
AI City Challenge 2020 – Computer Vision for Smart Transportation

Applications

Ming-Ching Chang 1 Chen-Kuo Chiang 2 Chun-Ming Tsai 3

Yun-Kai Chang 2 Hsuan-Lun Chiang 2 Yu-An Wang 2 Shih-Ya Chang 2

Yun-Lun Li 2 Ming-Shuin Tsai 2 Hung-Yu Tseng 2

1 University at Albany – SUNY, NY, USA
2 National Chung Cheng University, Taiwan

3 University of Taipei, Taiwan

Abstract

We present methods developed in our participation of

the AI City 2020 Challenge (AIC20) and report evalua-

tion results in this contest. With the blooming of AI com-

puter vision techniques, vehicle detection, tracking, identifi-

cation, and counting all have advanced significantly. How-

ever, whether these technologies are ready for real-world

smart transportation usage is still a open question. The

goal of this work is to apply and integrate state-of-the-art

techniques for solving the challenge problems under a stan-

dardized setup and evaluation. We participated all 4 AIC20

challenge tracks (T1 to T4). In T1 challenge, we perform ve-

hicle counting by associating deep features extracted from

Mask-RCNN detections and tracklets, followed by vehicle

movement zone matching. In T2 challenge, we perform ve-

hicle type and color classification and then rank matching

vehicles using a PGAM re-id network. In T3 challenge, we

proposed a new Multi-Camera Tracking Network (MTCN)

that takes single-camera vehicle tracking as input, and per-

forms multi-camera tracklet fusion and linking, by jointly

optimizing the matching of vehicle appearance and physi-

cal features. In T4 challenge, we adopt a leading method

based on perspective detection and spatial-temporal matrix

discriminating, and improve it with background modeling

for traffic anomaly detection. We achieved top-6 and top-4

performance for T3 and T4 challenges respectively in the

AIC20 general leaderboard.

1. Introduction

AI deep neural networks have advanced significantly

in recent years, leading to a fast-pacing “smarter world”.

Among many advancements, smart city and smart trans-

portation are on the emerging fronts. Intelligent devices

with cameras running computer vision (CV) techniques are

able to see and start to reason and understand the world.

Particularly, under the umbrella of Intelligent Transporta-

tion Systems (ITS) developments, the AI City Challenge

Workshops 1 are organized with the aim to encourage re-

search and development of AI and CV for smart transporta-

tion applications. The AI City Challenge 2020 (AIC20) is

the forth sequel following the growing participation from

past years (AIC17 [16], AIC18 [17], and 19 [18]), targeting

at four challenge tracks in the following:

• Track 1 challenge focuses on the counting of two classes

of vehicles (trucks and passenger cars) at multiple intersec-

tions observed from various camera views — a dataset pro-

vided by the Iowa Department of Transportation (DOT).

The key challenge is on how best to reliably track vehicles

and determine the crossing of vehicles at specific traffic

lanes or zones.
• Track 2 challenge focuses on image-based re-identification

of CV detected vehicle boxes from the CityFlow Vehicle

Re-Id Dataset [20].
• Track 3 challenge is on the tracking of vehicles over a city-

wide camera network that spans over 4 miles from 5 col-

lection sites — the CityFlow dataset [20]. The challenge is

on: (i) how best to perform multi-camera tracking on syn-

chronizing and overlapping camera views, (ii) how best to

re-identify vehicle tracks across camera views with large

viewing variabilities, and (iii) how best to leverage traffic

flow characteristics to achieve a reliable solution for the

re-identification and linking of vehicle tracklets among the

vast number of potential candidates.
• Track 4 challenge is on the detection of abnormal traffic

incidences from a dataset provided by Iowa DOT, where

anomalies arisen from emergencies, vehicle breakdowns,

or crashes.

