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Abstract

We present methods developed in our participation of
the Al City 2020 Challenge (AIC20) and report evalua-
tion results in this contest. With the blooming of Al com-
puter vision techniques, vehicle detection, tracking, identifi-
cation, and counting all have advanced significantly. How-
ever, whether these technologies are ready for real-world
smart transportation usage is still a open question. The
goal of this work is to apply and integrate state-of-the-art
techniques for solving the challenge problems under a stan-
dardized setup and evaluation. We participated all 4 AIC20
challenge tracks (T1 to T4). In Tl challenge, we perform ve-
hicle counting by associating deep features extracted from
Mask-RCNN detections and tracklets, followed by vehicle
movement zone matching. In T2 challenge, we perform ve-
hicle type and color classification and then rank matching
vehicles using a PGAM re-id network. In T3 challenge, we
proposed a new Multi-Camera Tracking Network (MTCN)
that takes single-camera vehicle tracking as input, and per-
forms multi-camera tracklet fusion and linking, by jointly
optimizing the matching of vehicle appearance and physi-
cal features. In T4 challenge, we adopt a leading method
based on perspective detection and spatial-temporal matrix
discriminating, and improve it with background modeling
for traffic anomaly detection. We achieved top-6 and top-4
performance for T3 and T4 challenges respectively in the
AIC20 general leaderboard.

1. Introduction

Al deep neural networks have advanced significantly
in recent years, leading to a fast-pacing “smarter world”.
Among many advancements, smart city and smart trans-
portation are on the emerging fronts. Intelligent devices

with cameras running computer vision (CV) techniques are
able to see and start to reason and understand the world.
Particularly, under the umbrella of Intelligent Transporta-
tion Systems (ITS) developments, the Al City Challenge
Workshops ! are organized with the aim to encourage re-
search and development of Al and CV for smart transporta-
tion applications. The AI City Challenge 2020 (AIC20) is
the forth sequel following the growing participation from
past years (AIC17 [16], AIC18 [17], and 19 [18]), targeting
at four challenge tracks in the following:

e Track 1 challenge focuses on the counting of two classes
of vehicles (trucks and passenger cars) at multiple intersec-
tions observed from various camera views — a dataset pro-
vided by the Towa Department of Transportation (DOT).
The key challenge is on how best to reliably track vehicles
and determine the crossing of vehicles at specific traffic
lanes or zones.

e Track 2 challenge focuses on image-based re-identification
of CV detected vehicle boxes from the CityFlow Vehicle
Re-Id Dataset [20].

e Track 3 challenge is on the tracking of vehicles over a city-
wide camera network that spans over 4 miles from 5 col-
lection sites — the CityFlow dataset [20]. The challenge is
on: (i) how best to perform multi-camera tracking on syn-
chronizing and overlapping camera views, (ii) how best to
re-identify vehicle tracks across camera views with large
viewing variabilities, and (iii) how best to leverage traffic
flow characteristics to achieve a reliable solution for the
re-identification and linking of vehicle tracklets among the

vast number of potential candidates.
e Track 4 challenge is on the detection of abnormal traffic

incidences from a dataset provided by Iowa DOT, where
anomalies arisen from emergencies, vehicle breakdowns,
or crashes.

lhttps://www.aicitychallenqe.orq/



This paper describes methods and results of our partic-
ipation submitted to all four AIC20 challenge tracks, with
evaluation performed by the AIC20 organization. On the
AIC20 leaderboard, our method ranks 18-th in the general
leaderboard (score 0.3241) and 13-th in the public leader-
board (score 0.3116) in the Track 1 vehicle counting con-
test. We rank 57-th in the general leaderboard (41-th in the
public leaderboard) with mAP 0.0368 in the Track 2 vehicle
re-id contest. We rank 6-th in the general leaderboard out
of 9 participant teams (also 6-th in the public leaderboard
out of 8 teams) with score 0.0620 in the Track 3 contest.
We rank 4-th (out of 13 participant teams) with F1-score of
0.9706, RMSE 6.6058, S4 94.92% in the Track 4 anomaly
contest in the AIC20 general leaderboard.

T1 Challenge: Multi-Class Multi-Movement Vehi-
cle Counting. Our vehicle class-specific counting pipeline
consists of three steps (as in Fig. 1): (1) vehicle type de-
tection using Mask-RCNN [6], (2) appearance and spatial
feature-based tracking, and (3) the matching between vehi-
cle Movement of Interest (MOI) zones. The Mask-RCNN
vehicle detection can handle large variabilities of image
qualities and vehicle scales in the provided videos. Ve-
hicle tracklets are formed based on a standard Hungarian
matching of both spatial (geometrical) features and the re-
id features following [10]. We train this feature extraction
network on both the AIC20 Track 2 and Track 3 challenge
datasets, with an extra resizing step to enhance the detection
of small-size vehicles appearing in the videos. Finally, ve-
hicle trajectories are matched against specified MOI zones
(traffic lanes characterizing the respective vehicle count-
ing tasks) to determine the travelling directions and zone-
crossing counts to produce the final counting.

