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Abstract

An automatic table recognition method for interpreta-
tion of tabular data in document images majorly involves
solving two problems of table detection and table structure
recognition. The prior work involved solving both problems
independently using two separate approaches. More recent
works signify the use of deep learning-based solutions while
also attempting to design an end to end solution. In this
paper, we present an improved deep learning-based end
to end approach for solving both problems of table detec-
tion and structure recognition using a single Convolution
Neural Network (CNN) model. We propose CascadeTab-
Net: a Cascade mask Region-based CNN High-Resolution
Network (Cascade mask R-CNN HRNet) based model that
detects the regions of tables and recognizes the structural
body cells from the detected tables at the same time. We eval-
uate our results on ICDAR 2013, ICDAR 2019 and Table-
Bank public datasets. We achieved 3rd rank in ICDAR 2019
post-competition results for table detection while attaining
the best accuracy results for the ICDAR 2013 and Table-
Bank dataset. We also attain the highest accuracy results
on the ICDAR 2019 table structure recognition dataset. Ad-
ditionally, we demonstrate effective transfer learning and
image augmentation techniques that enable CNNs to achieve
very accurate table detection results. Code and dataset
has been made available at: https://github.com/
DevashishPrasad/CascadeTabNet

1. Introduction

The world is changing and going digital. The use of digi-
tized documents instead of physical paper-based documents
is growing rapidly. These documents contain a variety of
table-based information with variations in appearance and
layouts. An automatic table information extraction method
involves two subtasks of table detection and table structure
recognition. In table detection, the region of the image that

contains the table is identified while table structure recogni-
tion involves identification of the rows and columns to iden-
tify individual table cells. The prior proposed approaches
solved these two sub-problems independently.

In this paper, we propose CascadeTabNet, an improved
deep learning-based end to end approach for solving the two
sub-problems using a single model. The problem of table
detection is solved using instance segmentation. We perform
table segmentation on each image where we try to identify
each instance of the table within the image at the pixel level.
Similarly, we perform table cell segmentation on each image
to predict segmented regions of table cells within each table
to identify the structure of the table. Table and cell regions
are predicted in a single inference (at the same time) by the
model. Simultaneously, the model classifies tables into two
types as bordered (ruling-based) and borderless (no ruling-
based) tables. The model predicts the segmentation of cells
only for the unbordered tables. We use a simple rule-based
conventional text detection and line detection algorithms for
extracting cells from bordered tables.

We demonstrate the effectiveness of iterative transfer
learning to make the CNN learn from less amount of training
data as well as enable it to perform well on multiple datasets
by fine-tuning it on respective datasets. A new way of image
augmentation was also implanted into the training process to
enhance the accuracy of table detection and helping it learn
more effectively.

Evaluation for table detection task was performed on
three public datasets of the ICDAR 2013, ICDAR 2019
competition (Track A) dataset and TableBank dataset. We
achieve 3rd rank in post-competition results of ICDAR 2019
for table detection. We achieve the highest accuracy for
table detection task on ICDAR 2013 dataset and all of the
three subsets of the TableBank dataset. For table structure
recognition tasks we evaluate the model on ICDAR 2019
dataset (Track B2) and achieve the highest rank in post-
competition results.

Our main contributions made in this paper are as per the
following:



1. We propose CascadeTabNet: an end-to-end deep-
learning-based approach that uses the Cascade Mask
R-CNN HRNet model for both table detection and struc-
ture recognition.

2. We show that the proposed image transformation tech-
niques for image augmentation for training enhances
the table detection accuracy significantly.

3. We perform a comparative analysis of various CNN
models for the table detection task in which the Cascade
Mask R-CNN HRNet model outperforms other models.

4. We demonstrate an effective iterative transfer learning-
based methodology that helps the model to perform
well on different types of datasets using a small amount
of training data.

5. We manually annotated some of the ICDAR 19 dataset
images for table cell detection in borderless tables while
also categorizing tables into two classes (bordered and
borderless) and will be releasing the annotations to the
community.

