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Abstract

This papers focuses on symbol spotting on real-world

digital architectural floor plans with a deep learning (DL)-

based framework. Traditional on-the-fly symbol spotting

methods are unable to address the semantic challenge of

graphical notation variability, i.e. low intra-class symbol

similarity, an issue that is particularly important in ar-

chitectural floor plan analysis. The presence of occlusion

and clutter, characteristic of real-world plans, along with

a varying graphical symbol complexity from almost trivial

to highly complex, also pose challenges to existing spotting

methods. In this paper, we address all of the above issues

by leveraging recent advances in DL and adapting an ob-

ject detection framework based on the You-Only-Look-Once

(YOLO) architecture. We propose a training strategy based

on tiles, avoiding many issues particular to DL-based ob-

ject detection networks related to the relative small size of

symbols compared to entire floor plans, aspect ratios, and

data augmentation. Experiments on real-world floor plans

demonstrate that our method successfully detects architec-

tural symbols with low intra-class similarity and of vari-

able graphical complexity, even in the presence of heavy

occlusion and clutter. Additional experiments on the pub-

lic SESYD dataset confirm that our proposed approach can

deal with various degradation and noise levels and outper-

forms other symbol spotting methods.

1. Introduction

Symbol spotting [32, 37, 38] refers to the retrieval of

graphical symbols embedded in larger images, typically

in the form of a ranked list of regions of interest more

likely to contain the symbols. Unlike symbol recognition,

which aims to automatically label an already isolated sym-

bol, spotting happens in context. It is typically carried out

on the fly; no prior information about the shape of the sym-

bols is known, and therefore machine learning-based meth-

Figure 1: First row: 5 different graphical notations of the

bathtub symbol. Second row: corresponding symbol in-

stances in real-world scenarios with occlusions, clutter and

various levels of degradation.

ods are not helpful. This limitation can be in fact construed

as a positive, as it eliminates the need for a training set. An-

notated real-world datasets can be very difficult to obtain

and few are publicly available; this is especially true for ar-

chitectural floor plans, due to the intellectual property often

restricting their use and publication, and to their sheer com-

plexity and density of embedded information, which makes

the annotation process a daunting task. On-the-fly symbol

spotting circumvents the training process from annotated

real-world datasets via an interactive process: the user crops

a query patch in the image and the system finds all similar

patches within the image based on the statistical and geo-

metrical information of the query patch. It is assumed that

the user-identified patch contains a symbol.

One crucial drawback of on-the-fly symbol spotting is

that it cannot cope with graphical notation variability. Be-

ing able to deal with such variability is very important in

the context of designing a scalable method which is appli-

cable to various semantically equivalent graphical represen-

tations. This is particularly true for architectural floor plans,

as there can be as many graphical notations for a given sym-
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Figure 2: Some examples of trivial symbols consisting of

few and less informative primitives (from left: entry door,

closet door, refrigerator and dishwasher).

bol as there are architectural firms, and even more. Fig.

1 (top row) illustrates some of the graphical notation vari-

ability for the bathtub symbol. In this paper, we relax the

“on-the-fly” property of traditional symbol spotting and in-

stead tackle this semantic challenge by proposing a deep

learning-based method that is scalable to various semanti-

cally equivalent graphical representations.

Another important consideration is the presence of var-

ious levels of occlusion and clutter in architectural plans.

Architectural floor plans, as scale-accurate two-dimensional

diagrams of one level of a building, consist of lines, sym-

bols, and textual markings, showing the relationships be-

tween rooms and all physical features with an elevated view

from above. In real-world plans, the quantity of information

that has to be conveyed by architects for the proper con-

struction or renovation of the building is significant, yield-

ing often to heavy occlusion and clutter. Fig. 1 (bottom

row) shows instances of bathtub symbols as they appear

within architectural floor plans, suffering from heavy clutter

and occlusion. Such occlusion, clutter and degradation can

strongly degrade the performance of symbol spotting sys-

tems. If, as a result, the shape of the symbols appears con-

siderably distorted, state-of-the-art symbol spotting meth-

ods cannot detect the degraded symbols. In this paper, we

aim to provide a method that is robust to heavy occlusion

and clutter.