T2 Challenge: City-Scale Multi-Camera Vehicle Re-
Identification. Given a query vehicle image and a poten-
tially very large gallery of test images, the vehicle re-id out-
put is the matching vehicles in the gallery ranked by the
matching similarities in decreasing order. Our vehicle re-
id method consists of two steps (as in Fig. 3): (1) We first
performed supervised vehicle type and color classification.
We annotated the AIC20 T2 vehicle re-id training set for
such information. This annotation effort includes the label-
ing of 15,000 vehicles that are categorized into 7 vehicle
types, 30 vehicle makes, and 9 vehicle colors (see § 3.2 for
details). (2) We then trained a vehicle metadata classifier
based on this dataset to identify vehicle types, makes and
colors, which will be used fine-select a subset of gallery ve-
hicles to perform re-identification. Finally, we apply the
Pyramid Granularity Attentive Model (PGAM) re-id net-
work [2], a method we developed in the AIC19 contest [18].
The PGAM consists of a BNneck with ResNet-154 back-
bone that produces the final re-id ranking results.

T3 Challenge: City-Scale Multi-Camera Vehicle
Tracking. We performs data-driven multi-cam vehicle

tracking in the following steps (see Fig. 6): (1) Vehicles
are detected using Mask-RCNN [6] and re-id appearance
feature extraction using ResNet-50. (2) Physical measures
are obtained using the provided camera calibration matri-
ces to project the vehicle boxes onto a global (longitude,
latitude) GPS coordinates. (3) Hungarian matching are per-
formed based on a loss including a cross-entropy term using
the vehicle re-id appearance feature and GPS positions, and
a triplet loss for metric learning. Single camera tracking is
performed by bottom-up linking of vehicle tracklets within
each camera. (4) Multi-camera tracking are performed
using a newly proposed Multi-Camera Tracking Network
(MCTN) to associate vehicle tracklets across views, with
the optimization of both the physical and appearance fea-
ture loss terms.

T4 Challenge: Traffic Anomaly Detection. Anomaly
detection in the real-world traffic scene has many chal-
lenges, including variations of weather, view-points and
lighting conditions, that will affect the accuracy and reli-
ability. Our pipeline is based on the winning method of Bai
et al. [1] from AIC19 contest [ 8], with improvements and
integration of new capabilities in the vehicle detector and
background modeling modules.

2. Related Work

Vehicle detection is important in smart transportation
and traffic surveillance. In recent years, methods based on
deep learning have improved significantly. Notably, deep
Convolutional Neural Network (CNN) based method such
as Mask-RCNN [6] and YOLOv3 [19] are widely used in
many systems.

Single-camera multi-target tracking methods [4, &, 5,

, 14] mostly follow the tracking-by-detection paradigm,
in associating per-frame object detections into consistent
tracklets. Occlusion recovery and tracklet identity switch
avoidance are the challenges for these algorithms. Pop-
ular tracking methods include correlation filter based ap-
proaches (KCF [8], SRDCF [5], ECO [4]) and CNN-based
approaches (DeepSORT [26], MDNet [15], TCNN [14]).

Multi-camera multi-target tracking involves not only
Multiple Object Tracking (MOT) but also two additional
difficulties/enhancements: (1) How best to associate track-
lets across synchronous, overlapping camera views, where
camera calibration is often used to reason about the ge-
ometry among tracklets in physical world coordinates. (2)
How best to link tracklets across non-overlapping camera
views, which is essentially the re-identification problem
across cameras. Popular methods typically rely on a form
of spatial-temporal inference across camera views [25, 10]
or ensemble fusion [21].

Vehicle re-identification has drawn significant atten-
tions, as method developed for e.g. person re-id can be di-
rectly applied to vehicle re-id. However real-world vehicle



re-id remains challenging due to various factors: (1) the un-
balanced intra- and inter- class variabilities, (2) vehicles of
the same make, even same model year, can belong to dif-
ferent owners, where only tiny difference such as the wind-
shield tags is the sole hint to distinguish them, (3) the po-
tentially huge number of vehicles to compare with. Notably,
leading methods from AIC19 [9, 13] rely on three general
strategies: (1) vehicle keypoint identification (that can lead
to 3D modeling of vehicles) that can improve view-invariant
feature extraction, (2) leveraging vehicle type, make, and
color classification for re-id [9], and (3) multi-stage re-
id: re-ranking after an initial ranking (often obtained via a
triplet-loss re-id network) using extra information or meta-
data. Popular dataset for training vehicle re-id dataset in-
cludes: VRIC (based on UA-DETRAC), PKU VehiclelD,
and VeRi datasets. >

Vehicle counting is traditionally achieved by deploying
coil sensors under the road [22]. With the advancement of
CV, Al visual systems can now perform non-intrusive ve-
hicle counting based on object detection and tracking [27],
which can be deployed at large scales. Challenges of CV
vehicle counting include image quality and resolution limi-
tations, view angle variations, occlusions, and weather con-
ditions (raining or snow).