2. Related work

In 1997, P. Pyreddy and, W. B. Croft [19] was the first
to propose an approach of detecting tables using heuristics
like a Character Alignment, holes and gaps. To improve
accuracy, Wonkyo Seo et al. [22] used the Junctions (inter-
section of the horizontal and vertical line) detection with
some post-processing. T. Kasar et al. [15] also used the
junction detection, but instead of heuristics, they passed the
junction information to SVM.

With the ascent of Deep Learning and object detection,
Azka Gilani et al. [9] was the first to propose a Deep learning-
based approach for Table Detection by using Faster R-CNN
based Model. They also attempted to improve the accuracy
of models by introducing distance-based augmentation to
detect tables. Some approaches tried to utilize the semantic
information, Such as S. Arif and F. Shafait [1] attempted to
improve the accuracy of Faster R-CNN by using semantic
color-coding of text and Dafang He et al. [12], used FCN for
semantic page segmentation with an end verification network
is to determine whether the segmented part is the table or
not.

In 1998, Kieninger and Dengel [16], proposed the initial
approach for Table Structure Recognition by clubbing the
text into chunks and dividing those chunks into cells based
on the column border. Tables have many basic objects such
as lines and characters. Waleed Farrukh et al. [7], used a
bottom-up heuristic-based approach on these basic objects to
construct the cells. Zewen, Chi et al. [5] proposed a graph-
based approach for table structure recognition in which they
used the SciTSR dataset constructed by themselves for train-
ing the GraphTSR model.

Sebastian Schreiber et al. [21] were the first to perform
table detection and structure recognition together with a 2
fold system which Faster RCNN for table detection and,
Subsequently, deep learning-based semantic segmentation
for table structure recognition. To make the model more gen-
eralize, Mohammad Mohsin et al. [20] used a combination
of GAN based architecture for table detection and SegNet
based encoder-decoder architecture for table structure seg-
mentation.

Recently, Shubham Paliwal et al. [18], was first to pro-
pose a deep learning-based end-to-end approach to perform
table detection and column detection using encoder-decoder
with the VGG-19 as a base semantic segmentation method,
where the encoder is the same and decoder is different for
both tasks. After detection results for the table are obtained
from the model, the rows are extracted from the table region
using a semantic rule-based method. This approach uses a
Tesseract OCR engine for text location.

3. CascadeTabNet: The presented approach

We try to focus on using a small amount of data effectively
to achieve high accuracy results. Working towards this goal,
our primary strategy includes :

1. Using a relatively complex but efficient CNN archi-
tecture that attains high accuracy on object detection
and segmentation benchmarking datasets as the main
component in the approach.

2. Using an iterative transfer learning approach to train the
CNN model gradually, starting from more general tasks
and going towards more specific tasks. Performing
iterations of transfer learning multiple times to extract
the needful knowledge effectively from a small amount
of data.

3. Strengthening the learning process by applying image
transformation techniques to training images for data
augmentation.

We elaborate on the strategies in the following sub-
sections and explain the pipeline of the approach.

3.1. Model architecture

To attain very high accuracy results we use a model that
was made by the combination of two approaches. Cascade
RCNN was originally proposed by Cai and Vasconcelos [2]
to solve the paradox of high-quality detection in CNNs by
introducing a multi-stage model. And a modified HRNet was
proposed by Jingdong Wang et al. [25] to attain reliable high-
resolution representations and multi-level representations
for semantic segmentation as well as for object detection.
Our experiments and analysis show that the cascaded multi-
staged model with the HRNet backbone network yields the
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Figure 1: CascadeTabNet model architecture

best results due to the ability of both the approaches to strive
for high accuracy object segmentation.

The original architecture of HRNet [14] (HRNetV1) was
enhanced for semantic segmentation to form HRNetV2 [25].
And, then a feature pyramid was formed over HRNetV2 for
object detection to form HRNetV2p [25]. CascadeTabNet
is a three-staged Cascade mask R-CNN HRNet model. A
backbone such as a ResNet-50 without the last fully con-
nected layer is a part of the model that transforms an image
to feature maps. CascadeTabNet uses HRNetV2p_W32 [25]
(32 indicates the width of the high-resolution convolution)
as the backbone for the model.

