS ·∆S(B1,B2)

where the parameters α,∆C ,∆S are defined as follows:

The location parameter ∆C(B1, B2) is the relative eu-

clidean distance between the centers of B1 and B2 in the

document. We wish to reduce the shared weight of B1 and

B2 if they are far apart from each other. The shape differ-

ence is ∆S(B1, B2) = |w1−w2|+ |h1−h2| where wi and

hi are the width and height of Bi, for i = 1, 2, respectively.

As larger bounding boxes have a more significant role in

the “general appearance” of a document, we wish to assign

larger weight to edges between larger boxes. Thus, we de-

fine the area factor as α(B1, B2) = min(w1h1, w2h2)
C ,

where we choose C = 1/2. To explain this choice, ob-

serve that changing the constant to C = 1 would assign

almost no weight to edges between small boxes, whereas

C = 0 strongly favors this type of edges. Finally, we set

the shape constant as CS = 2. This means that the shape



difference between two boxes plays a slightly bigger role in

their weight calculation than does the location parameter.

Maximum weight matching among boxes. Consider a

bipartite graph where one part contains all boxes of D1

while the other part consists of all boxes of D2, and the

edge weight W (B1, B2) for B1 ∈ D1 and B2 ∈ D2 is

as described above. We find a maximum weight match-

ing M(D1, D2) in this bipartite graph using the well-known

Hungarian method [10]. The similarity score between D1

and D2 is defined as

DocSim(D1, D2) =
1

|M(D1, D2)|

∑

W (B1, B2),

where the sum is over all pairs (B1, B2) ∈ M(D1, D2).

5. Results and Evaluation

To assess our layout generation method, we con-

ducted several sets of experiments, aiming at understanding

whether the generated layouts are highly variable and also

visually-similar to the training documents. We also demon-

strate their usefulness as training data for document analysis

tasks. We evaluate our RvNN-VAE framework on the fol-

lowing two datasets.

ICDAR2015 Dataset. We use the publicly available IC-

DAR2015 [1] dataset, containing 478 documents that are

themed along the lines of magazine-articles. For these doc-

uments, we consider the following semantic categories: ti-

tle, paragraph, footer, page number, and figure.

User-Solicited (US) Dataset. We assembled a dataset of

2036 documents that solicit user-information (tax forms,

banking applications, etc.). Such documents typically ex-

hibit a highly complex structure and a large number of

atomic elements. These characteristics present an interest-

ing challenge for generative models producing document

layouts. For these types of documents, we consider the fol-

lowing semantic categories: key-value, title, and paragraph.

Key-value boxes are regions with a single question (key)

that the user must answer/address (value). As the dataset

we collected captures unfilled documents, the key-value box

contains regions that should be filled out by the user. We se-

mantically annotated all the categories using Amazon Me-

chanical Turk (AMT).

Training: We use the PyTorch framework [22], with a

batch size of 128 and a learning rate of 3 ∗ 10−4. On aver-

age, the number of semantically annotated bounding boxes

is 27.73 (min=13, max=45) in the US training set and 17.61

(min=3, max=75) for ICDAR2015 training set. As is shown

in the two rightmost columns of Table 4, the statistics on our

generated data are similar. Training takes close to 24 hours

on the US dataset and around 10 hours on the ICDAR2015

dataset, on an NVIDIA GTX 1080 Ti GPU.

5.1. Quantitative evaluation

We use our proposed similarity metric, DocSim, to

quantitatively evaluate our layout generation approach. To

measure resemblance of our generated document layouts

to the latent distribution of document layouts from which

the training data is sampled from, we iterate over training-

set and test-set, and for each document in these sets, we

find the nearest neighbor in our generated layouts. To this

end, the nearest neighbor of a document D is the document

D′ which maximizes the score DocSim(D, D′), and corre-

spondingly, the similarity score that D has with respect to a

dataset D is defined as maxD′∈D DocSim(D,D′). In our

nearest neighbors experiments, we filter out documents D′

whose number of boxes from any category is more than 3

higher or lower (before overlap removal) than that of D.

On the ICDAR2015 dataset. As a baseline, we obtain

synthetic layouts using the probabilistic approach described

in [32], using their publicly available implementation. No-

tably, the main focus of [32] is semantic segmentation of

documents, and their probabilistic layout synthesis method

(which outputs one-, two- and three-column documents) is

developed as a helper for their main learning task.