Traffic anomaly detection from real-world traffic
videos is not straightforward, where standard data-driven
abnormal event detection or outlier detection algorithms
(SVM, isolation forests) can easily fail. The winning teams
in AIC19 [18] use optical-flow or background modeling, to
segment out a moving traffic mask that can effectively re-
duce search. Abnormal events such as a stalled vehicle can
be detected using a spatio-temporal anomaly matrix [1], or
a multi-stage framework based on anomaly candidate iden-
tification [23].

3. Method

We describe each method developed for the four AIC20
challenge tracks in the following sections.

3.1. (T1) Multi-Class Multi-Movement Vehicle
Counting

We perform multi-class multi-movement vehicle count-
ing on the AIC20 Track 1 challenge dataset, which contains
annotated videos viewing urban intersection and highway.
We adopt a winning method of Li et al. [10] from AIC19,
which uses Hungarian matching for vehicle track linking.
Since the AIC20 Track 1 dataset does not come with cam-
era calibration, we directly use image pixel coordinates (in-
stead of the GPS coordinates in [10]). Our vehicle counting
pipeline in Fig. 1 consists of steps that we will describe in
the following two parts.

2 Available at https://github.com/knwng/
awesome-vehicle-re-identification.

(i) Vehicle detection and tracklet linking (§ 3.1.1). We
first use Mask-RCNN to detect vehicles and extract re-id ap-
pearance features from each vehicle in order to form track-
lets for use in later steps. We use a standard Hungarian
matching algorithm to associate detections into tracklets, by
considering both the spatial and appearance features. After
such bottom-up vehicle tracklet linking, tracklets can still
be broken due to poor detection results, e.g. tiny vehicles,
occlusions, or camera shaking. To this end, we enforce a
tracklet matching and linking step to recover broken track-
lets that can hopefully connect into longer trajectories.

(ii) Vehicle movement matching and counting (§ 3.1.2.)
Given the refined vehicle tracklets, we next match each ve-
hicle trajectory against the Movement of Interest (MOI)
given from the AIC20 contest for each site. The vehicle
traveling direction is determined as a classification problem,
and the final traffic counting results are obtained.

3.1.1 Vehicle detection and tracklet linking

We adopt the tracking-by-detection method of [10], where
Mask-RCNN [6] is first perform to detect vehicles. We
confirmed that Mask-RCNN produces more accurate detec-
tions compared to other detectors such as YOLOv3[19], es-
pecially for small vehicles. Tracklets are next associated
based on a fusion of spatial and re-id appearance features.
This re-id appearance feature extraction network is based
on a Resnet50 backbone with a bottleneck structure [29].
We train this network using the AIC20 Track 2 re-id dataset
with both the triple and classification losses.

We found the tiny vehicles (around 10 to 20 pixels) in
the view is difficult to detect in the setting of [10]. To this
end, we initialize the feature extractor network using pre-
trained weights, and fine-tune it using the down-sampled
vehicle boxes obtained from the AIC20 Track 2 and Track
3 training sets.

Tracklets are created and linked from detected vehicles
between consecutive frames. We calculate the distance
(loss) between each vehicle box b; and its corresponding
box b; in the previous frame. The distance between such
pair (b;, b;) is calculated as:

d(bs, b;) = ||p1 — p2ll2 + Apllf1 — fall2, (D

where p; and ps are pixel coordinates; fy, fo are the re-id
features in 2048 dimension; A, is set as 0.01. Standard Hun-
garian matching is applied to link these vehicle box pairs by
minimizing association distances, which yields off-line ve-
hicle tracking trajectories.

We observed that the cameras can appear to be shak-
ing in the AIC20 Track 1 test set, which hinders Mask-
RCNN from producing reliable vehicle detections. To ad-
dress this issue, we improved the tracklet handling steps
in [10]. Specifically, in the case when a tracklet does not
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Figure 1. Track 1 multi-movement vehicle counting method overview.
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)Figure 2. Track 1 multi-movement vehicle counting in the spec-
ified Movement of Interest (MOI) zones. (a) Each MOI corre-
sponds to a traffic lane, where vehicle counting is to be calculated.
(b) We match each vehicle trajectory against each MOI, by calcu-
lating the spatial distance of each vehicle box to each MOI starting
point.

match to any detection boxes in a frame, we store the track-
let rather than discard it immediately. We discard tracklets
in the case where the number of times with no matching
detections exceeds a threshold 7 = 5.

3.1.2 Vehicle movement matching and counting

We match each vehicle trajectory against a set of Movement
of Interest (MOI) zones specified by the AIC20 contest or-
ganization as in Fig. 2(a). MOI is used to determine vehicle
passing counts as the traffic flows.

To deal with erroneous counts resulting from tracking
losses, broken tracks, or ID switches, we enforce tracklet
linking to recover likely disconnected tracklets. We con-
sider each tracklet pair (T, T} ), where T, denotes the track-
let appearing earlier than 7j. If the minimum loss distance
of last five boxes of T}, and the first five boxes of T}, is lower
than a predefined threshold, we re-connect such tracklet pair
(T,, Tp). We also connect (T, Ty ) if the Euclidean distance
between the first box of T}, and the last box of T}, is lower
than a threshold 7, of 400 pixels.