The architecture strategy of the Cascade mask R-CNN
[3] is very similar to the Cascade R-CNN [2]. The Cascade
R-CNN architecture is extended to the instance segmentation
task, by attaching a segmentation branch as done in the Mask
R-CNN [13]. To explain the model architecture we try to
use the naming conventions similar to that of the Mmdetec-
tion framework [4]. As shown in figure 1, the image 1" is
fed into the model. The backbone CNN HR _NetV2p_W32
transforms the image ”I” to feature maps. The "RPN Head”
(Dense Head) predicts the preliminary object proposals for
these feature maps. The "Bbox Heads” take Rol features as
input and make Rol-wise predictions. Each head makes two
predictions as bounding box classification scores and box
regression points. ”B” denotes the bounding boxes predicted
by the heads and, for simplicity, we do not show the classi-
fication scores in the figure. The "Mask Head” predicts the
masks for the objects and ’S” denotes a segmentation output.
At the inference, object detections made by "Bbox Heads”
are complemented with segmentation masks made by "Mask
Head”, for all detected objects.

For image segmentation using the Cascade R-CNN, Cai
and Vasconcelos [3] propose multiple strategies in which
the segmentation branch is placed at various stages of the
network. CascadeTabNet utilizes the strategy of adding
the segmentation branch at the last stage of the Cascade
R-CNN. The model was implemented using the MMdetec-
tion toolbox [4]. We use the default implementation (cas-
cade_mask_rcnn_hrnetv2p_w32_20e) of the model for our
experiments and analysis.
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Figure 2: Two stage transfer learning

3.2. Iterative transfer learning

Both the tasks involve object segmentation, and we use a
multi-task learning approach as well as multiple iterations
of transfer-learning to achieve our goal. In short, we first
train our model on a general dataset and then fine-tune it
multiple times for specific datasets. More precisely, we
use two iterations of transfer learning and so we call this
approach as two-stage transfer learning.

First, we create a general dataset for a general task of table
detection. We add images of different types of documents
like word and latex in this dataset. These documents contain
tables of various types like bordered, semi-bordered and
borderless. A bordered table is one for which an algorithm
can use just the line positions to estimate the cells and overall
structure of the table. If some of the lines are missing, it
becomes difficult for a line detection based algorithm to
separate the adjacent cells of the table. We call such a table
as a semi-bordered table, in which some lines are not present.
And a borderless table is one which doesn’t have any lines.
Detecting only the tables in images is a general task for an
algorithm, but detecting them according to their types is a
specific task. For example, detecting dogs in images is a
general task, but detecting only the bulldogs and pugs is
a more specific task that requires relatively more data by
the model. To make it a general task for table recognition,
initially, all these tables in the images are annotated as of
one class (the table class), which enables the model to learn
common and general features to detect tables. The trained
model can use this knowledge to learn even more specific
tasks like table detection according to their types.

The two-stage transfer learning strategy is used to make
a single model learn end to end table recognition using a
small amount of data. In this strategy, transfer learning is
practiced two times on the same model. Detecting tables
in images becomes a specific task for a CNN model that
was earlier trained on a dataset with hundred-thousands of
images to detect objects from thousand classes. So in the
first iteration of transfer learning, we initialize our CNN
model with the pre-trained imagenet coco model weights
before training. It enables the CNN model to learn only task-



specific higher-level features while getting some advantages
like the lesser need for training data and reducing total train-
ing time due to beforehand knowledge. After training, CNN
successfully predicts the table detection masks for tables in
the images. Similarly, in the second iteration, the model
is again fine-tuned on a smaller dataset to accomplish even
more specific task of predicting the cell masks in borderless
tables along with detecting tables according to their types.
Another challenging and specific task can be table detection
for a particular type of document images (latex documents).
We do not freeze any of the layers in the model at any stage
while performing iterative transfer learning.