A third issue relates to the graphical simplicity of sym-

bols. Simple (trivial) symbols that do not have complex

structures, such as those shown in Fig. 2, can be challeng-

ing for many traditional symbol spotting methods. As can

be seen from the figure, the constituent primitives of these

symbols are limited and structural-based methods cannot

extract well-informed descriptions. In this paper, we suc-

cessfully address the detection of symbols of varying graph-

ical complexity (from very simple to highly complex).

1.1. Contributions

This paper proposes a DL-based framework for spotting

symbols in digital real-world architectural floor plans. Our

contributions are two-fold.

1. We leverage recent advances in DL by adapting a

YOLO-based [29] object detection network to the

problem of symbol spotting in real-world architectural

floor plans. We propose a training strategy based on

tiles, which allows us to circumvent many issues par-

ticular to DL object detection networks, including the

size of the objects of interest relative to the size of the

images, aspect ratios, and data augmentation.

2. Our proposed DL-based symbol spotting framework

successfully addresses the main issues of traditional

on-the-fly symbol spotting, namely graphical notation

variability, occlusion and clutter, and variable graphi-

cal complexity of symbols.

The remainder of the paper is structured as follows: Sec.

2 reviews related works, Sec. 3 details our symbol spotting

approach, Sec. 4 discusses experimental results, and Sec. 5

presents concluding remarks.

2. Related Works

Traditional (i.e. non-DL) symbol spotting approaches

can be categorized as either pixel-based or vector-based,

depending on the type of primitives used for representing

symbols. They both typically involve two phases: a de-

scription phase, in which low level information is utilized

to construct a symbol descriptor, and a matching phase, in

which regions within the image that match the symbol de-

scription are found [32]. Pixel-based approaches work di-

rectly on the raster image format, and are usually associated

with statistical methods, while vector-based approaches re-

quire a conversion to vectorial primitives and are usually as-

sociated with structural methods (typically graph-related).

Examples of pixel-based approaches include the F-

signature [42], which describes symbols based on ex-

erted attraction forces between different segments; meth-

ods based on pixel-level geometric constraints (e.g. [46])

summarized in histograms and matched via histogram sim-

ilarity; the Blurred Shape Model (BSM) [10], which en-

codes the spatial probability of occurrence of shapes from

the skeleton image and a neighbourhood-based voting sys-

tem; its extension (Circular Blurred Shape Model, CBSM)

[9], which utilizes correlograms to make the description ro-

tational invariant; and the Shape Context for Interest Points

(SCIP) [25] as well as its extension ESCIP [24], describ-

ing symbols with visual words. One important drawback of

pixel-based methods is their high computational complex-

ity, which results in a slow matching phase.

Vector-based approaches start by constructing a vecto-

rial representation of the meaningful parts of images and

symbols using grouped constituent primitives. Examples

of constituent primitives include vectors and quadrilater-

als [27]; solid components, circles, corners, and extremities

[39, 40, 41]; critical points and lines [2, 3]; convex regions

[7]; contour maps [23], closed regions [35, 17, 16]; and im-

age regions [1], derived for instance from connected com-

ponents. Spatial relationships between primitives are then

typically encoded in structural graphs. Examples of such



Figure 3: Proposed symbol spotting framework. Overlapping tiles from the input image are passed through YOLOv2 and

individually processed. Non-maximum suppression is carried out to remove multiple detections of the same symbol instances

due to the tiling strategy.

graphs are the Full Visibility Graph (FVG) [20], which fo-

cuses on the existence of a straight line between two points

on the primitives such that the line does not touch any other

primitive; the Attributed Relational Graph (ARG), which

qualifies the type of intersection [27, 26] or connections

[39, 40] between the primitives; the Hierarchical Plausi-

bility Graph (HPG) [2, 3], which tackles different possi-

ble vectorization errors; and the Region Adjacency Graph

(RAG) [17, 16, 1, 7], characterizing region boundaries and

the relational information between regions. In the match-

ing phase, subgraph isomorphism is generally carried out

to determine whether the image graph contains a subgraph

isomorphic to the symbol graph. As graph matching tech-

niques are computationally expensive, alternative matching

methods have been proposed, such as graph serialization

[8], graph embedding [21], and relational indexing [34].