Matching MOT starting points (Fig. 2). To match each
vehicle tracklet to a MOI zone, we match the first vehi-
cle position in the tracklet with a manually labeled starting
point of MOI. We manually specify such starting point for
each traffic lane in each camera view. The distance between
each MOI starting point (s, ys) to the center of each ve-
hicle box z,,y, is calculated using Manhattan distance in
pixels:

dsv:‘xs_$v|+|ys_yv|' (2)

3.2. (T2) City-Scale Multi-Camera Vehicle Re-
Identification

Our vehicle re-id pipeline is a two-stage approach. In
the first stage, we propose a vehicle metadata (type, make
and color) learning network (§ 3.2.2) that is trained on a
newly labeled dataset (§ 3.2.1). Specifically, for the training
of the vehicle metadata recognition network, we performed
annotation of the vehicle types, makes, and colors on the
AIC20 CityFlow Vehicle Re-Id Dataset [20]. We did not
make use of the AIC20 VehicleX synthetic dataset. In the
second stage, we adopt the Pyramid Granularity Attentive
Model (PGAM), an improved re-id network from our pre-
vious work of [2] in AIC19 (§ 3.2.3). The pipeline is shown
in Fig. 3.

3.2.1 A newly labeled AIC20 vehicle metadata set

We annotate the following 3 attributes on the 15, 000 vehi-
cle images in the AIC training set:

e Vehicle type: Sedan, SUYV, truck, minivan, pickup truck,
hatchback, bus; totally 7 types.

e Vehicle make: Dodge, Ford, Chevrolet, GMC, Honda,
Chrysler, Jeep, Hyundai, Subaru, Toyota, Buick, KIA,
Nissan, Volkswagen, Oldsmobile, BMW, Cadillac, Volvo,
Pontiac, Mercury, Lexus, Saturn, Benz, Mazda, Scion,
Mini, Lincoln, Audi, Mitsubishi, Others; totally 30 makes.

e Vehicle color: black, white, gray, blue, red, gold, silver,
green, yellow; totally 9 color types.

Our annotated vehicle dataset will be released upon the
acceptance of this paper.

3.2.2 Vehicle type and color metadata learning

We use the 29-layer light CNN framework from Wu et al.
[9] to perform vehicle metadata classification. In this ar-
chitecture, Max-Feature-Map (MFM) is used to replace the
original ReLU function. MFM can be regarded as a way
of maxout, which makes low-activation neurons robust to
noise, thus leads to meaningful features. The Semantic
Bootstrapping in the architecture can handle noisy labeled
images in a large dataset.

We train this model by taking the CompCar [30] pre-
trained model as initialization, and perform training on our
newly annotated AIC20 dataset. We obtain top-3 test ac-
curacy of 73.90%, 6.05%, and 17.40%, for the vehicle type,
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Figure 3. Track 2 vehicle re-identification method overview.
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Figure 4. Track 2 vehicle re-id visual results. (a) Vehicle query
results based on only using the vehicle type and color metadata.
Observe that the accuracy of the car type is quite high, but in the
color part, you can see that the light red, dark red, and dark red are
all divided into the same among of the categories. (b) Final Re-Id
query image (on the left) and the Re-Identified vehicles from the
gallery images ranked ordered by similarities (row and column).

make, and color, respectively. This result shows that vehicle
type and color are reliable features, however vehicle make is
not reliable. This can be due to factors regarding data qual-
ity, as we observed that in the AIC20 dataset, many vehicle
makes are hard to identify even from human eyes. Fig. 4(a)
shows an example of vehicle type and color classification.

3.2.3 Pyramid Granularity Attentive Model

We use the Pyramid Granularity Attentive Model
(PGAM) [2], a method we developed in AICI19 par-
ticipation for vehicle re-id contest. The design of PGAM
integrates the advantages of two recent deep re-id networks,
namely the Multiple Granularity Model (MGN) [24] and
Region-Aware deep Model (RAM) [12]. MGN is originally
designed for person RelD, where the model contains a
multi-branch deep network architecture.  Specifically,
MGN consists of a network branch for global feature
representations, and two other branches for local feature
representations. RAM operates similarly for re-id compar-
ison, however several paths are used to deal with global
and local features. PGAM is based on a ResNet-152 [7]
backbone for better performance.

Specifically, to effectively focus the re-id learning on
class centers in PGAM, we use the loss L., to tighten the
clustering of learned class features. Losses L;q and L¢ojor
consider the summation of the three branches of losses re-
garding vehicle ID and color classification. Our vehicle
PGAM re-id loss L,.;q is defined as:

Lreid = (Lid + Lcolor) + Qo Lcen + ag Lt’l‘i7 (3)

where L;,; denotes the standard triplet loss; weights «; ,
a2, and a3 control the importance among loss terms.

The training of PGAM takes the metadata-classified ve-
hicle sets (i.e. vehicles of the same types and colors) as
input. At run time, PGAM generates 1052 ranking result
for each re-id query. Fig. 4(b) shows the example results.
Observed that the ranking in Fig. 4(b) is more accurate and
consistent compared to the raw metadata classification re-
sults in Fig. 4(a).

