This CVPR 2020 workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Towards Real-time Traffic Movement Count and Trajectory Reconstruction
Using Virtual Traffic Lanes

Awad Abdelhalim, Montasir Abbas
Department of Civil and Environmental Engineering
Virginia Polytechnic Institute and State University
Blacksburg, Virginia, USA

atarig@vt.edu, abbas@vt.edu

Abstract

In this paper, we discuss our framework and observa-
tions for Al City Challenge Track 1: Vehicle Counts by
Class at Multiple Intersections. The framework we propose
utilizes creating virtual traffic lanes for the movements of
interest. Using a Python Graphical User Interface (GUI),
the entry polygons for the movements of interest are identi-
fied. This leads to labeling the trajectories for the vehicles
that have been first detected entering the region of interest
via those entry polygons. Those vehicles, forming what we
refer to as “virtual traffic lanes” inside the region of inter-
est, are then used as identifiers for other vehicles detected
further downstream using a nearest neighbors search. The
framework we propose can run as an additional layer to any
multi-object tracker with minimal additional computation.
Our results and evaluation for the challenge track indicate
the high potential of our proposed framework, and show-
case the momentous value of incorporating domain knowl-
edge in computer-vision applications.

1. Introduction

Car crashes are one of the leading causes of death around
the world and in the United States, where they cost around
40,000 lives every year. The field of Intelligent Transporta-
tion Systems (ITS) aims to improve traffic safety through
transforming our transportation systems as we know them
from being passive and unaware to smart, dynamic, proac-
tive systems.

One of the major fields of ITS is the recognition and
trajectory tracking of vehicle movements in roadways and
freeways. Obtaining reliable vehicle trajectories plays a
crucial role in various aspects of ITS; including and not lim-
ited to dynamic urban traffic signal timing, behavioral mod-
eling, and active traffic management. With the ever-growing
use of traffic cameras for traffic monitoring and dynamic

signal timing applications, tremendous amounts of traffic
video data became available. This data raised the need for
developing reliable computer-vision applications to extract
information from this video data. This is a very difficult and
challenging task due to the image quality and area of view
provided by on-site cameras, occlusion in high traffic, and
privacy concerns regarding the vehicles involved.

In a typical controlled traffic intersection in the United
States, the traffic movement assignment for the signal con-
troller follows the National Electrical Manufacturers Asso-
ciation (NEMA) phases shown in Fig. 1 [1]. In a recent
study [2], we proposed incorporating this prior knowledge
of traffic movement patterns in vehicle trajectory tracking
framework, and the results of our exploratory analysis on
a small dataset we collected and annotated indicated the
effectiveness of our framework in obtaining reliable turn
counts and addressing the vehicle re-identification problem
due to occlusion in traffic. In this paper, we discuss our
framework and the results we obtained applying it to this
year’s Al City Challenge Track 1: Vehicle Counts by Class
at Multiple Intersections.
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Figure 1. Typical 8-phase traffic controller operation [1].



1.1. Object Recognition and Tracking in Trans-
portation and Traffic Safety Applications

Object detection and recognition problems have been
classically tackled by a myriad of computer-vision tech-
niques and manipulations, alongside the use knowledge
about the scenery, geometry, and the emergence of de-
formable part models [3], [4], [S]. Momentous recent ad-
vancements have been accomplished with the evolution of
Convolutional Neural Networks (CNNs), now forming the
basis of majority of the state-of-the-art object detection and
tracking algorithms. The introduction of Fast Region-based
Convolutional Neural Network (Fast R-CNN) [6], followed
by Faster R-CNN in 2015 [7] moved the fields closer to-
wards real-time application of object detection and tracking,
which quickly became a reality with the introduction of You
Only Look Once (YOLO) and Single-Shot Detector (SSD)
models in 2016 [8], [9]. Exponential improvements in those
models have followed in recent years [10], [11], [12], [13].

In the fields of transportation and traffic engineering, ve-
hicle detection and tracking is a research interest that has
been around for a while. Studies in the early 1990s have
been conducted to assess various techniques to identify,
track and count automobiles [14], [15], [16]. A vast ma-
jority of those earlier techniques failed in congested traffic
conditions due to partial and full occlusion, until models
that track sub-features rather than full vehicle features were
introduced [17] , [18], [19]. This set up the foundation for
various future studies in the field [20], [21], [22].

The aforementioned recent advancements in deep learn-
ing and the rise of GPU computing led to real-time perfor-
mance [23], [24], [25]. Albeit these improvements in terms
of accuracy and speed, vehicle tracking in heavy traffic con-
ditions still remains a very challenging task. Where legal
around the world, multiple studies have utilized license-
plate recognition as a better and more efficient way of track-
ing vehicles instead of the overall vehicle features [26],
[27]. While others made use of video data taken from Un-
manned Aerial Vehicles (UAVs) to completely overpass the
occlusion problem [28], [29]. To help in developing more
reliable algorithms, the field has pushed in recent years to
make multiple benchmark datasets publicly available [30],
[31].