For the task of table structure recognition, which involves
predicting the cell masks in borderless tables along with
detecting the different types of tables, we create a smaller
dataset. It contains lesser images than that for table detection.
This new dataset contains slightly advanced annotations in-
timating the model to detect tables of two types with their
labels (two classes) as bordered and borderless, as well as
predict borderless table cell masks (total three classes). We
put borderless and semi-bordered tables in one class, the
borderless class. We put semi-bordered tables in borderless
class because we cannot use only line information to extract
cells out of it. We need cell predictions for semi-bordered
tables from the model. After again fine-tuning the model on
this dataset, it successfully detects tables with their type and
also predicts segmentation masks for table body and cells
for borderless tables with very high accuracy.

This strategy worked effectively because while doing the
knowledge transfer between two tasks the domains of both
the tasks were the same. If domains of two tasks are different,
for example, training a model to detect dogs in images and
then using the same model to detect different types of horses,
then it may result in a negative transfer. Figure 2 shows the
figurative explanation to two-staged transfer learning where
the same model is trained iteratively from general to a more
specific task, reducing the size of the dataset as we move
down.

3.3. Image Transformation and data augmentation

Providing a large amount of training data can easily pro-
duce deep-learning-based models that can attain very high
accuracy results. Adding more training data also prevents
models from over-fitting to the training data. For this con-
cern, we try to implement image-augmentation techniques
on the original training images to increase the size of training
data. But, not all of these techniques would be very effective
for augmenting document images. For example, the use
of shear and rotation transformations won’t be an effective
strategy because the digital documents in the datasets are
perfectly axis-aligned. We try to implement the techniques
that will help the model to learn more accurately.

Documents have text or content regions and blank spaces

in them. As the text elements are very small in documents
and the proposed model was used for detecting real-world
objects in images, we try to make the contents better under-
standable to the object segmentation model by thickening
the text regions and reducing the regions of the blank space.
We propose image transformation techniques that help the
model to learn more efficiently. The transformed images
are added in the original dataset, which also increases the
amount of relevant training data for the model.

We propose two types of image transformation techniques
as Dilation transform and Smudge transform.

3.3.1 Dilation transform

In the dilation transform, we transform the original image
to thicken the black pixel regions. We convert the original
images into binary images before applying the dilation trans-
form. Figure 3, a) is the original image and b) is the trans-
formed dilated image. A 2x2 kernel filter for one iteration
was applied to the binary image to generate the transformed
image. Experiments showed that the kernel size of 2x2 gave
better results.

3.3.2 Smudge transform

In the smudge transform, we transform the original image to
spread the black pixel regions and make it look like a kind
of smeary blurred black pixel region. The original images
are converted into binary images before the smudge trans-
form is applied. In Figure 3, a) is the original image and
c) is the transformed smudged image. Smudge transform is
implemented using various distance transforms. The orig-
inal algorithm is described by Gilani et al. [9] that applies
Euclidean Distance Transform, Linear Distance Transform,
and Max Distance Transform to the image. Also, some ad-
ditional normalization and parameter tuning enhanced the
results.

(a) Original Image (c) Smudged image

(b) Dilated image

Figure 3: Image transformations



3.4. Pipeline

In this section, we describe various stages in the pipeline
of the CascadeTabNet end to end system for table recogni-
tion.

Figure 4, shows the block diagram of the pipeline. The
two-stage fine-tuned CasacdeTabNet model takes in the im-
age of the document containing zero or more tables. It
predicts the segmentation masks for tables of two types as
bordered and borderless, as discussed earlier. Next in the
pipeline, we have separate branches for bordered and border-
less tables. Depending on the type of the detected table it is
further processed by its respective branch post-processing
module. Post-processing modules perform trivial tasks of
arranging and cleaning the outputs of the model.

'Borderless Branch

: Borderless Masks ;

; H Borderless table ||

! _ Post Processing | !
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Figure 4: CascadeTabNet Pipeline

In the borderless branch, we arrange the predicted cells
detected inside the table into rows and columns based on
their positions. We estimate the missing table lines using the
positions of identified rows and columns. Based on these
lines, for undetected cells, we detect cells using a contour-
based text detection algorithm. And finally, Row-span and
Col-span cells are also identified after estimating the lines.

