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Figure 1: Examples of HJDataset document images and annotations. (a) to (d) show images of the four page categories,

and (e) provides a simplified illustration of layout annotations for main pages. The seven types of hierarchically constructed

layout elements are highlighted in different colors.

Abstract

Deep learning-based approaches for automatic docu-

ment layout analysis and content extraction have the po-

tential to unlock rich information trapped in historical doc-

uments on a large scale. One major hurdle is the lack

of large datasets for training robust models. In particu-

lar, little training data exist for Asian languages. To this

end, we present HJDataset, a Large Dataset of Historical

Japanese Documents with Complex Layouts. It contains

over 250,000 layout element annotations of seven types.

In addition to bounding boxes and masks of the con-

tent regions, it also includes the hierarchical structures

and reading orders for layout elements. The dataset is

constructed using a combination of human and machine

efforts. A semi-rule based method is developed to ex-

tract the layout elements, and the results are checked by

human inspectors. The resulting large-scale dataset is

used to provide baseline performance analyses for text re-

gion detection using state-of-the-art deep learning mod-

els. And we demonstrate the usefulness of the dataset

on real-world document digitization tasks. The dataset is

available at https://dell-research-harvard.

github.io/HJDataset/.

1. Introduction

Complex layouts significantly complicate the automated

digitization of historical documents, which contain a variety

of rich information of interest to researchers and the pub-

lic more generally. In particular, many documents of rel-

evance to social science researchers and business analysts

contain complex, heterogeneous tabular and column struc-

tures, which off-the-shelf tools cannot recognize. More-

over, unique layout patterns appear in different languages.

For example, complex layouts with vertical text orienta-

tion are common in Asian languages. Complex layouts dis-

rupt Optical Character Recognition (OCR) and result in text

from different columns, rows, or text regions being incor-

rectly garbled together, making automated digitization re-

sults unusable.

Various algorithms [2, 3] have been proposed to analyze

the layouts geometrically. They utilize visual properties like

text spacing and gaps to correct skewness and segment con-

tent regions with fine-tuned parameters. Recently, there has

been an increased interest in adopting deep learning (DL)

methods to build end-to-end layout understanding models.

For example, Oliveira et al. [16] and Xu et al. [23] build

models upon fully convolutional networks [13] to detect

page frames and text lines with high accuracy.



Central to the success of DL models are many labeled

samples for training and evaluating the neural networks.

There have been long term efforts to develop layout anal-

ysis datasets [1], and recently a very large-scale dataset has

been developed for modern documents [24]. However, for

historical documents, the existing datasets are small. For

example, there are only 150 instances in the DIVA-HisDB

dataset [20] and 528 in the European Newspapers Project

Dataset [5]. Because deep neural nets tend to overfit small

datasets, models trained on them are less robust and perfor-

mance evaluation is less reliable. Because older documents

are subject to wearing, stains, and other noise that do not

appear in modern documents, they require dedicated large

datasets for training.

Additionally, most open-sourced historical document

layout datasets are in western languages [1, 5, 4]. Models

trained on them are not exposed to layout patterns that ap-

pear commonly and exclusively in Asian languages. Asian

language datasets will be required to build more generalized

layout analysis models.

To attack these problems, we present the HJDataset:

a Large Dataset of Historical Japanese Documents with

Complex Layouts. Currently, this dataset contains 2,271

document image scans with various document informa-

tion, from the Japanese Who’s Who biographical direc-

tory published in 1953, which contains biographies for

around 50,000 prominent Japanese citizens [10]. For each

document image, HJDataset contains its content category

(main, index, advertisement, or other). For the

main and index pages, we create 25k layout region anno-

tations of seven types at different levels (from page frames

to individual text blocks). Besides the bounding box co-

ordinates, we also include the dependency structures and

reading orders for all the layout elements. The data are

stored in the COCO format [12], which is commonly used

in computer vision research. The resulting dataset provides

a ground truth for different document image analysis tasks,

from page classification to layout element detection. Exten-

sive experiments have been conducted, and state-of-the-art

models are trained and evaluated on this dataset.