In the probabilistic synthesis method of [32], labeled

boxes are sampled according to a pre-defined distribution

(e.g., a paragraph is selected with probability q). We obtain

a collection P of 5k layouts using the probabilistic scheme

of [32]; layouts are synthesized with the title, paragraph

and figure classes, selected at probability 0.1, 0.7 and 0.2,

respectively. Similarly, we obtain a collection G of 5k lay-

outs generated by our RVNN-VAE framework, where we

use a training set T of 400 documents from ICDAR2015.

The collection T ′ of all remaining 78 documents from IC-

DAR2015 is considered our test set.

We experiment by comparing the baseline collection P
with our collection G in terms of how well they capture

the latent document layout space, where the evaluation uses

our DocSim score. First, we run the following: for any

training document T ∈ T , we pick GT ∈ G to be the

generated document from our collection which maximizes

DocSim(T,G) among all G ∈ G, and similarly PT ∈ P as

the document from the probabilistically synthesized collec-

tion which maximizes DocSim(T, P ) among all P ∈ P .

The similarity score between T and G is then calculated as

the average of DocSim(T,GT ) over all T ∈ T ; the simi-

larity score between T and P is computed analogously us-

ing DocSim(T, PT ) for all T ∈ T . Finally, we repeat the

above experiment, replacing the training set T with the test

set T ′.

The scores, given in Table 2, demonstrate that our

learned document layouts are more structurally-similar to

samples in the ICDAR2015 dataset, suggesting that our net-

work is able to meaningfully learn the latent distribution of



Generated sample Nearest neighbors in train set Nearest neighbors in generated set

Figure 6. Given a document layout generated by our approach, we retrieve three closest layouts from the training set (ICDAR2015 in the

top row and US in the bottom row) and three closest from our generated set. Color legend (ICDAR2015): see Figure 5. Color legend (US):

title, paragraph, key-value.

Measure
Real

[1]

Probabilistic

[32]

Generated

(Ours)

Overlap (%) 2.3 0 1.9

Alignment (%) 17.8 9.6 18.2

Table 1. Spatial analysis of document layouts. Following [12],

we use overlap index and alignment index of semantic entities as

another measure to evaluate our layouts.

document layouts on which it was trained.

In addition, we perform a quantitative analysis using the

overlap and alignment indices, following the evaluation in

Li et al. [12]. Overlap index is the percentage of total

overlapping area among any two bounding boxes inside the

whole page. The second metric, alignment index, is calcu-

lated by finding the minimum standard deviation of either

left or center coordinates of all bounding boxes. Table 1

shows the percentage of overlap index and alignment in-

dex for the real ICDAR2015 layouts [1], probabilistic lay-

outs [32] and our generated layouts. As illustrated in the

table, our results are very much comparable to those of the

training data, demonstrating that our solution captures these

metrics well (and does much better than the probabilistic

layouts).

On the US dataset. As we are not aware of prior works

that address these types of documents, we do not have a

baseline method to compare to. We can, however, inves-

tigate the learning ability of our network on this dataset,

which contains a relatively large number of documents

(2036). Therefore, aside from training our network on the

full dataset, we also use smaller subsets of training samples.

As the entire US dataset is highly-variable, we compute our

similarity score for every pair of document layouts in the

entire US dataset and cluster the dataset into five groups

(using spectral clustering). We then train our network on

clusters that contain at least 500 documents, using a 80-20

train and test split, and generate 2K document layouts for

each cluster.

We then compare the similarity scores obtained by train-

ing on the entire US dataset against the scores obtained on

the US clusters (averaging over all cluster scores). Inter-

estingly, the scores of the train/test sets are virtually almost

identical (with a slight score advantage of 0.002 to 0.003
for the entire US dataset, which is a 2 − 3% advantage).

This suggests that our approach does not require a large

amount of data to match the latent space of the training

set reasonably well; Indeed, as indicated by the relatively

similar scores, the models trained on the clusters capture

the latent space of the training set roughly as good as the

model that was trained on the full set. In Figure 6, we show

the three closest document layouts from the training set to

a randomly selected layout sample generated using our ap-

proach. As the middle three columns demonstrate, the three

closest training samples bear some resemblance to our gen-

erated layouts, but they are not the same, further validating

the novelty of the generated samples. The rightmost col-

umn, depicting the nearest neighbors in the generated set,

illustrates the variations in the generated results.

5.2. Data augmentation for detection tasks

To demonstrate the utility of our generated layouts, we

perform a standard detection task on documents and aug-



ICDAR [1] [32] Ours

Train (400) 0.123 0.147

Test (78) 0.118 0.146

Table 2. Comparing our approach to the probabilistic approach

from [32], in terms of similarity to the latent distribution of the

dataset (divided into train and test).