In the bordered branch, a conventional algorithm of line
detection is used to detect lines of bordered tables. The cells
are identified using the line intersection points. And within
each cell, the text regions are detected by using the contour-
based text detection algorithm. We prefer not to train our
model for bordered table cell segmentation masks prediction
because using the line information from bordered tables is
much easier and efficient to recognize the cells.

4. Dataset Preparation

For creating a General dataset for table detection task
we merge three datasets of ICDAR 19 (¢cTDaR)[8], Mar-
mot [6] and Github ! [23]. The cTDaR competition aims
at benchmarking state-of-the-art table detection (TRACK
A) containing two subsets of the dataset as Modern and
Archival, further described in [8]. We include only the mod-
ern subset of this dataset in the general dataset. This subset
contains several images of word and latex documents, having
text in English and Chinese languages. We also include a

Uhttps://github.com/sgrpanchal3 1/table-detection-dataset

publicly available Marmot dataset published by the Institute
of Computer Science and Technology of Peking University,
further described in [6]. Marmot dataset holds two subsets
as Chinese and English, we include both sets in the general
dataset. As done by DeepDeSRT [21], to achieve the best
possible results, we removed the errors in the ground-truth
annotations of the dataset. And finally, we also include a
dataset from the internet [23] in the general dataset that con-
tains only borderless table images with some magazine and
newspaper based document images. This dataset was also
cleaned like the marmot dataset. The General dataset con-
tains a total of 1934 images having 2835 tables in it, and we
use this dataset to train a General model.

For the preliminary analysis of image augmentation, we
created four training sets. The first set contains the orig-
inal images. The second set is created by applying the
dilate-transform to all the images in the original set and
adding them in the set along with corresponding original
images. Similarly, the third set is created by applying the
smudge-transform to these original images. And the last
set is created by adding the smudged, dilated and original
images altogether in the set. In Section 5. we perform a
rigorous analysis of these training sets by training different
types of models. We show the effectiveness of augmentation
techniques, as it boosts the models’ performance.

To evaluate the model on the ICDAR 19 (Track A Mod-
ern) competition dataset, we perform the dilate image trans-
form for all the images of the Track A Modern dataset. And
then fine-tune the General model on it.

For testing all of the aforementioned datasets, we use the
test set of the ICDAR 19 dataset (Track A Modern). We find
this set robust and ideal for testing because it contains all
types of images like Latex and Word, having all types of
tables.

We also provide evaluation results on the TableBank
dataset [17]. TableBank dataset is a new image-based ta-
ble detection and recognition dataset that contains Word and
Latex documents based 417K table images. The table de-
tection subset of the dataset has 163,417 images in Word,
253,817 images in Latex and 417,234 images in Word+Latex
subsets respectively. To demonstrate the effectiveness of our
approach, we don’t fine-tune the model on the whole dataset.
Instead, we fine-tune the model on a very small subset of
the actual TableBank datasets. For latex, we only choose
1500 images randomly from the TableBank Latex for train-
ing. For creating the test set for latex, we randomly choose
1000 images from the TableBank Latex dataset, as originally
done by the authors [17]. Similarly, for Word, we choose
1500 images randomly from the TableBank Word dataset for
training. And again, for creating the test set, we randomly
choose 1000 images from the TableBank Word dataset. We
found that some annotations provided for the TableBank
Word dataset images were inappropriate. We preferred not



to include these images in the test set. And finally, we create
a set for both latex and word by combining the randomly
chosen images of word and latex train sets, putting a total
number of 3000 images for training. And likewise, for test-
ing, we create the test set by combining the randomly chosen
images of test sets of latex and word, putting a total number
of 2000 images.

And we also evaluate the model on the ICDAR 13 [11]
dataset that includes a total of 150 tables. It has two subsets
as EU and US, in which there are 75 tables in 27 PDFs
from the EU set and 75 tables in 40 PDFs from the US
Government. We convert all of these PDFs into images and
we get 238 images, out of which we use 40 randomly choose
images for fine-tuning and others for testing.