Manual creation of such a dataset would be highly la-

borious, prohibitively costly, and potentially quite noisy.

Therefore, similar to PubLayNet [24], HJDataset is gener-

ated in a near-automatic fashion. With the help of a care-

fully designed semi-rule-based method, the layout elements

are accurately extracted. To ensure label quality, possible

errors are identified based on annotation statistics, and hu-

man inspectors correct some minor errors accordingly.

The contribution of this work is twofold. First, we build

the HJDataset, the first large layout analysis dataset of his-

torical Japanese documents to the best of our knowledge.

A semi-ruled-based method is designed for generating this

dataset. Second, we show that models pre-trained on our

dataset can improve performance on other tasks with small

amounts of labeled data. The dataset and pre-trained mod-

els will be released online to support the development of

Japanese and more general layout analysis algorithms.

2. Related Work

Layout Analysis Dataset A variety of layout analysis

datasets have been created in recent years [21]. For mod-

ern documents, Antonacopoulos et al.’s work [1] is the first

frequently-used dataset, with 305 images of magazines and

technical articles available for download. The recent Pub-

LayNet [24] dataset contains 360k samples from modern

research publications. For historical documents, the work

in [5] provides layout annotations for 600 historical Euro-

pean newspaper images. The datasets in [20] and [6] are

commonly used for medieval manuscripts and have 160 and

2036 samples respectively. Historical layout datasets tend

to be small and are largely unavailable for Asian languages.

Large-scale digital libraries, such as the millions of scans

placed online by Japan’s National Diet Library, provide the

raw inputs for creating large datasets for historical docu-

ment layout analysis, but developing these datasets requires

methods that do not rely on costly human labeling.

Deep Learning for Layout Analysis As deep learn-

ing has revolutionized computer vision research, DL-based

document image analysis methods are also being developed

to tackle challenging tasks. [7] evaluates convolutional neu-

ral networks for document image classification tasks, and

[16] adapts the fully convolutional network (FCN) [13] to

detect layout element objects inside the page. For more

complicated tabular data, Schreiber et al. [19] adapt Faster

R-CNN [17] and FCN to identify their structures and parse

the contents. Behind their success, large datasets are re-

quired to train and evaluate the models.

Table 1: Page types and numbers included in HJDataset

Page Type Number of images Category ID a

main 2048 8

advertisement 87 9

index 82 10

other 54 11

a As COCO format does not contain an image-level category field,

we add a new key for each image record called category id.

3. Page Type Labeling

Contents are organized very differently on pages of

different purposes, and hence the first step of the lay-

out analysis pipeline identifies the page type. We man-

ually labeled the page types according to their purposes.



Figure 2: The hierarchical content structure in main

pages. Each page contains five rows that are vertically

stacked, and the text regions are horizontally arranged

within each row. Texts are vertically written inside the text

region, e.g. (g) in the figure. The title region, e.g. (f), can

be further split into title and subtitle blocks. An other cate-

gory is reserved for chapter headers and other irrelevant text

regions.

As shown in Figure 1, four labels, i.e. main, index,

advertisement, and other, have been created for the

2k images. main pages present the detailed biographical

information of around 50,000 Japanese business, political,

and cultural leaders with complex structure, forming our

primary focus. Table 1 provides a detailed description of the

classes and the number of samples contained in HJDataset.

4. Document Layout Annotation

As shown in Figure 2, the contents in the main pages are

organized in a hierarchical manner. Five rows are vertically

stacked in a page, while text region and title region are hor-

izontally arranged inside each row. The title region can be

further broken down into title and subtitle blocks, and other

irrelevant texts are labeled as the other type. The text region

blocks contain only vertical text lines and read from right to

left. Our objective is to segment the pages into units of sim-

ple layouts, namely, text region, title, and subtitle blocks.

