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Abstract

In this paper, we discuss our framework and observa-

tions for AI City Challenge Track 1: Vehicle Counts by

Class at Multiple Intersections. The framework we propose

utilizes creating virtual traffic lanes for the movements of

interest. Using a Python Graphical User Interface (GUI),

the entry polygons for the movements of interest are identi-

fied. This leads to labeling the trajectories for the vehicles

that have been first detected entering the region of interest

via those entry polygons. Those vehicles, forming what we

refer to as ”virtual traffic lanes” inside the region of inter-

est, are then used as identifiers for other vehicles detected

further downstream using a nearest neighbors search. The

framework we propose can run as an additional layer to any

multi-object tracker with minimal additional computation.

Our results and evaluation for the challenge track indicate

the high potential of our proposed framework, and show-

case the momentous value of incorporating domain knowl-

edge in computer-vision applications.

1. Introduction

Car crashes are one of the leading causes of death around

the world and in the United States, where they cost around

40,000 lives every year. The field of Intelligent Transporta-

tion Systems (ITS) aims to improve traffic safety through

transforming our transportation systems as we know them

from being passive and unaware to smart, dynamic, proac-

tive systems.

One of the major fields of ITS is the recognition and

trajectory tracking of vehicle movements in roadways and

freeways. Obtaining reliable vehicle trajectories plays a

crucial role in various aspects of ITS; including and not lim-

ited to dynamic urban traffic signal timing, behavioral mod-

eling, and active traffic management. With the ever-growing

use of traffic cameras for traffic monitoring and dynamic

signal timing applications, tremendous amounts of traffic

video data became available. This data raised the need for

developing reliable computer-vision applications to extract

information from this video data. This is a very difficult and

challenging task due to the image quality and area of view

provided by on-site cameras, occlusion in high traffic, and

privacy concerns regarding the vehicles involved.

In a typical controlled traffic intersection in the United

States, the traffic movement assignment for the signal con-

troller follows the National Electrical Manufacturers Asso-

ciation (NEMA) phases shown in Fig. 1 [1]. In a recent

study [2], we proposed incorporating this prior knowledge

of traffic movement patterns in vehicle trajectory tracking

framework, and the results of our exploratory analysis on

a small dataset we collected and annotated indicated the

effectiveness of our framework in obtaining reliable turn

counts and addressing the vehicle re-identification problem

due to occlusion in traffic. In this paper, we discuss our

framework and the results we obtained applying it to this

year’s AI City Challenge Track 1: Vehicle Counts by Class

at Multiple Intersections.

Figure 1. Typical 8-phase traffic controller operation [1].



1.1. Object Recognition and Tracking in Trans­
portation and Traffic Safety Applications

Object detection and recognition problems have been

classically tackled by a myriad of computer-vision tech-

niques and manipulations, alongside the use knowledge

about the scenery, geometry, and the emergence of de-

formable part models [3], [4], [5]. Momentous recent ad-

vancements have been accomplished with the evolution of

Convolutional Neural Networks (CNNs), now forming the

basis of majority of the state-of-the-art object detection and

tracking algorithms. The introduction of Fast Region-based

Convolutional Neural Network (Fast R-CNN) [6], followed

by Faster R-CNN in 2015 [7] moved the fields closer to-

wards real-time application of object detection and tracking,

which quickly became a reality with the introduction of You

Only Look Once (YOLO) and Single-Shot Detector (SSD)

models in 2016 [8], [9]. Exponential improvements in those

models have followed in recent years [10], [11], [12], [13].

In the fields of transportation and traffic engineering, ve-

hicle detection and tracking is a research interest that has

been around for a while. Studies in the early 1990s have

been conducted to assess various techniques to identify,

track and count automobiles [14], [15], [16]. A vast ma-

jority of those earlier techniques failed in congested traffic

conditions due to partial and full occlusion, until models

that track sub-features rather than full vehicle features were

introduced [17] , [18], [19]. This set up the foundation for

various future studies in the field [20], [21], [22].

The aforementioned recent advancements in deep learn-

ing and the rise of GPU computing led to real-time perfor-

mance [23], [24], [25]. Albeit these improvements in terms

of accuracy and speed, vehicle tracking in heavy traffic con-

ditions still remains a very challenging task. Where legal

around the world, multiple studies have utilized license-

plate recognition as a better and more efficient way of track-

ing vehicles instead of the overall vehicle features [26],

[27]. While others made use of video data taken from Un-

manned Aerial Vehicles (UAVs) to completely overpass the

occlusion problem [28], [29]. To help in developing more

reliable algorithms, the field has pushed in recent years to

make multiple benchmark datasets publicly available [30],

[31].

2. Methodology

2.1. Base Object Tracker

For our previous study, we implemented a combination

of YOLO v3 [13, 32] and DeepSORT [33] algorithms. We

used the same combination for our base tracker for this chal-

lenge, both pre-trained on the Microsoft Common Objects

in Context (COCO) dataset [34], running at ∼13 fps on a

machine equipped with NVIDIA GTX 1080 GPU and a 2.4

GHz 16-core Intel Xeon e5 2630 v3 processor.