3.3. (T3) City-Scale Multi-Camera Vehicle Track-
ing

The AIC20 Track 3 challenge videos are captured by
multiple concurrent cameras (as shown in Fig. 5). Diffi-
culties arisen from the large variation of image qualities,
viewing angles, occlusions, weather conditions, and the vast
amount of potential vehicles to consider. How best to per-
form effective space-time tracklet fusion across cameras is
the key problem to consider here. Our approach consists of
three components:

(1) multi-target single-camera tracking (§ 3.3.1),
(2) across-camera tracklet association filtering (§ 3.3.2),
(3) multi-camera tracking and re-id linking (§ 3.3.3).

In step (1), the single-camera tracking considers both ve-
hicle appearance and space-time features on the global (lon-
gitude, latitude) GPS coordinates. Steps (2) and (3) can be
treated as the vehicle re-identification problem addressed in
the AIC20 Track 2 challenge. However here the consid-
eration can possibly extend to re-id of the whole vehicle
tracks. In addition, here the space-time fusion of vehicles
along the traffic flow provides an important cue. Vehicles
moving along a traffic cue in most cases simply follow the



Figure 5. Track 3 city-scale multi-camera vehicle tracking examples.

traffic — lane switching or turning happen only occasion-
ally, not all the time. So in step (2) we focus our approach
on filtering out unlikely pair of vehicle trajectories before
we feed them into the re-id network for considering trajec-
tory linking. In step (3), we developed a new Multi-Camera
Tracking Network (MCTN) that can effective link tracklets
across camera views, by optimizing both physical and ap-
pearance cues.

3.3.1 Multi-target single-camera tracking

The AIC20 contest provides 3 vehicle detection results,
namely Mask-RCNN [6], SSD512 [11], YOLOvV3 [19]. We
use Mask-RCNN detections as feed to our tracker. We adopt
the leading method of [10] in AIC19 as our single-camera
tracking method. Similar to the pipeline described in § 3.1
for vehicle tracking for counting, we perform Hungarian
matching upon the combination of criteria (appearance re-id
features and GPS spatial features), to find the matching of
detection box pairs for vehicle tracklet formation. Vehicle
GPS coordinates are obtained via projective transformation
of camera views using the camera calibration matrices pro-
vided by the AIC20 contest. Vehicle appearance features
are extracted using the re-id model based on the ResNet50
backbone. The re-id model is trained using the AIC20 Track
2 and Track 3 datasets.

3.3.2 Across-camera tracklet association filtering

To maintain a manageable multi-camera vehicle tracking
(i.e. tracklet linking) across a large, cit-scale camera net-
work, the aim here is to reduce the necessary amount of
across-camera tracklet comparisons. We use two metrics to
filter out vehicle tracklet pairs (7},,T;) that can be safely
omitted.

The first cue we use is the physical (space-time) con-
strain between any pair of vehicle tracklets. Since all
AIC20 Track 3 challenge videos are given with synchro-
nized timestamps, from tracking we know the precise space-
time localization of each tracklet, we can calculate the ve-
hicle speed in MPH for each tracklet. This speed estimation
together with the known distance between (7}, T;), we can
estimate arrival time. In other words, suppose the track-
let pair (T}, T,) belongs to the same vehicle, we can esti-
mate the arrival time based on the putative pair of vehicle
tracklets using extrapolation. We denote ¢, the estimated

arrival time between (T,,T;), and t, the the time differ-
ence between the first frames of (7},,T;). The difference
0 = |tq — tp| can be used to filter out unlikely vehicle pairs
across cameras:

if §; > 7, remove tracklet pair (T},, T,), 4

where 7 is set to 90 (frames).

We further filter out vehicle tracklet pairs (7, 7,) that
travel in opposite directions, which is less likely to occur in
a traffic flow. Specifically, let vector, and vector, denote
the first and last sample points of two tracklets 7}, and T,
respectively. We consider the dot product (angle) between
the vectors (v, vq):

if vy, - vy < 0, remove tracklet pair (7}, 7,).  (5)

3.3.3 Multi-camera tracking and re-id linking

We next describe our Multi-Camera Tracking Network
(MCTN) model developed for the AIC19 Track 3 chal-
lenge. We adopt the leading method of [10] from AIC19 to
perform multi-camera tracking and re-id linking here. We
found that the original method in [10] relies on many hand-
crafted threshold parameters for the cosine distance feature
comparison for tracklet linking. To make the approach less
problem-dependent, we use a data-driven approach to train
a two-branch network in Fig. 6, with an aim to process the
appearance features and physical features separately. The
advantage of our design is that the 5-dim physical weights
in the second branch can be learned independently and thus
not affected by the 4096-dim appearance feature channel.

The 4096-dim appearance feature branch of MCTN
(Fig. 6) consists of five fully-connected (FC) layers. Given
a pair of tracklets (7},,T,), this network branch takes the
pair of tracklet-average appearance features as input. Batch
normalization is used in every hidden FC layers.