Similar rules apply to the index pages.

Based on the hierarchical structures, we design a multi-

stage pipeline for robustly extracting the layout elements, il-

lustrated in Figure 3. For the input page scan, the Text Block

Detector first extracts the bounding boxes of page frame,

row, text region, and title region sequentially, as explained

in Section 4.1. A CNN is trained to predict the contextual

labels for the extracted regions, and the block segmentation

is refined accordingly (detailed in Section 4.2). After that,

we construct the reading orders based on Japanese read-

ing rules, as described in Section 4.3. Finally, Section 4.4

discusses measures to identify and correct possible errors

Figure 3: The four stages in layout element annotation.

Our method detects the coordinates of the page frames, row

regions, and text blocks. A text block classifier is then used

to predict the block categories (indicated by the different

colors in the figure), and the detections are refined accord-

ingly. Reading orders and hierarchical dependency are gen-

erated for all layout elements. Finally human annotators

check the results and correct the errors.

to ensure high quality of the generated annotations. The

dataset statistics are provided in Section 4.5.

4.1. Text Block Detector

The Text Block Detector extracts the content boxes in the

input scan in a hierarchical fashion. After binarizing the

color scans, the recognition is conducted on different reso-

lutions to identify blocks of different scales. The algorithm

downsamples the image with a 1/8 ratio when detecting the

page frame and row boxes, while using the full resolutions

for extracting regions in each row. To account for possible

rotations and irregularities, we characterize the page frame

boxes with quadrilaterals. The row, text region, and title

region are represented with rectangles as the distortions are

largely eliminated within the page frames.

As illustrated in Figure 3.a, we first estimate the page

frame box using contour detection. This method groups

pixels with similar visual properties like color or intensity

and can be used for extracting different regions [14]. In our

case, the largest intensity contour in the input delineates

the page boundary, and we estimate the four vertex coor-

dinates {(xi, yi)}
4

i=1
of the circumscribed quadrilateral for

this contour as the page box. We convert the page image

inside the quadrilateral to a rectangle based on a warp affine

transformation.

Connected Component Labeling (CCL) [18] and Run

Length Smoothing Algorithm (RLSA) [15] are used for

splitting the five rows of contents vertically inside the page

frame. As we apply the RSLA algorithm horizontally, each

row is connected, and CCL can be applied to differentiate

the rows. This approach is robust when the page is the end



Figure 4: Examples of the layout annotations and their

reading order.

of a chapter, where there could be fewer than five rows, and

the last row is not “full”. Similarly, for text and title regions

in a row, we apply RLSA vertically and split the connected

components. Since the prediction is performed row-wise, it

is impossible to connect text blocks in different rows, and

the segmentation result is more robust. Rectangular bound-

ing box coordinates (x1, y1, w, h) are generated for each

row, text and title region, where (x1, y1) is the coordinate

for the top-left corner, and w and h are width and height for

the rectangle, respectively.

Text Block Detector finds the layout regions with high

accuracy (details in Section 4.4). However, text and title

regions are sometimes mis-segmented due to various noise.

Hence, Text Region Classifier is developed to identify lay-

out categories and correct segmentation errors.

4.2. Text Region Classification and Refinement

A three-class CNN classifier is trained to identify the

text, title, and wrongly-segmented regions. After obtain-

ing the region bounding box from Text Region Detector, we

crop the page image based on the coordinates and predict its

category. If it is classified as mis-segmented, a CCL-based

method is applied to split it into text and title region. Title

regions are further broken down into more refined title and

subtitle segments, as illustrated in Figure 4.