One drawback of vector-based methods is the need for an

initial vectorization, which can introduce errors and inac-

curacies in the representation. The spatial relationships be-

tween primitives are also typically limited to very specific

information (e.g. adjacency in RAG, visibility in FVG).

Coping with notation variability of symbols remains a

significant semantic challenge for traditional symbol spot-

ting methods. Indeed, although some methods are relatively

successful in dealing with noise, occlusion and clutter in the

image [3, 34, 40], they are not capable of detecting symbols

with low intra-class similarity. Non-traditional, DL-based

methods have only recently started to permeate the literature

and are still far from addressing the current issues of tra-

ditional symbol spotting approaches, as they mostly target

only symbol recognition applications. For instance, in [6],

the authors propose a shallow CNN for recognizing hand-

drawn symbols in the context of multi-writer scenarios. In

[33], the authors utilize a message passing neural network

(MPNN), which is a graph neural network, to globally de-

scribe the structural graph representation of symbols and

then use the output for graph matching. Testing is limited

to symbol recognition, as localization in context is problem-

atic. Also, MPNNs are typically useful for dense graphs

and do not yield the same performance on sparse graphs,

which are common for our application domain. More re-

cently, Ghosh et al. [12] proposed GSD-Net, a compact net-

work for pixel-level graphical symbol detection. They use a

semantic segmentation network, which labels all pixels in-

dividually as opposed to extracting bounding boxes around

objects of interest. Such a method requires expensive pixel-

level annotations. The authors also trained their network on

the public SESYD dataset [44], which is much simpler than

real-world architectural floor plans. In particular, SESYD

does not include occlusion, clutter, nor any symbol intra-



Figure 4: Examples of each symbol class. First row from

left: bathroom sink, entry door, single folding door, double

folding door, bathtub, shower. Second row: dishwasher,

range, kitchen sink, refrigerator, toilet, and window.

class graphical variability. Closer to our work, Ziran and

Marinai [47] and Goyal et al. [13] both utilized object de-

tection networks for symbol spotting. Their experiments,

focused on floor plans significantly simpler than ours (see

Sec. 4.1), did not allow for a performance assessment under

heavy occlusion and clutter such as that shown in Fig. 1.

3. Proposed Method

The recent success of DL-based systems and convolu-

tional neural networks (CNNs) has revolutionized the object

detection field. Popular networks such as Single Shot Multi-

box Detector (SSD) [19], You Only Look Once (YOLO)

[28, 29, 30] and Faster R-CNN [31] can be used to detect

thousands of classes in natural scenes. Their success is due

in large part to the existence of large annotated datasets such

as Pascal VOC [11], MS COCO [18], and ImageNet [5].

In this work, we first build a dataset of real-world ar-

chitectural floor plans. We then use this dataset to train a

single shot detector based on the YOLOv2 [29] architec-

ture for spotting architectural symbols within architectural

floor plan images. Fig. 3 offers an overview of our proposed

framework. The dataset preparation and our approach based

on YOLOv2 are presented in detail next.

3.1. Dataset Preparation

From a library of proprietary digital architectural draw-

ings, designed by 10 architectural firms, we selected 115

different units showing various levels of difficulty in terms

of density of visual information, occlusion, and clutter. Ar-

chitects typically share floor plans in the PDF format. We

converted the PDFs into 150 DPI images, and annotated 12

architectural symbol classes, such as bathroom sinks, win-

dows, and entry doors (see Fig. 4). We do not make the

dataset of real-world architectural plans public due to in-

tellectual property issues, but are working towards securing

the necessary permissions for a future release.