The 5-dim physical feature branch of MCTN (Fig. 6)
consists of three fully connected layers. We use five physi-
cal features, namely three vehicle GPS distances d3*°, d3"°,
d3P?, and two vehicle timestamp distances di*, d%° as the
branch input. Specifically, dg,s1 denotes the Euclidean dis-
tance between the first sample points of (T}, T,) in GPS
coordinates. Similarly, d3"° denotes the same quantity be-
tween (1), T,), di"° denotes the same between the last sam-
ple points of (T}, T,,). The time difference terms d%* and d5°
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Figure 6. Track 3 city-scale multi-camera vehicle tracking using the proposed MTCN.

Table 1. Track 3: MTCN evaluation and ablation study results.

Model experiments Accuracy
Only appearance branch 65%
Appearance + physical in a single branch 68%
MTCN appearance + physical branches 71%

denote the time difference between the first frames and last
frames of (7}, T,), respectively.

The output of the above two branches are concatenated
and fed to a FC layer. The output of MCTN is a 2D soft-
maxed vector indicating the (similarity, dis-similarity) prob-
abilities between (T}, T,,), which is denoted as (pg, p1), re-
spectively. We use focal loss with an improved performance
over cross entropy loss.

For the training of MTCN, we gather positive samples
from vehicle tracklets of the same groundtruth IDs. We
gather negative samples from different ID pairs. We keep
the sizes of the both sets equal.

Table 1 shows the performance evaluation and ablation
study of the proposed MTCN. We obtained 65% accuracy
when using only the appearance features. After adding the
physical features in a single branch, we obtained 68% accu-
racy. With the proposed two-branch design, we obtain 71%
accuracy.

3.4. Traffic Anomaly Detection

Our traffic anomaly approach is based on a simple as-
sumption that, in most cases after an anomaly condition oc-
curs, the vehicles will not move and stay stationary on the
road. Thus, the background extraction and smoothed av-
eraging method are effective methods that can analyze the
traffic flow to obtain road segmentation mask as well as the
continuous stationary region (i.e. the vehicle of anomaly).
We use a segmentation mask to filter out the “non-road” re-
gions, such that we can perform anomaly detection without
interference. In order to obtain the more continuous sta-
tionary region and background region, the MOG2 [31] and
the smoothed averaging method [1] are used and combined
their results. We use the Hybrid Task Cascade network [3]

with ResNeXt backbone [28] as our vehicle detector, and
fine-tune it on the AIC20 T4 vehicle detection training sets.
Fig. 7 overviews our traffic anomaly detection pipeline.

We observed that in the traffic scene of the AIC20 Traffic
Anomaly Detection Dataset (which consists of 100 training
videos and 100 test videos), there exists many small vehi-
cles in the distant which cannot be detected. This leads to
miss-detected anomaly events. To address this problem, we
use the perspective method in [1] to scale the small targets
in the distant. This way, small vehicles will be maintained
in a consistent and manageable size for applying our vehicle
detector network.

After the position and the time information of the con-
tinuous stationary vehicles are obtained, we found that not
all detected stationary vehicles are abnormal. For example,
there are several vehicles waiting in the red light, which
belongs to false-positive detections. Furthermore, the re-
quirements in the T4 Challenge in accurately determining
the anomaly starting time for the detected anomaly event is
difficult in general. We apply the spatial-temporal matrix
discrimination from [1] to determine the start time of the
anomaly event.

4. Challenge Evaluation and Results

4.1. (T1) vehicle counts by class at multiple inter-
sections

The AIC20 Track 1 challenge (vehicle counts by class
at multiple intersections) provides 9 hours videos cap-
tured from 20 different vantage points. Video views in-
clude intersections of single ways, full intersections, high-
way segments, and city streets, covering various lighting
and weather conditions (including dawn, rain, and snow).
Videos are split into two data sets A and B. Data set A (5
hours in total) along with all the corresponding instruction
documents and a small subset of ground truth labels (for
demonstration purpose) are made available to all participant
teams. Data set B will be reserved for later testing use.

The ranking of AIC20 Track 1 challenge is justified us-
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Figure 7. Track 4 traffic anomaly detection method overview.

ing both vehicle counting accuracy and running efficiency
in terms of execution time. The vehicle counting accuracy
calculates the counts of passing vehicles travelling along a
set of pre-defined Movement of Interest (MOT) trajecto-
ries in the videos. The execution time measures how fast
the test system process all tasks from the beginning to the
end, using a given running efficiency python program (ef-
ficiency.py). Each participant team must execute this pro-
gram to calculate an efficiency factor as part of submission
results. The final evaluation score S1 is a weighted of effec-
tiveness Slef rectiveness and efficiency Sle ficiency scores:

« Slpffu'u’n('y + ﬂ Sleffectiveness (6)

We obtained S1 score of 0.3241 which ranks 18-th in the
AIC20 general leaderboard. For the AIC20 public leader-
board, we obtained S1 score of 0.3116 with ranks 13-th.