We use the NASNet Mobile [25] architecture to build our

CNN. It is a neural network generated via Neural Archi-

tecture Search (NAS) and achieves excellent performance

over many benchmarks. Our classifier is trained on 1,200

hand-labeled samples and tested on 100 samples. As mis-

segmentation rarely appears (only 3 in 1000 samples), we

re-balance the dataset distribution by manually creating 250

mis-segmented images. The input images are rescaled to the

same size of 200 height and 522 width. We train the model

from scratch, without loading pre-trained weights. Using a

stochastic gradient descent optimizer, the loss converges in

40 epochs with a final test accuracy of 0.99.

Figure 5: Irregular reading orders in the index pages.

The section header in row 2 and 3 disrupts the reading order.

4.3. Reading Order Generation

This publication contains non-trivial reading orders

which must also be deduced. The texts inside the basic ele-

ments (text region, title, and subtitle) are written vertically,

and read from right to left. Additionally, for text blocks in

a row, they also follow a right-to-left order. Black arrows in

Figure 4 shows the topological orders of different elements

in a row. However, some different structures also exist. As

indicated in Figure 5, section titles (shown in orange) dis-

rupt the regular right-to-left order of texts (see rows 2 and

3). As texts are usually densely arranged in each row, by

searching the large gaps between blocks, we identify the

discontinuity and correct the special reading order accord-

ingly. We incorporate this irregularity in the dataset to in-

clude the real-world noise and support the development of

more general layout understanding models.

4.4. Quality Control and Human Annotations

Historical scans are challenging to analyze due to various

noise. Despite the carefully engineered method described

above, detection errors inevitably exist and need to be han-

dled carefully. However, considering the sheer number of

layout elements in this dataset, manual checking of all the

predictions would be highly laborious and potentially noisy.

To identify the small number of incorrect predictions

without searching the whole dataset, we examine statistics

about blocks and pages. As the main pages are densely

printed, we find the number of layout elements remains con-

sistent across pages, and blocks in a row are usually evenly

spaced. Hence, by filtering layout elements that are sig-

nificantly different in these statistics, we obtain a limited

number of misdetection candidates. As the specificity (true

negative rate) of the subsample is much higher, we can cor-

rect the problems more efficiently.

Misdetected Page Frames When a page is not appropri-

ately scanned, or it is physically broken, the page frame de-



Figure 6: Various noises in the page scans.

tection will become inaccurate, and it will disrupt the sub-

sequent extraction of row and text regions. A large increase

or decrease in the number of layout elements in a page often

implies a misdetection of the page frame. Therefore, we se-

lect pages with more than 118 (95th percentile) or less than

88 (5th percentile) layout elements and check them manu-

ally. This selects 182 pages, and 18 (9.9%) errors are identi-

fied. Their page frame coordinates are re-labeled manually.

After correction, we re-run the pipeline over the pages in

order to detect other layout regions more accurately.

Missed Text Lines The last text lines in a text region are

sometimes missed if they contain only a few characters.

This results in unusually large gaps between text blocks.

This error can be easily identified by filtering the widths of

the block gaps. We select 1,011 blocks with gaps larger than

54 pixels (99th percentile), and correct 487 of them.

Additional Correction Figure 6 shows issues like cracks,

stains, and holes that appear frequently and can disrupt the

prediction pipeline. It is difficult to pre-screen all the mis-

segmentation and incorrect predictions due to these irreg-

ularities. Hence, during the manual checking process, hu-

man annotators are asked to identify such errors and correct

them. A total of 111 layout elements have been found and

corrected so far.

In all, we fix more than 616 errors in total (since fix-

ing page frames leads to more improvements), and 80% are

identified by the statistical approach. We estimate that be-

fore correction, there are around 1,560 blocks detected in-

accurately.1 After correcting the errors, the resultant dataset

achieves 99.6% accuracy, and the remaining 0.4% errors

can be neglected as random noise.

4.5. Dataset Statistics and Partition

A total of 259,616 layout elements of seven categories

have been extracted, as detailed in Table 2. Figure 7 shows

1We randomly choose 20 pages, and count the error rate. This process

is repeated 3 times, and the average inaccuracy is 0.6%, which is equivalent

to 1,560 out of 260k blocks.