For creating a dataset for table structure recognition task
we manually annotated some images from the ICDAR 19
(Track A Modern) train set. As discussed earlier, this dataset
is annotated for three classes. We randomly choose 342
images out of 600 images of the ICDAR 19 train set. It had
114 bordered tables, 429 borderless tables and 24920 cells
in borderless tables in these images and were annotated ac-
cordingly. We release this dataset to the research community.
The test set for table structure recognition was provided by
the cTDaR competition track B2. It contains 100 images of
all types of documents and tables.

5. Results and Analysis

In this section, we start by demonstrating the effectiveness
of image transformation techniques by performing experi-
ments with a baseline model. Then we show a comparative
analysis of various CNN models with Cascade mask RCNN
HRNet. And finally, we show the evaluation benchmarks
of our model on public datasets. The experiments were per-
formed on Google Colaboratory platform with P100 PCIE
GPU of 16 GB GPU memory, Intel(R) Xeon(R) CPU @
2.30GHz and 12.72 GB of RAM.

5.1. Preliminary Analysis

To show the effectiveness of the proposed image trans-
formation techniques, we train a baseline model on all four
datasets (created by augmenting the general dataset in sec-
tion 4) and evaluate the results on ICDAR 19 Modern Track
A Test set. We try to obtain a dataset out of the four datasets
that help the model to do better. We chose the Faster-R-CNN
resnext101_64x4d (cardinality = 64 and Bottleneck width =
4) model as the baseline model. The Mmdetection toolbox
was used to implement the model with the default training
configurations provided by the framework.

Evaluation metrics for ICDAR 19 dataset are based on
IoU (Intersection over Union) to evaluate the performance
of table region detection. Precision, Recall and, F1 scores
are calculated with IoU threshold 0.6, 0.7, 0.8 and 0.9 re-
spectively. The Weighted-Average F1 (WAvg.) is calculated

by assigning a weight to each F1 value of the correspond-
ing IoU threshold. As a result, the F1 scores with higher
IoUs are given more importance than those with lower IoUs.
The details of the metric are further explained by Gao et
al. [8]. Table 1 shows the Fl1-scores for the IoU thresholds
of baseline models on the ICDAR Test (Track A Modern).
And, the model trained on the dataset having images of both
augmentation techniques performs significantly better than
other dataset models.

These results proved that both image transformation tech-
niques for data augmentation help the model learn more ef-
fectively. So, we use both image transformation techniques
on our General dataset for further experiments on the table
detection task.

Table 1: F1-scores of the baseline models

IoU
Dataset 56107 [ 08 [ 09 | V&
Original | 0.836 | 0.816 | 0.787 | 0.634 | 0.758
Dilation | 0.869 | 0.855 | 0.835 | 0.705 | 0.807
Smudge | 0.863 | 0.853 | 0.839 | 0.684 | 0.801
Both | 0.888 | 0.884 | 0.863 | 0.736 | 0.835

To show the comparative analysis of the CascadeTabNet
model with all other Cascade R-CNN and HRNet based
object detection and instance segmentation models, we use
the General dataset with both augmentation techniques for
training. We use Mmdetection based implementation of all
the models using the default configurations. All of these
models have pre-trained backbones on ImageNet dataset
using training schedules as of 1x (12 epochs) and 2x (24
epochs), further described in [4]. And all models utilize
the Feature Pyramid Network (FPN) neck. We fine-tuned
the following object detection and instance segmentation
models.

Table 2: Result of models on ICDAR Test (Track A Modern)

IoU
Model 56 707 [ o8 [ 00 | V&
Retina | 0.818 | 0.785 | 0.762 | 0.664 | 0.749
FRennHr | 0.889 | 0.877 | 0.862 | 0.781 | 0.847
CReenHr | 0927 | 0.910 | 0.901 | 0.833 | 0.888
CRennX | 0.929 | 0.913 | 0.903 | 0.852 | 0.895
CMRennD | 0.912 | 0.897 | 0.880 | 0.834 | 0.877
CMRennX | 0.931 | 0.925 | 0.909 | 0.868 | 0.905
CMRennHr | 0.941 | 0.932 | 0.923 | 0.886 | 0.918

1. Retina : Resnext-101 based RetinaNet model with car-



dinality = 32 and bottleneck width = 4d.