4.2. (T2) multi-camera vehicle re-identification

The AIC Track 2 contest (city-scale multi-camera ve-
hicle re-identification) provides 56, 277 vehicle images, of
which 36,935 come from 333 vehicle identities form the
training set and 18,290 from the other 333 identities in the
test set. An additional 1,052 vehicle images are used as
queries in the evaluation. The vehicle re-id performance is
evaluated by the standard mean Average Precision (mAP)
of the top-K matches calculated from vehicle images in the
query set, K = 100. The mAP is essentially the area under
the Precision-Recall curve (PR-AUC) over all the queries.
The AIC20 evaluation system calculates the mAP of the
top-100 matches to rank the performance of each team.

We obtained mAP of 0.0368, which ranks 57-th in the
AIC20 general leaderboard (41-th in the AIC20 public
leaderboard) out of all participant teams.

4.3. (T3) city-scale multi-camera vehicle tracking

The AIC Track 3 contest (city-scale multi-camera vehi-
cle tracking) provides 215.03 minutes of videos collected
from 46 cameras spanning 16 intersections in a mid-sized
U.S. city. The multi-cam tracking performance of each par-
ticipant team is evaluated using the F1 score of vehicle iden-
tity (I DF'1), which measures the ratio of correctly identi-
fied detections over the average number of ground-truth and

computed detections:

2T P;q 7
2T Pig+ FPig+ FNyg’ M
where T'P;; denotes THE identity true-positive, F'P;; de-
notes the identity false-positive, F'N;4 denotes the identity
false-negative.

We obtained I DF'1 score of 0.0620, which ranks 6-th
out of the 9 world-wide participant teams in the AIC20 gen-
eral leaderboards. We rank also 6-th in the AIC20 public
leaderboard out of § total teams.

4.4. (T4) traffic anomaly detection

IDF1 =

The AIC20 Track 4 contest (traffic anomaly detection)
data contains 100 training videos and 100 test videos in
800 x 410, each about 15 min long in 30 fps. These videos
represent real-world traffic data covering large variety of
traffic conditions, weather conditions (day, nights, snow,
rainy, sunny), and traffic anomaly events (emergency stops,
crashes).

Traffic anomaly detection is evaluated using the F'1
score multiplied by the event detection time error in
RM SFE (unit in seconds) as the final S, score:

Sy =F1 x (1 - NRMSE), (8)

where the NRM SE is the RM SE normalized with mini-
mum 0 and maximum 300.

We obtained Fl-score of 0.9706, RMSE 6.6058, S4
94.92%, which ranks 4-th out of 13 world-wide participant
teams in the AIC20 general leaderboard.

5. Conclusion

We presented methods and results for our participa-
tion to all four contest tracks of the AI City Challenge
2020: on (T1) multi-class multi-movement vehicle count-
ing, (T2) city-scale multi-camera vehicle re-identification,
(T3) city-scale multi-camera vehicle tracking, and (T4)
traffic anomaly detection, respectively. For T2 challenge,
our newly annotated vehicle type and color classification
dataset will share to the community that should enrich the
available dataset. We achieved top-6 and top-4 ranking on
the AIC20 general leaderboard for the T3 and T4 contests,
respectively. Future work includes the continue improve-
ment of the proposed method, as well as improving the ex-
ecution speed running on edge devices.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

Shuai Bai, Zhiqun He, Yu Lei, Wei Wu, Chengkai Zhu,
and Ming Sun. Traffic anomaly detection via perspective
map based on spatial-temporal information matrix. In CVPR
Workshop on Al City 2019 Challenge, 2019. 2, 3,7
Ming-Ching Chang, Jiayi Wei, Zheng-An Zhu, Yan-Ming
Chen, Chan-Shuo Hu, Ming-Xiu Jiang, and Chen-Kuo Chi-
ang. Al City Challenge 2019 — City-scale video analytics for
smart transportation. In CVPR Workshop on Al City 2019
Challenge, 2019. 2,4, 5

Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao
Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi,
Wanli Ouyang, Chen Change Loy, and Dahua Lin. Hybrid
task cascade for instance segmentation. In CVPR, 2019. 7
Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and
Michael Felsberg. ECO: Efficient convolution operators for
tracking. In CVPR, pages 6638-6646, 2017. 2

Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan, and
Michael Felsberg. Learning spatially regularized correlation
filters for visual tracking. In ICCV, pages 4310-8, 2015. 2
Kaiming He, Georgia Gkioxari, Piotr Dolldr, and Ross Gir-
shick. Mask R-CNN. In ICCV, pages 2961-2969, 2017. 2,
3,6

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 5

Joao F Henriques, Rui Caseiro, Pedro Martins, and Jorge
Batista. High-speed tracking with kernelized correlation fil-
ters. IEEE PAMI, 37(3):583-596, 2015. 2

Tsung-Wei Huang, Jiarui Cai, Hao Yang, Hung-Min Hsu,
and Jeng-Neng Hwang. Multi-view vehicle re-identification
using temporal attention model and metadata re-ranking. In
CVPR Workshop on Al City 2019 Challenge, 2019. 3, 4
Peilun Li, Guozhen Li, Zhangxi Yan, Youzeng Li, Meiqi
Lu, Pengfei Xu, Yang Gu, and Bing Bai. Spatio-temporal
consistency and hierarchical matching for multi-target multi-
camera vehicle tracking. In CVPR Workshop on Al City 2019
Challenge, 2019. 2,3, 6