2.2. Predefined Movement­Based Virtual Traffic
Lanes

In our previous study, we created a Python Graphical

User Interface (GUI) that allows the user to define poly-

gons representing entry planes to each NEMA movement

for vehicles entering an urban intersection. The same GUI

was used for this challenge, where the number of move-

ments and entry polygons is adjustable for each camera lo-

cation. We utilized homography transformation to obtain

bird-eye view of region of interest (ROI), which can also be

defined using the GUI but specific ROIs were provided for

this challenge and hence were used. The definition of en-

try polygons can be carried out in the normal camera space

or perspective transformed space. Vehicles for which the

first detection occurred inside the movement polygon re-

ceive a label of that movement, as multiple vehicles car-

rying those labels move across the ROI they create what we

refer to as virtual traffic lanes within the ROI, and those ve-

hicles are hence referred to as Virtual Lane Vehicles (VLV).

Late detections past entry polygon can occur simply due to

the late identification of a vehicle, but can also happen as

a result of identity switches to occlusion in heavy traffic,

lights and shadows, or the infrastructure. As we are us-

ing a pre-trained model on regular images, all the detection

tasks were carried out in the regular camera space while

the post-processing of vehicle trajectories is carried out in

the transformed space. The perspective transformation and

calculation of homography transformation matrix (M) were

carried out using OpenCV library [35]. The x and y coordi-

nates in destination space destination(x, y) for all points

on the regular image space are transformed using the fol-

lowing equation:

source

(

M11x+M12y +M13

M31x+M32y +M33

,
M21x+M22y +M23

M31x+M32y +M33

)

(1)

Where:

x & y = are the coordinates for each point in the source

space from the camera video frame.

M = 3× 3 homography matrix.

Movementi =

{

label j, if x1i, y1i ∈ pj ∀i,j

unknown, otherwise
(2)

Where:

Movementi = movement label for vehicle i.
x1i & y1i = the coordinates for the first point in the trajec-

tory of each detected vehicle i.
label j = predefined movement of interest for each camera

location j ∈ Z : 1 ≤ j ≤ 12.

pj= entry polygon for movement of interest j.

Fig. 2 provides an overview of the data flow in our

framework. It is worth mentioning that while the use of en-



Figure 2. Flow chart of the framework’s data flow.

try polygons to identify the movements of interest provides

an efficient way of labeling the vehicle trajectory and move-

ment patterns, it is insensitive of vehicles conducting illegal

movements within the area of interest (e.g. in the case of an

intersection, a vehicle that turns left albeit entering from a

thru-only lane).

Algorithm 1: Movement-Based K-Nearest

Neighbor Classifier

Result: Identifying the movement label for vehicles

where the first detection did not take place

within one of the entry polygons.

initialization;

for framek do

for x1i, y1i /∈ P do
neighbors = VLVs ∈ {framek−30...framek+30};
NEMAi = majority vote;
if nearest ∈framek−10 & /∈

{framek...framen} then

IDi =
IDnearest ⇐⇒ NEMAi=NEMAnearest

else
IDi = IDdetector

end

end

end

Algorithm 1 describes the K-NN search for the vehicles

with unidentified movements. The number of nearest neigh-

bors is the minimum of vehicles in the search space and

3. In our previous study (which was only limited to an ur-

ban intersection environment), we allowed a 3-second de-

lay before classifying newly identified vehicles to account

for unidentified vehicles that enter the ROI at the beginning

of video sequence or a signal green (in case of an intersec-

tion), where no other vehicles are in the ROI. A search back

time t−1 second allows to identify re-identifications due to

occlusion. The same parameters were used in for this chal-

lenge. Vehicles’ movement label is predicted by a majority

vote of VLVs within the given temporal range. Weighted

euclidean distance is the metric in use. An identity switch is

recognized when the nearest neighbor of vehiclei is present

before but no longer detected on or after framek. Note

that the given algorithm description is for video sequences

with frame rate of 10 fps. Look-back frames are adjusted

accordingly for videos with higher and lower frame rates.

2.3. AI City Challenge Dataset

The dataset provided for this challenge contained 31

video sequences totaling over 9 hours (4 of which were re-

served for testing) from 20 different camera locations. Spe-

cific movements and ROIs were predefined for each cam-

era location. Fig. 3 shows one of the camera locations for

which a subset of the ground truth labels were provided.



Figure 3. Example of video data processing pipeline in our framework.

The figure shows the video data processing pipeline in our

framework, where the given ROIs are used to define the de-

tection and tracking area, then the user manually defines

polygons corresponding to each movement of interest, af-

ter which virtual movement lanes obtained via perspective

transformation. In the post-processing of detected trajecto-

ries for intersection scenes, we only include the trajectories

within the intersection (past the stop lines) to avoid stor-

ing data for stationary vehicles awaiting green light, hence

all trajectory data starts past the stop lines where the entry

polygons are defined. We initially evaluated our the accu-

racy of our framework on this given subset by evaluating

the count accuracy for each of the 12 movement labels in

that given intersection.