2. Methodology
2.1. Base Object Tracker

For our previous study, we implemented a combination
of YOLO v3 [13, 32] and DeepSORT [33] algorithms. We
used the same combination for our base tracker for this chal-
lenge, both pre-trained on the Microsoft Common Objects
in Context (COCO) dataset [34], running at ~13 fps on a
machine equipped with NVIDIA GTX 1080 GPU and a 2.4
GHz 16-core Intel Xeon e5 2630 v3 processor.

2.2. Predefined Movement-Based Virtual Traffic
Lanes

In our previous study, we created a Python Graphical
User Interface (GUI) that allows the user to define poly-
gons representing entry planes to each NEMA movement
for vehicles entering an urban intersection. The same GUI
was used for this challenge, where the number of move-
ments and entry polygons is adjustable for each camera lo-
cation. We utilized homography transformation to obtain
bird-eye view of region of interest (ROI), which can also be
defined using the GUI but specific ROIs were provided for
this challenge and hence were used. The definition of en-
try polygons can be carried out in the normal camera space
or perspective transformed space. Vehicles for which the
first detection occurred inside the movement polygon re-
ceive a label of that movement, as multiple vehicles car-
rying those labels move across the ROI they create what we
refer to as virtual traffic lanes within the ROI, and those ve-
hicles are hence referred to as Virtual Lane Vehicles (VLV).
Late detections past entry polygon can occur simply due to
the late identification of a vehicle, but can also happen as
a result of identity switches to occlusion in heavy traffic,
lights and shadows, or the infrastructure. As we are us-
ing a pre-trained model on regular images, all the detection
tasks were carried out in the regular camera space while
the post-processing of vehicle trajectories is carried out in
the transformed space. The perspective transformation and
calculation of homography transformation matrix (M) were
carried out using OpenCV library [35]. The x and y coordi-
nates in destination space destination(x,y) for all points
on the regular image space are transformed using the fol-
lowing equation:
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Where:

x & y = are the coordinates for each point in the source
space from the camera video frame.

M =3 x 3 homography matrix.
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Where:

Movement; = movement label for vehicle 7.

x1; & y1; = the coordinates for the first point in the trajec-
tory of each detected vehicle 7.

label j = predefined movement of interest for each camera
locationj € Z : 1 < j < 12.

p;= entry polygon for movement of interest j.

Fig. 2 provides an overview of the data flow in our
framework. It is worth mentioning that while the use of en-
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Figure 2. Flow chart of the framework’s data flow.

try polygons to identify the movements of interest provides
an efficient way of labeling the vehicle trajectory and move-
ment patterns, it is insensitive of vehicles conducting illegal
movements within the area of interest (e.g. in the case of an
intersection, a vehicle that turns left albeit entering from a
thru-only lane).

Algorithm 1: Movement-Based K-Nearest
Neighbor Classifier
Result: Identifying the movement label for vehicles
where the first detection did not take place
within one of the entry polygons.
initialization;
for frame;, do
for X1iy Y14 ¢ P do
neighbors = VLVs € {framey,_39...framey430};
NEMA; = majority vote;
if nearest € framey_10 & ¢

{framey...framey,} then

ID; =
IDnearest < NEMA;=NEMAnpearest
else
‘ ID; = IDdetector
end
end

end

Algorithm 1 describes the K-NN search for the vehicles
with unidentified movements. The number of nearest neigh-
bors is the minimum of vehicles in the search space and
3. In our previous study (which was only limited to an ur-
ban intersection environment), we allowed a 3-second de-
lay before classifying newly identified vehicles to account
for unidentified vehicles that enter the ROI at the beginning
of video sequence or a signal green (in case of an intersec-
tion), where no other vehicles are in the ROI. A search back
time ¢t — 1 second allows to identify re-identifications due to
occlusion. The same parameters were used in for this chal-
lenge. Vehicles’ movement label is predicted by a majority
vote of VLVs within the given temporal range. Weighted
euclidean distance is the metric in use. An identity switch is
recognized when the nearest neighbor of vehicle; is present
before but no longer detected on or after framey. Note
that the given algorithm description is for video sequences
with frame rate of 10 fps. Look-back frames are adjusted
accordingly for videos with higher and lower frame rates.

2.3. AI City Challenge Dataset

The dataset provided for this challenge contained 31
video sequences totaling over 9 hours (4 of which were re-
served for testing) from 20 different camera locations. Spe-
cific movements and ROIs were predefined for each cam-
era location. Fig. 3 shows one of the camera locations for
which a subset of the ground truth labels were provided.
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Figure 3. Example of video data processing pipeline in our framework.