2. FRennHr : Faster R-CNN with hrnetv2p_w40 backbone
(40 indicates the width of the high-resolution convolu-
tion).

3. CRcnnX : Three staged Cascade R-CNN with Resnext-
101 backbone having cardinality = 64 and bottleneck
width = 4d.

4. CRennHr : Three staged Cascade R-CNN with hr-
netv2p_-w32 backbone.

5. CMRcennD : Three staged Cascade R-CNN with Resnet-
50 backbone with c3-c5 (adding deformable convolu-
tions in resnet stage 3 to 5).

6. CMRcnnX : Three staged Cascade mask R-CNN with
Resnext-101 backbone having cardinality = 64 and bot-
tleneck width = 4d.

7. CMRcnnHr : Three staged Cascade mask R-CNN with
hrnetv2p_w32 backbone.

Table 2 shows the evaluated F1-scores of all models on
the ICDAR Test (Track A Modern) set. As seen in the ta-
ble, the multi-stage cascaded network methodology along
with HRNet backbone based models dominate other mod-
els. And, instance segmentation models do better than the
object detection models. The Cascade mask R-CNN HRNet
models achieves the highest accuracy among all models be-
cause of the fusion of two methodologies of multi-staged
cascading and high-resolution convolutions used for instance
segmentation.

5.2. Table detection evaluation

We again perform the iterative transfer learning technique
to fine-tune our General model (Cascade mask R-CNN HR-
Net) on ICDAR 13, ICDAR 19 and TableBank datasets
respectively for evaluation.

First, we fine-tune Cascade mask R-CNN HRNet on the
ICDAR 19 track A train set along with dilation transform
augmentation, and the following results were obtained on
the modern tack A test set. We achieved 3rd rank on the post-
competition leader board according to weighted-average
metrics but attained the best accuracy for IoU 0.9, Table
3. The winner of the competition TableRadar performs two
types of post-processing over the original output from the
network. They merge the regions whose overlapped areas
are larger than the defined threshold. And, detect lines in
candidate table regions such that if the detected line extends
over table-border, the table region is extended accordingly.
The runner up NLPR PAL used Fully Convolutional Network
(FCN) to classify image pixels into two categories: table and
background, then table regions are extracted with Connected
Component Analysis (CCA). Further details about both the

datasets are described in [8]. The advantage of our approach
over the approaches of the winner and runner-up is that both
of these approaches involve some kind of post-processing
after the original output of the network. But, in our approach,
we do not perform any type of post-processing. Our model
directly outputs the accurate table region masks leveraging
its architectural design and the techniques implanted during
its training.

Table 3: Comparison with participants of ICDAR 19 Track
A (Modern) F1-scores [8]

IoU
Team 06 [ 07 | 08 [ 09 | "€
TableRadar | 0.969 | 0.957 | 0.951 | 0.897 | 0.940
NLPR-PAL | 0.979 | 0.966 | 0.939 | 0.850 | 0.927
Ours | 0.943 | 0.934 | 0.925 | 0.901 | 0.901

Evaluation metrics for TableBank dataset for table detec-
tion are based on, calculating the Precision, Recall, and F1 in
the same way as in [9], where the metrics for all documents
are computed by summing up the area of overlap, predic-
tion, and ground truth. At this point, we want to emphasize
that, we only use 1500 images from word, 1500 from latex
and 3000 images for word+latex datasets for training(fine-
tuning) the models. We achieved the best accuracy results
for all of the three subsets, Table 4.