We face several problems when dealing with architec-

tural floor plan images in the context of DL systems. First,

the average floor plan size is 5400 × 3600 pixels, whereas

individual symbols are very small (e.g. 70 × 80 pixels for

a bathroom sink). As a result, symbols tend to disappear

Figure 5: Data augmentation via image tiling strategy. The

range symbol appears at various locations within the tiles,

which also include various other symbols.

in the output feature map of CNNs, preventing them from

being detected. In addition, floor plan images have diverse

aspect ratios and resizing them to a fixed size, as required by

CNN architectures, dramatically changes the symbol mor-

phology and thus decreases the classification performance.

We propose a tiling strategy to tackle the above prob-

lems, which uses a scale parameter α and stride size S.

First, all the [αM ×αM ] overlapping tiles that have a start-

ing point at least S pixels apart are extracted from the floor

plan images. [M ×M ] is the required input size of the uti-

lized CNN, which is usually less than [256×256] [28]. Tiles

that do not encompass at least one complete symbol are au-

tomatically discarded from the training dataset. The tile size

must be selected so that tiles are larger than symbols. Also,

selecting larger tiles can boost their contextual information,

as in architectural plans, the occurrences of some symbols

might be spatially correlated. For instance, we can expect to

see a bathroom sink symbol in the vicinity of a toilet sym-

bol. At the same time, the tiles must be small enough so

that the symbols still appear in the deeper layers and output

of the CNNs. Tiles are also useful for data augmentation.

Fig. 5 shows neighbouring tiles containing a range symbol

captured at different locations within the tiles. The tile size

in the figure is [224 × 224] (i.e. α = 1 and M = 224,

required by ResNet50 [14]) and S = 50 pixels.

3.2. Symbol Spotting Using YOLOv2

Single shot object detection architectures based on im-

age grids (such as YOLO) seem appropriate and accurate

enough to localize architectural symbol boundaries, com-

pared to more complex and heavier two-stage classification

architectures (such as Faster R-CNN [31]), due to the fol-

lowing considerations. Floor plan images differ from nat-

ural scene images (for which most CNN-based object de-

tection systems were developed) on several aspects. Floor

plans are typically grey-level with a small number of possi-

ble symbol classes, compared to colourful natural scene im-

ages with a large number of possible object classes. Addi-

tionally, floor plans have a simpler background and chances



of overlap between symbols is low (this does not apply

of course to other parts of the image such as textual in-

formation and measurements, which may have a consider-

able overlap with symbols). Here, we use YOLOv2 [29]

as a single shot object detection architecture. We selected

YOLOv2 instead of YOLO [28] because of its higher lo-

calization accuracy and recall performance. The improve-

ments of YOLOv3 [30] consist mainly in a prediction across

three scales and a better feature extraction network, but at

the cost of a slower and heavier system. As architectural

symbols have similar sizes and simpler structures compared

to objects in natural scenes, YOLOv3 cannot offer a notice-

able improvement over YOLOv2. In YOLOv2, the input

image is divided into non-overlapping grids. Each grid can

only predict one object. A backbone CNN (e.g. Darknet19)

extracts features and for each grid, a set of prior anchors are

evaluated based on a loss function which penalizes localiza-

tion, confidence and classification errors.

In the training phase, we use the tile dataset described

in Sec. 3.1) to train the network. In the inference phase,

the input image is first broken down into tiles. Each tile is

then passed through the network and symbols are detected.

Fig. 3 shows the inference process. The detected symbols in

the overlapping tiles are shown in the bottom-right image.

As a given instance of a symbol typically appears in several

tiles, it is detected multiple times. To refine and concate-

nate the results, we perform a non-maximum suppression

step as follows. For overlapping detections, we compare all

pairs of bounding boxes. If their overlap is larger than a

threshold (a percentage of the size of the smaller bounding

box), the bounding box with the highest classification score

is retained. In cases of close scores, the larger bounding box

is selected and the smaller one is removed. The bottom-left

image in Fig. 3 shows the final results for a 10% threshold.