Table 2: Layout element categories and numbers

Category Training Validation Test Total

Page Frame 1490 320 320 2130

Row 7742 1657 1660 11059

Title Region 33637 7184 7271 48092

Text Region 38034 8129 8207 54370

Title 66515 14931 14366 95812

Subtitle 33576 7173 7256 48005

Other 103 16 29 148

Total 181097 39410 39109 259616

examples of the annotations. Layout elements like text re-

gion and other do not appear in the index pages, as we

characterize the texts in index pages as title.

We partition our dataset into training, validation, and

testing subsets: 70% for training and 15% each for vali-

dation and testing. The breakdown is stratified based on

the page type to ensure the equal exposure of different page

types in the three subsets. Because the characteristics of the

pages vary, categories appear in different frequencies, and

the dataset is unbalanced with respect to the object types.

5. Experiments

In this section, we first report results from training state-

of-the-art object detection models on the HJDataset. Perfor-

mance is evaluated and provided as a benchmark. Second,

based on the pre-trained model, we study how HJDataset

can assist other layout analysis tasks.

5.1. Deep Learning Benchmark

Without considering the dependency between contents,

layout analysis can be treated as detecting layout objects in-

side each page. As object detection has been extensively

studied in current deep learning research, well-established

models like Faster R-CNN [17], RetinaNet [11], and Mask

R-CNN [8] have achieved excellent performance in various

benchmarks [12]. Hence, we adopt these models and train

them on our dataset. The implementation is based on Detec-

tron2 [22], and the neural networks are trained on a single

NVIDIA RTX 2080Ti GPU.

The three models are trained on all layout elements of

main pages from the training set. For fair comparison, they

are all being trained for 60k iterations, with a base 0.00025

learning rate, and a decay rate of 0.1 for each 30k itera-

tions. The batch size is 2, and the backbone CNN structure

is R-50-FPN-3x (details in [22]), loaded with pre-trained

weights from the COCO dataset. The training configuration

will also be open-sourced for reproduciblility.

Table 3 shows the per-category bounding box prediction

mean Average Precision (mAP) for intersection, at intersec-



Figure 7: Annotation Examples in HJDataset. (a) and (b) show two examples for the labeling of main pages. The boxes

are colored differently to reflect the layout element categories. Illustrated in (c), the items in each index page row are

categorized as title blocks, and the annotations are denser.

tion over union (IOU) level [0.50:0.95]2, on the test data. In

general, the high mAP values indicate accurate detection of

the layout elements. The Faster R-CNN and Mask R-CNN

achieve comparable results, better than RetinaNet. Notice-

ably, the detections for small blocks like title are less pre-

cise, and the accuracy drops sharply for the title category. In

Figure 8, (a) and (b) illustrate the accurate prediction results

of the Faster R-CNN model.

5.2. Pre­training for other datasets

We also examine how our dataset can help with a real-

world document digitization application. When digitizing

new publications, researchers usually do not generate large

scale ground truth data to train their layout analysis models.

If they are able to adapt our dataset, or models trained on

our dataset, to develop models on their data, they can build

their pipelines more efficiently and develop more accurate

models. To this end, we conduct two experiments. First we

examine how layout analysis models trained on the main

pages can be used for understanding index pages. More-

over, we study how the pre-trained models perform on other

historical Japanese documents.