Table 4: TableBank results comparison with baseline[17]

Dataset Model Precision | Recall F1

ResNeXt-101 95.93 90.44 | 93.11

Both ResNeXt-152 96.72 88.95 | 92.67
Ours 92.99 95.71 | 94.33

ResNeXt-101 87.44 95.12 | 91.12

Latex | ResNeXt-152 87.20 96.24 | 91.49
Ours 95.92 97.28 | 96.60

ResNeXt-101 95.77 76.10 | 84.81

Word | ResNeXt-152 96.50 80.32 | 87.67
Ours 94.35 95.49 | 94.92

Evaluation metrics for [CDAR 2013 is based on complete-
ness and purity of the sub-objects of a table. We calculate
precision and recall for each table and then take the average,
as done by [18]. The metrics is further described by [18],
[10] and [24]. We only use 40 images from the dataset for
fine-tuning the general model and 198 images for testing,
while [18] and [21] used only 34 images for testing and rest
of the dataset for training. Results are shown in Table 5.
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Figure 5: Results of CasacadeTabNet Model

Table 5: Results of ICDAR 13 Table detection

\ Model | Recall | Precision | Fl-score |
Ours 1.0 1.0 1.0
DeepDeSRT [21] | 0.9615 0.9740 0.9677
TableNet [18] 0.9628 0.9697 0.9662

5.3. Table structure recognition evaluation

We trained the general model on our annotated dataset,
and this model is included in the final pipeline. The results
are evaluated on the ICDAR 19 Track B2 dataset. The eval-
uation for this track is done by comparing the structure of
a table that is defined as a matrix of cells. For each cell,
it is required to return the coordinates of a polygon defin-
ing the convex hull of the cell’s contents. Additionally, it
also requires the start/end column/row information for each
cell. It uses cell adjacency relation-based table structure
evaluation (based on Gobel et al. [10]). Similar to track
A, precision, recall and, F1 scores are calculated with [oU
threshold of 0.6, 0.7, 0.8 and 0.9 respectively. We attain
the highest accuracy on the post-competition leaderboard
(Table 6), but some high-end post-processing can improve
the results significantly.

Table 6: Comparison with participants of ICDAR 19 Track
B2 (Modern) F1-scores [8]

IoU

Team 06 | 07 | 08 [ 00 | "AV&
Ours | 0.438 | 0.354 | 0.190 | 0.036 | 0.232
NLPR-PAL | 0.365 | 0.305 | 0.195 | 0.035 | 0.206

We did not use TableBank Dataset for table structure
evaluation because ground truth information provided for

the images only contain table structure labels in the form of
HTML tags. It does not contain cell or column coordinates,
and hence cannot be used to evaluate the performance of
object detection or instance segmentation model. And we
did not use ICDAR 13 for table structure evaluation because
the evaluation metrics of ICDAR 13 uses a text content of
the cell-based mapping of ground truth cells and predicted
cells. For this concern, we need to extract the text content
using an OCR (Optical Character Recognition) engine. And
the overall accuracy would also depend on the accuracy of
the OCR. We also feel that ICDAR 19 is a better metric than
ICDAR 13 where the mapping of the cells is done using IoU
thresholds.

Figure 5 shows the results of our model. It predicts yel-
low masks for bordered tables (5 a.) and purple masks for
borderless tables (5 b.). It predicts accurate cell masks for
most of the borderless tables. For some images where some
of the predictions for cells are missed by the model (5 c.),
we correct it using line estimation and contour-based text
detection algorithm. The model fails badly for some images
5d)

6. Conclusion

The paper presented an end-to-end system for table de-
tection and structure recognition. It is shown that existing
instance segmentation based CNN architectures which were
originally trained for objects in natural scene images are also
very effective for detecting tables. And, iterative transfer
learning and image augmentation techniques can be used to
learn efficiently from a small amount of data. The proposed
model recognizes structures within tables by predicting table
cell masks while using the line information as well. Im-
proving the post-processing modules can further enhance
the accuracy. Our system performs better on various public
datasets for both the tasks. We thank Akshay Navalakha (AP
Analytica) for his idea and guidance in the initial project of
invoice-document parsing that we developed for him.
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