4. Results and Discussion

We assess our framework on a real-world floor plan

dataset and on SESYD, a public dataset of synthetic doc-

uments. For both datasets, we evaluate the performance on

individual tiles first, and then assess entire floor plans. We

provide a comparative analysis of our approach with respect

to state-of-the-art symbol spotting methods for SESYD

only, as code implementations of these methods are either

unavailable or not functional on our real world dataset.

4.1. Real­World Images

From the 115 units of the dataset (see Sec. 3.1), we used

90 units for extracting tiles. The remaining 25 units are used

as a test set for evaluating the framework on entire floor

plans. Given S = 50 and a tile size of [227 × 227], the 90

units generated 4707 tiles containing at least one complete

symbol. We randomly selected 80% of those 4707 tiles for

training the network, with the remaining 20% tiles used for

validation. During training, we employed the Adam opti-

mizer [15] with a mini-batch size of 30, a fixed learning rate

of 10−4, and data augmentation with horizontal and vertical

flipping and rotation and scale changes. Moreover, 10 prior

anchors were calculated from the size of the symbols. We

experimented with three different backbones, the original

Darknet19 [29], as well as ResNet50 [14] and Xception [4].

Table 1: Performance evaluation on the tile validation set

for two datasets and different backbones.

Dataset Backbone mAP AP50 AP75

Real-world

ResNet50 [14] 72.40 96.20 90.13

Darknet19 61.53 93.7 72.41

Xception [4] 51.03 87.58 55.01

SESYD ResNet50 78.15 97.92 91.42

Table 2: Performance evaluation per symbol class and glob-

ally on the real-world test dataset for different backbones.

Symbol ResNet50 Darknet19

AP50 AP75 AP50 AP75

Bathtub 91.67 91.67 95.83 95.83

Toilet 100.00 50.87 100.00 77.27

Kitchen Sink 91.07 77.91 88.21 51.74

Bathroom Sink 84.97 56.63 83.02 46.73

Closet Door 86.96 39.47 91.30 50.43

(double)

Entry Door 86.35 82.47 89.81 83.60

Oven 100.00 95.83 91.67 87.50

Window 75.64 31.78 77.75 33.23

Refrigerator 87.50 76.38 91.49 66.79

Closet Door 88.76 59.99 95.46 23.77

(single)

Dishwasher 78.89 66.35 67.00 67.00

Shower 100.00 100.00 100.00 100.00

AP 89.32 69.11 89.30 65.32

mAP 59.03 56.50

Table 1 (first three rows) shows the performance on the

tile validation set, whereas Table 2 shows the performance

per symbol class and the global performance for the test

set of 25 entire floor plans. In the tables, mAP , AP50 and

AP75 represent the mean average precision and the average

precision for IoUs equal to 50% and 75%, respectively. The

IoU (Intersection over Union) is obtained as follows:

IoU(A,B) = |A ∩B| / |A ∪B| (1)

where A and B are the bounding boxes of the detected sym-

bol and the ground truth symbol. From Table 1, we can



Figure 6: Detected entry doors and scores (max = 1) for var-

ious levels of occlusion and overlap, in real-world dataset.

see that the ResNet50 backbone significantly outperforms

Darknet19 and Xception, with Xception having the lowest

performance. Looking specifically at the AP50 metric, as

an IoU of 50% is acceptable in symbol spotting, the aver-

age precision is very high. From Table 2, again focusing on

AP50, we can see that our method performs strongly for

most symbols, with some yielding 100% precision. The

lowest score is obtained for the window symbol, which is

a particularly difficult case due to its triviality and varying

aspect ratio. Incorporating contextual information on walls

could help improve the window detection results.

Fig. 6 shows examples of detected entry doors, using the

ResNet50 backbone, with the bounding boxes and detection

scores (max = 1) highlighted. This figure showcases the

efficiency of our DL-based symbol spotting system com-

pared to the traditional methods. Our system successfully

addressed occlusion and boundary degradation, which can

highly affect the raster-to-vector conversion and thus the

structural representation of symbols in methods such as

[8, 20, 39], rotation, which is one of the weaknesses of the

pixel-based methods such as [10, 45], and graphical nota-

tion variability. Furthermore, as entry doors have a limited

number of primitives, some of them cannot survive the vec-

torization step required by vector-based methods. They also

include very small closed regions that can easily make the

symbol unrecognizable by methods that employ closed re-

gions as constituent primitives, such as [16, 35, 34].