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. SSD: Single shot multibox detector. In ECCV, pages
21-37,2016. 6

Xiaobin Liu, Shiliang Zhang, Qingming Huang, and Wen
Gao. Ram: A region-aware deep model for vehicle re-
identification. In ICME, pages 1-6, 2018. 5

Kai Lv, Heming Du, Yunzhong Hou, Weijian Deng, Hao
Sheng, Jianbin Jiao, and Liang Zheng. Mulvehicle re-
identification with location and time stamps. In CVPR Work-
shop on Al City 2019 Challenge, 2019. 3

Hyeonseob Nam, Mooyeol Baek, and Bohyung Han. Model-
ing and propagating CNNss in a tree structure for visual track-
ing. arXiv:1608.07242, 2016. 2

Hyeonseob Nam and Bohyung Han. Learning multi-domain
convolutional neural networks for visual tracking. In CVPR,
pages 4293-4302, 2016. 2

Milind Naphade, David C Anastasiu, Anuj Sharma, Vamsi
Jagrlamudi, Hyeran Jeon, Kaikai Liu, Ming-Ching Chang,

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

Siwei Lyu, and Zeyu Gao. The nVidia Al city chal-
lenge. In 2017 IEEE SmartWorld, Ubiquitous Intelligence
& Computing, Advanced & Trusted Computed, Scalable
Computing & Communications, Cloud & Big Data Comput-
ing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1—
6. IEEE, 2017. 1

Milind Naphade, Ming-Ching Chang, Anuj Sharma,
David C. Anastasiu, Vamsi Jagarlamudi, Pranamesh
Chakraborty, Tingting Huang, Shuo Wang, Ming-Yu Liu,
Rama Chellappa, Jeng-Neng Hwang, and Siwei Lyu. The
2018 NVIDIA Al City Challenge. In CVPR Workshop on Al
City 2018 Challenge, pages 53—60, 2018. 1

Milind Naphade, Zheng Tang, Ming-Ching Chang, David C.
Anastasiu, Anuj Sharma, Rama Chellappa, Shuo Wang,
Pranamesh Chakraborty, Tingting Huang, Jeng-Neng
Hwang, and Siwei Lyu. The 2019 ai city challenge. In CVPR
Workshop on Al City 2019 Challenge, 2019. 1,2, 3

Joseph Redmon and Ali Farhadi. YOLOv3: An incremental
improvement. 2018. 2, 3, 6

Zheng Tang, Milind Naphade, Ming-Yu Liu, Xiaodong
Yang, Stan Birchfield, Shuo Wang, Ratnesh Kumar, David
Anastasiu, and Jeng-Neng Hwang. Cityflow: A city-scale
benchmark for multi-target multi-camera vehicle tracking
and re-identification. CVPR, 2019. 1,4

Zheng Tang, Gaoang Wang, Hao Xiao, Aotian Zheng, and
Jeng-Neng Hwang. Single-camera and inter-camera vehicle
tracking and 3D speed estimation based on fusion of visual
and semantic features. In CVPR Workshop on Al City 2018
Challenge, pages 108-115, 2018. 2

Liang Tong and Zhufang Li. Study on the road traffic survey
system based on micro-ferromagnetic induction coil sensor.
Sensors & Transducers, 170:73-79, 2014. 3

Gaoang Wang, Xinyu Yuan, Aotian Zhang, Hung-Min Hsu,
and Jenq-Neng Hwang. Anomaly candidate identification
and starting time estimation of vehicles from traffic videos.
In CVPR Workshop on Al City 2019 Challenge, 2019. 3
Guanshuo Wang, Yufeng Yuan, Xiong Chen, Jiwei Li, and Xi
Zhou. Learning discriminative features with multiple gran-
ularities for person re-identification. In ACM Multimedia,
pages 274-282,2018. 5

Longyin Wen, Zhen Lei, Ming-Ching Chang, Honggang Qi,
and Siwei Lyu. Multi-camera multi-target tracking with
space-time-view hyper-graph. 1JCV, 122(2):313-333, 2017.
2

Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple
online and realtime tracking with a deep association metric.
In ICIP, pages 3645-3649, 2017. 2

Xuzhi Xiang, Mingliang Zhai, Ning Lv, and Abdulmo-
taleb El Saddik. Vehicle counting based on vehicle detection
and tracking from aerial videos. Sensors, 18(2560), 2018. 3
S. Xie, R. Girshick, P. Dollér, Z. Tu, and K. He. Aggregated
residual transformations for deep neural network. In CVPR,
2017. 7

Fu Xiong, Yang Xiao, Zhiguo Cao, Kaicheng Gong, Zhi-
wen Fang, and Joey Tianyi Zhou. Towards good prac-
tices on building effective cnn baseline model for person re-
identification. arXiv:1807.11042,2018. 3



[30] Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang.
A large-scale car dataset for fine-grained categorization and
verification. In CVPR, 2015. 4

[31] Zoran Zivkovica and Ferdinandvan der Heijden. Efficient
adaptive density estimation per image pixel for the task
of background subtraction. Pattern Recognition Letters,
27(7):773-780, 2006. 7