The conglomerated results from all 31 video sequences

were then uploaded to the challenge’s evaluation server,

which evaluates the overall results on effectiveness and the

computational efficiency of the algorithm. The final S1
score is a combination of both.

S1 = αS1efficiency + βS1effectiveness (3)

Where: α = 0.3 β = 0.7

S1efficiency = max

(

0, 1−
time× base factor

5× video total time

)

(4)

Where:

time and video total time = respectively the execution

time and total video time for the given dataset in sec.
base factor = score obtained through a Python script pro-

vided with the dataset.

wRMSE =

√

√

√

√

k
∑

i=1

wi(x̂i − xi)2 (5)

Where:

wi =
i

∑k
j=1

=
2i

k(k + 1)
(6)

The S1effectiveness score is calculated based on the

weighted average of normalized weighted root mean square

error across all video sequences, movements, and vehicle

classes.

3. Results and Evaluation

Table 1 shows the movement counts given for the pro-

vided sample video sequence and the total and TP counts

obtained for each movement through our framework. Fig 4

shows the trajectories and their respective predicted labels.

Table 2 shows the results from the evaluation system. We

selected two runs where we used slightly different thresh-

olds for re-identification of vehicles within a virtual lane.



Figure 4. Detected vehicle trajectories in the sample video sequence and their predicted movement labels.

Run 1 assumes that an identity switch occurs only when the

nearest neighbor of vehicle i is no longer detected in the fol-

lowing frames, where as in run 2 it could be anyone of the

k-nearest neighbors.

Although our code currently distinguishes between car

and truck classes, the version of the code that was used be-

fore the closure of the evaluation server did not. Hence,

these evaluations were affected by the misclassification of

all trucks in the dataset.

Table 1. The Ground Truth, Obtained Total and True Positive

Counts for All Movements in the Provided Sample Video Se-

quence

Movement Ground Truth Total Count TP

1 1 1 1

2 5 4 4

3 13 14 12

4 10 8 8

5 25 32 25

6 0 0 0

7 1 1 1

8 0 0 0

9 0 0 0

10 2 0 0

11 38 36 36

12 1 1 1

Table 2. Select Results From the Evaluation Server
Run wRMSE Effectiveness Efficiency S1

1 12.2 0.767 0.906 0.809

2 11.87 0.774 0.906 0.814

Fig. 5 shows an example of a resolved identity switch

using our framework. Vehicle 108 was re-identified as 124

as it moves in traffic due to partial occlusion. The output

trajectory of vehicle 108 via our framework includes that

of 124, and vehicle vehicles 124 is no longer reported as

a separate trajectory. A total of 8 out of 12 similar cases

were resolved in the sample video sequence. Considering

that this was only a 1-minute sequence, this gives an indi-

cation of the value our framework can add when obtaining

trajectories from large video datasets.

Figure 5. Example of resolved ID switch.

4. Conclusions and Discussion

We attempted the AI City Challenge Track 1: Vehicle

Counts by Class at Multiple Intersections by implementing

a simple framework utilizes our prior knowledge of traf-

fic movement patterns to identify vehicle movements, ob-

tain real-time counts and resolve identity switches that oc-

cur due to occlusion and detection errors. While the move-



ments of interest are predefined for camera locations in this

challenge, in general the traffic patterns in a certain road

segment or through an intersection do follow similar pre-

defined patterns, and providing practitioners with a sim-

ple GUI to identify those movements of interest to obtain

reliable traffic counts, vehicle trajectories and speed pro-

files can significantly aid in developing ITS application of

origin-destination estimation, conflict monitoring, incident

detection, and dynamic signal timing. Our GUI can also

be used to further isolate lanes for multi-lane movements,

allowing to obtain traffic density and lane occupancy.

The K-NN search within virtual lanes is very efficient,

running up to 100 HZ in low traffic sequences and between

40-60 HZ in high traffic on our machine, which is a mini-

mal increase when compared to the running time of a multi-

object tracking network. Our effectiveness can be improved

after resolving a code error that went unnoticed which led

to the misclassification of trucks as cars in our output files.

Since our pipeline mainly utilizes homography transforma-

tion to isolate vehicle movement lanes and obtain those vir-

tual lanes, the lack of knowledge of camera and lens speci-

fications and angle prevented us from accounting for distor-

tion, which is even more impactful in the case of fish-eye

lens sequences.

Moving forward, we will be training our baseline tracker

(which as only pre-trained on COCO) on datasets that are

tailored for traffic detection or using other models that have

proven to be more efficient for traffic detection. Having ac-

cess to the full ground truths of the dataset following the

competition will also allow us to identify and improve the

shortcomings of our framework, and would provide the op-

portunity to optimize the different parameters including the

extent of the ROI for perspective transformation, the look

back and look ahead time frames within virtual lanes, and

the number of neighbors to considered in the K-NN search.
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