Fig. 7 shows symbol spotting results for four units with

different designs and layouts, using the ResNet50 back-

bone. Qualitatively speaking, the results are excellent, and

we see that our approach works well even in the presence

of high levels of noise, occlusion and image degradation.

Considering the varied sources of the plans, we can also

conclude that our method successfully bridges the semantic

gap related to intra-class graphical notation variability.

4.2. SESYD Dataset

We also provide an evaluation on the public synthetic

images of the Systems Evaluation SYnthetic Documents

(SESYD)1 dataset, which is the standard dataset in the field.

Its synthetic floor plan collection includes 1000 floor plan

images (some of which have very similar unit layouts), con-

taining up to 16 different query symbol classes, with only

one graphical notation per symbol class. For training the

system, we randomly picked 50 floor plan images and ex-

tracted the tile images. Since images are large and the

floor plans are sparser than real-world floor plans, we used

[680 × 680] tiles with S = 100 to include more contextual

information around each symbol. This yielded 11,753 im-

ages divided into subsets of 9402 and 2351 tiles for training

and validation purposes, respectively. To test our system on

entire images, we used the selection from the GREC Sym-

bol Recognition and Spotting contest [43]. This contest set

contains 20 images from the original dataset of 1000 images

(ideal) and three degraded versions (60 images). Noise lev-

els #1 to #3 in [43] simulate thinner and thicker lines than

the original image lines, and add global noise to the image,

respectively. All of our results on SESYD are obtained with

the ResNet50 backbone, as it yields a better performance on

the real-world dataset.

Table 1 (last row) shows the results on the validation tile

set, and Table 3 shows the performance per symbol class

and the global performance for the test set of 80 entire

floor plans. Looking at AP50 in both tables, our framework

yields a very high precision rate, with 100.00% for many of

the symbol classes. Again, the window classes (window1

and window2) are the most problematic ones, and would

benefit from additional contextual information.

Table 4 compares our results with other published sym-

bols spotting approaches. In this context, the evaluation

metrics in the literature differ from the ones commonly

used for assessing object detection networks, and are com-

puted instance-wise and pixel-wise. For the instance-wise

metrics, detected symbols that have some overlap with the

ground truth are all counted as positive detections, and pre-

cision, recall and F-score values are calculated accordingly.

Pixel-wise metrics, based on relevant and non-relevant re-

trieved pixels, refine the localization assessment [36]. In

Table 4, P , R and F stand for precision, recall and F-score,

respectively. The ‘Queries’ column indicates how many of

the 16 symbols in the dataset are employed in the evalu-

ation. The winning method in [43] was [22]. Our method

significantly outperforms all other methods; the one method

with comparable performance (5th row) was evaluated on a

limited subset of the symbols only.

Fig. 8 shows examples of spotted symbols on a SESYD

layout for the noise #3 degraded version. All symbol in-

stances are correctly detected except for one (bottom right).

Although SESYD does not include graphical notation vari-

ability, occlusion nor clutter as the real-world dataset does,

it does allow us to conclude that our approach is able to deal

1http://mathieu.delalandre.free.fr/projects/sesyd/



(a) (b)

(c) (d)

Figure 7: Examples of spotted symbols in real-world floor plan images.

with various degradation and noise levels.