Box IoU Mask IoU

Dataset AP AP50 AP75 AP AP50 AP75

[1] 0.609 0.743 0.675 0.612 0.737 0.675

[1]+5k (aug.) 0.611 0.728 0.663 0.617 0.722 0.669

[1]+5k ([32]) 0.605 0.753 0.676 0.612 0.750 0.665

[1]+5k (ours) 0.634 0.770 0.702 0.644 0.769 0.700

Table 3. Enhancing detection and segmentation performance on

the ICDAR2015 [1] dataset using either data augmentations (sec-

ond row), synthetic samples with probabilistic layouts (third row)

or our learned layouts (bottom row).

ment the training data with generated documents whose lay-

outs are produced by our method. We train Mask R-CNN

[6], a popular object detection and segmentation network,

on the ICDAR2015 dataset and evaluate the results obtained

with and without performing data augmentation.

To generate training samples for Mask R-CNN, we in-

ject content to our generated layouts (trained on 400 docu-

ments from the ICDAR2015 dataset). To do so, we scrape

both text and images from Wikipedia. We also synthesize

training samples using the probabilistic approach described

in [32], and compare our results to the ones obtained by

augmenting the dataset with their documents. The con-

tent in both cases is sampled from the same scraped data,

thus the only difference is in the layouts. Furthermore, we

compare our results to a standard augmentation technique,

which uses photometric and geometric augmentations to en-

rich the ICDAR2015 dataset . In Table 3, we compare the

bounding box detections and the segmentation results ob-

tained by training on the different datasets. For both types

of results (box/mask), we report the average precision (AP )

scores averaged over IoU thresholds and at specific IoU val-

ues (AP50, AP75). The reported results are over the remain-

ing 78 documents, which we do not train on. As the table

demonstrates, our generated layouts consistently improve

detection and segmentation IoU scores (by at least 3%). In

comparison, scores obtained with documents synthesized

using the probabilistic approach or using regular augmen-

tation techniques are almost identical to the scores obtained

on the dataset without any augmentations. The improved

performance illustrates the vast importance of highly vari-

able layout in generating meaningful synthetic data, validat-

ing that our technique successfully learns a layout distribu-

Method
#Training

samples

#Semantic

categories

#Boxes

Avg.

#Boxes

Max

[12] 25000 6 - 9

Ours (on [1]) 400 5 17.06 74

Ours (on US) 560 3 28.27 45

Table 4. Comparison to previous work in terms of number of sam-

ples used for training, number of semantic categories in the train-

ing set, and average number of boxes per generated document.

tion which is similar to the input dataset.

5.3. Comparison to prior work

To the best of our knowledge, LayoutGAN [12] is the

only prior work for our context. For the lack of publicly

available code and dataset from [12], we perform a quanti-

tative comparison on methodological statistics and present

them in Table 4, and as was done in [12], we use the overlap

and alignment metrics to compare between real layouts, our

generated ones, and probabilistic layouts (see Table 1).

6. Conclusions

In this work, we present a new method for generating

synthetic layouts for 2D documents, coupling a recursive

neural network with a variational autoencoder. We intro-

duce a metric for measuring document similarity, DocSim,

and use it to show the novelty and diversity of our layouts.

There are several limitations to our approach. First,

while our approach can generate highly variable layouts

with dozens of elements, we are not yet able to generate

highly complex layouts (e.g., the US tax form 1040), and it

will be very interesting to understand how to reliably rep-

resent and generate such layouts. Second, our generated

layouts may contain undesirable artifacts, such as misalign-

ment and box overlaps. We addressed these artifacts us-

ing simple heuristics, but perhaps a more systematic solu-

tion would be to couple the current framework with a GAN,

which will encourage the generated layouts to be more vi-

sually similar to the training samples.

In the future, it will be interesting to complement our

layout generation approach with a suitable way to generate

high quality semantic content that “makes sense” in view

of the layout. Additionally, while our network does not re-

quire a huge amount of annotated data, it remains to be seen

if there is a way to devise layout generation methods that

require even less annotated training data, perhaps one-shot

or few-shot approaches to generate plausible and “similarly

looking” layouts. Finally, while recursive neural networks

were shown (here and in previous works) useful for generat-

ing “human-made” hierarchical structures, like documents

and indoor scenes, can they be used for generating highly

structured natural scenes?
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