The figure shows the video data processing pipeline in our
framework, where the given ROIs are used to define the de-
tection and tracking area, then the user manually defines
polygons corresponding to each movement of interest, af-
ter which virtual movement lanes obtained via perspective
transformation. In the post-processing of detected trajecto-
ries for intersection scenes, we only include the trajectories
within the intersection (past the stop lines) to avoid stor-
ing data for stationary vehicles awaiting green light, hence
all trajectory data starts past the stop lines where the entry
polygons are defined. We initially evaluated our the accu-
racy of our framework on this given subset by evaluating
the count accuracy for each of the 12 movement labels in
that given intersection.

The conglomerated results from all 31 video sequences
were then uploaded to the challenge’s evaluation server,
which evaluates the overall results on effectiveness and the
computational efficiency of the algorithm. The final S1
score is a combination of both.

S1= aSlefficiency + ﬁSleffectiveness (3)
Where: a=0.3 8=0.7
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Where:

time and wideo total time = respectively the execution
time and total video time for the given dataset in sec.

base factor = score obtained through a Python script pro-
vided with the dataset.
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The Slcffectiveness score is calculated based on the
weighted average of normalized weighted root mean square
error across all video sequences, movements, and vehicle
classes.

3. Results and Evaluation

Table 1 shows the movement counts given for the pro-
vided sample video sequence and the total and TP counts
obtained for each movement through our framework. Fig 4
shows the trajectories and their respective predicted labels.

Table 2 shows the results from the evaluation system. We
selected two runs where we used slightly different thresh-
olds for re-identification of vehicles within a virtual lane.
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Figure 4. Detected vehicle trajectories in the sample video sequence and their predicted movement labels.

Run 1 assumes that an identity switch occurs only when the
nearest neighbor of vehicle i is no longer detected in the fol-
lowing frames, where as in run 2 it could be anyone of the
k-nearest neighbors.

Although our code currently distinguishes between car
and truck classes, the version of the code that was used be-
fore the closure of the evaluation server did not. Hence,
these evaluations were affected by the misclassification of
all trucks in the dataset.

Table 1. The Ground Truth, Obtained Total and True Positive
Counts for All Movements in the Provided Sample Video Se-

quence
Movement | Ground Truth | Total Count | TP
1 1 1 1
2 5 4
3 13 14 12
4 10 8 8
5 25 32 25
6 0 0 0
7 1 1 1
8 0 0 0
9 0 0 0
10 2 0 0
11 38 36 36
12 1 1 1

Table 2. Select Results From the Evaluation Server
Run | wRMSE | Effectiveness | Efficiency S1

1 12.2 0.767 0.906 0.809
2 11.87 0.774 0.906 0.814

Fig. 5 shows an example of a resolved identity switch
using our framework. Vehicle 108 was re-identified as 124
as it moves in traffic due to partial occlusion. The output
trajectory of vehicle 108 via our framework includes that
of 124, and vehicle vehicles 124 is no longer reported as
a separate trajectory. A total of 8 out of 12 similar cases
were resolved in the sample video sequence. Considering
that this was only a 1-minute sequence, this gives an indi-
cation of the value our framework can add when obtaining
trajectories from large video datasets.
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Figure 5. Example of resolved ID switch.

4. Conclusions and Discussion

We attempted the Al City Challenge Track 1: Vehicle
Counts by Class at Multiple Intersections by implementing
a simple framework utilizes our prior knowledge of traf-
fic movement patterns to identify vehicle movements, ob-
tain real-time counts and resolve identity switches that oc-
cur due to occlusion and detection errors. While the move-



ments of interest are predefined for camera locations in this
challenge, in general the traffic patterns in a certain road
segment or through an intersection do follow similar pre-
defined patterns, and providing practitioners with a sim-
ple GUI to identify those movements of interest to obtain
reliable traffic counts, vehicle trajectories and speed pro-
files can significantly aid in developing ITS application of
origin-destination estimation, conflict monitoring, incident
detection, and dynamic signal timing. Our GUI can also
be used to further isolate lanes for multi-lane movements,
allowing to obtain traffic density and lane occupancy.

The K-NN search within virtual lanes is very efficient,
running up to 100 HZ in low traffic sequences and between
40-60 HZ in high traffic on our machine, which is a mini-
mal increase when compared to the running time of a multi-
object tracking network. Our effectiveness can be improved
after resolving a code error that went unnoticed which led
to the misclassification of trucks as cars in our output files.
Since our pipeline mainly utilizes homography transforma-
tion to isolate vehicle movement lanes and obtain those vir-
tual lanes, the lack of knowledge of camera and lens speci-
fications and angle prevented us from accounting for distor-
tion, which is even more impactful in the case of fish-eye
lens sequences.

Moving forward, we will be training our baseline tracker
(which as only pre-trained on COCO) on datasets that are
tailored for traffic detection or using other models that have
proven to be more efficient for traffic detection. Having ac-
cess to the full ground truths of the dataset following the
competition will also allow us to identify and improve the
shortcomings of our framework, and would provide the op-
portunity to optimize the different parameters including the
extent of the ROI for perspective transformation, the look
back and look ahead time frames within virtual lanes, and
the number of neighbors to considered in the K-NN search.
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