5. Conclusion

This paper proposes a novel approach to symbol spot-

ting utilizing a deep learning-based framework, showcased

on the challenging application of real-world digital archi-

tectural floor plan analysis. We adapt an object detection

network based on the YOLO architecture, and propose a

training strategy based on tiles, allowing us to address many

issues of the network regarding the relative small size of

symbols compared to entire floor plans, aspect ratios, and

data augmentation. Experiments on a dataset of real-world

floor plans demonstrate that our proposed method success-

fully spots symbols in conditions under which traditional

symbol spotting methods cannot cope, i.e. symbols with

low intra-class similarity and of variable graphical com-

plexity, even in the presence of occlusion and clutter. The

ResNet50 backbone within the YOLO framework yields

the best results compared to the original Darknet19 and

Xception backbones. Additional experiments on the pub-

lic SESYD dataset also confirm that our method can deal

with various degradation and noise levels and outperforms

existing symbol spotting methods. Future research direc-

tions include the integration of contextual information re-



Table 3: Performance evaluation per symbol class and globally on the GREC contest test dataset (from SESYD).

Symbol Ideal Noise 1 Noise 2 Noise 3

AP50 AP75 AP50 AP75 AP50 AP75 AP50 AP75

armchair 87.10 63.96 88.89 61.85 90.48 54.37 100.00 90.97

bed 100.00 100.00 92.11 92.11 89.47 56.64 94.74 92.03

door1 100.00 34.73 100.00 48.34 100.00 53.68 100.00 53.62

door2 100.00 100.00 100.00 100.00 0.00 0.00 100.00 100.00

sink1 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00

sink2 98.86 98.86 98.38 98.38 100.00 62.39 100.00 100.00

sink3 82.35 82.35 92.31 88.46 100.00 100.00 95.83 91.30

sink4 100.00 32.11 100.00 60.24 100.00 39.13 100.00 47.87

sofa1 100.00 76.91 100.00 34.97 97.30 57.44 98.08 54.48

sofa2 100.00 96.48 100.00 65.72 100.00 82.02 100.00 45.08

table1 100.00 20.62 100.00 22.03 100.00 15.02 100.00 15.04

table2 100.00 42.00 100.00 81.08 100.00 45.63 100.00 40.38

table3 100.00 72.02 100.00 38.34 100.00 100.00 100.00 100.00

tub 100.00 100.00 95.00 78.62 100.00 71.33 100.00 74.69

window1 62.20 0.00 58.27 0.00 71.01 0.00 59.31 0.00

window2 11.65 0.00 36.78 0.00 35.93 0.00 13.21 0.00

AP 90.13 57.50 91.36 54.38 89.30 65.32 91.32 56.59

mAP 54.08 53.93 47.27 54.85

Table 4: Instance- and pixel-wise evaluation of symbol

spotting approaches on SESYD.

Method Eval. P R F Queries

Nguyen et al. [24] Instance 70.00 88.00 79.50 6

Broelemann et al. [3] Instance 75.17 93.17 83.21 All

Dutta et al. [7] Instance 62.33 95.67 75.50 All

Le Bodic et al. [16] Instance 90.00 81.00 85.30 All

Nayef and Breuel [22] Instance 98.90 98.10 98.50 12

Winner in [43] (ideal) Pixel 62.00 99.00 76.00 All

Winner in [43] (noise 1) Pixel 64.00 98.00 77.00 All

Winner in [43] (noise 2) Pixel 62.00 93.00 74.00 All

Winner in [43] (noise 3) Pixel 57.00 98.00 72.00 All

Proposed method Instance 98.56 97.31 97.93

(ideal) Pixel 77.35 98.97 86.83 All

Proposed method Instance 99.32 97.15 98.22

(noise 1) Pixel 77.69 97.28 86.39 All

Proposed method Instance 99.11 99.11 99.11

(noise 2) Pixel 76.48 97.65 85.78 All

Proposed method Instance 77.63 97.34 96.62

(noise 3) Pixel 99.46 93.93 96.60 All

lating to walls and rooms to further improve the detection

results. We are also currently in the process of securing per-

missions from various architectural firms to release a public

dataset of real-world architectural plans.
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Lecourtier. An integer linear program for substitution-

tolerant subgraph isomorphism and its use for symbol

spotting in technical drawings. Pattern Recognition,

45(12):4214–4224, 2012. 2, 3, 6, 8
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