Table 4 compares the performance of five Faster R-CNN

models that are trained differently on index pages. If the

model loads pre-trained weights from HJDataset, it includes

information learned from main pages. Models trained over

2This is a core metric developed for the COCO competition [12] for

evaluating the object detection quality.

all the training data can be viewed as the benchmarks, while

training with few samples (five in this case) are consid-

ered to mimic real-world scenarios. Given different train-

ing data, models pre-trained on HJDataset perform signifi-

cantly better than those initialized with COCO weights. In-

tuitively, models trained on more data perform better than

those with fewer samples. We also directly use the model

trained on main to predict index pages without fine-

tuning. The low zero-shot prediction accuracy indicates the

dissimilarity between index and main pages. The large

increase in mAP from 0.344 to 0.471 after the model is

Table 3: Detection mAP @ IOU [0.50:0.95] of different

models for each category on the test set. All values are given

as percentages.

Category Faster R-CNN Mask R-CNNa RetinaNet

Page Frame 99.046 99.097 99.038

Row 98.831 98.482 95.067

Title Region 87.571 89.483 69.593

Text Region 94.463 86.798 89.531

Title 65.908 71.517 72.566

Subtitle 84.093 84.174 85.865

Other 44.023 39.849 14.371

mAP 81.991 81.343 75.223

a For training Mask R-CNN, the segmentation masks are the quadri-

lateral regions for each block. Compared to the rectangular bounding

boxes, they delineate the text region more accurately.



Figure 8: The prediction results of Faster R-CNN on Main pages in HJDataset and another publication. (a) shows that

the Faster R-CNN model is robust to noise like cracks and can detect most of the layout elements accurately. (b) highlights

some minor errors in the Faster R-CNN predictions like inaccurate row blocks, e.g. (1), and missed text and title regions, e.g.

(2) and (3). (c) shows the results of few-shot trained Faster R-CNN on another publication. They are generally correct. We

label the new publication differently to increase the difficulty for training, and the red boxes in the image denote a special

information region.

Table 4: Comparison of the test set AP of Faster R-CNN

models trained differently on index pages. All values are

given as percentages.

Initialization Training Data mAP AP50 AP75

COCO Alla 34.408 53.342 37.533

COCO Few-shot 9.988 18.572 9.669

HJDataset All 47.125 67.502 54.410

HJDataset Few-shot 10.275 21.353 10.423

HJDataset Zero-shot 9.411 44.299 0.068

a All indicates the model is trained on all 57 training index samples,

few-shot refers to model trained on 5 random samples, and zero-shot

means the model directly use the weights without training.

trained on five samples shows that the model can be quickly

adapted to similar tasks. As the AP50 and AP75 (AP cal-

culated with IOU=0.50 and 0.75) are higher than mAP, we

conclude that the models can learn to detect the general po-

sition of layout objects.

To evaluate our models on other historical Japanese doc-

uments, we manually annotate 12 pages from another pub-

lication with different layouts, the Japanese Who’s Who bi-

ographical directory published in 1939 [9], and we train the

models on 4 samples. Performance is assessed on the re-

maining 8 samples, as reported in Table 5. Similar to the

Table 5: Comparison of the test set AP of Faster R-CNN

models trained differently on another publication. All val-

ues are given as percentages.

Initialization Training Data mAP AP50 AP75

COCO Few-shot 69.925 95.119 78.667

HJDataset Few-shot 81.638 98.364 88.203

HJDataset Zero-shot 38.959 50.971 42.269

previous experiment, pre-training on HJDataset has a large

positive influence on the detection accuracy given few train-

ing samples. And shown in Figure 8 (c), the layout elements

are detected accurately. In summary, these two experiments

demonstrate the usefulness of our dataset for other layout

analysis tasks.

6. Conclusion

In this paper, we introduce the HJDataset, a large layout

analysis dataset for historical Japanese documents. With a

combination of semi-rule-based segmentation and statisti-

cal error identification and correction, 260k layout annota-

tions of seven categories are extracted from 2.2k page scans.

Page type labels, block dependency, and reading orders are

also included. Stored in COCO format, HJDataset allows



state-of-the-art object detection models to be easily trained

and evaluated. Moreover, we show that deep learning mod-

els trained on HJDataset can be adapted to other datasets,

facilitating real-world document digitization tasks.
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