1https://www.aicitychallenge.org/
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This paper describes methods and results of our partic-

ipation submitted to all four AIC20 challenge tracks, with

evaluation performed by the AIC20 organization. On the

AIC20 leaderboard, our method ranks 18-th in the general

leaderboard (score 0.3241) and 13-th in the public leader-

board (score 0.3116) in the Track 1 vehicle counting con-

test. We rank 57-th in the general leaderboard (41-th in the

public leaderboard) with mAP 0.0368 in the Track 2 vehicle

re-id contest. We rank 6-th in the general leaderboard out

of 9 participant teams (also 6-th in the public leaderboard

out of 8 teams) with score 0.0620 in the Track 3 contest.

We rank 4-th (out of 13 participant teams) with F1-score of

0.9706, RMSE 6.6058, S4 94.92% in the Track 4 anomaly

contest in the AIC20 general leaderboard.

T1 Challenge: Multi-Class Multi-Movement Vehi-

cle Counting. Our vehicle class-specific counting pipeline

consists of three steps (as in Fig. 1): (1) vehicle type de-

tection using Mask-RCNN [6], (2) appearance and spatial

feature-based tracking, and (3) the matching between vehi-

cle Movement of Interest (MOI) zones. The Mask-RCNN

vehicle detection can handle large variabilities of image

qualities and vehicle scales in the provided videos. Ve-

hicle tracklets are formed based on a standard Hungarian

matching of both spatial (geometrical) features and the re-

id features following [10]. We train this feature extraction

network on both the AIC20 Track 2 and Track 3 challenge

datasets, with an extra resizing step to enhance the detection

of small-size vehicles appearing in the videos. Finally, ve-

hicle trajectories are matched against specified MOI zones

(traffic lanes characterizing the respective vehicle count-

ing tasks) to determine the travelling directions and zone-

crossing counts to produce the final counting.

T2 Challenge: City-Scale Multi-Camera Vehicle Re-

Identification. Given a query vehicle image and a poten-

tially very large gallery of test images, the vehicle re-id out-

put is the matching vehicles in the gallery ranked by the

matching similarities in decreasing order. Our vehicle re-

id method consists of two steps (as in Fig. 3): (1) We first

performed supervised vehicle type and color classification.

We annotated the AIC20 T2 vehicle re-id training set for

such information. This annotation effort includes the label-

ing of 15, 000 vehicles that are categorized into 7 vehicle

types, 30 vehicle makes, and 9 vehicle colors (see § 3.2 for

details). (2) We then trained a vehicle metadata classifier

based on this dataset to identify vehicle types, makes and

colors, which will be used fine-select a subset of gallery ve-

hicles to perform re-identification. Finally, we apply the

Pyramid Granularity Attentive Model (PGAM) re-id net-

work [2], a method we developed in the AIC19 contest [18].

The PGAM consists of a BNneck with ResNet-154 back-

bone that produces the final re-id ranking results.

T3 Challenge: City-Scale Multi-Camera Vehicle

Tracking. We performs data-driven multi-cam vehicle

tracking in the following steps (see Fig. 6): (1) Vehicles

are detected using Mask-RCNN [6] and re-id appearance

feature extraction using ResNet-50. (2) Physical measures

are obtained using the provided camera calibration matri-

ces to project the vehicle boxes onto a global (longitude,

latitude) GPS coordinates. (3) Hungarian matching are per-

formed based on a loss including a cross-entropy term using

the vehicle re-id appearance feature and GPS positions, and

a triplet loss for metric learning. Single camera tracking is

performed by bottom-up linking of vehicle tracklets within

each camera. (4) Multi-camera tracking are performed

using a newly proposed Multi-Camera Tracking Network

(MCTN) to associate vehicle tracklets across views, with

the optimization of both the physical and appearance fea-

ture loss terms.

T4 Challenge: Traffic Anomaly Detection. Anomaly

detection in the real-world traffic scene has many chal-

lenges, including variations of weather, view-points and

lighting conditions, that will affect the accuracy and reli-

ability. Our pipeline is based on the winning method of Bai

et al. [1] from AIC19 contest [18], with improvements and

integration of new capabilities in the vehicle detector and

background modeling modules.

2. Related Work

Vehicle detection is important in smart transportation

and traffic surveillance. In recent years, methods based on

deep learning have improved significantly. Notably, deep

Convolutional Neural Network (CNN) based method such

as Mask-RCNN [6] and YOLOv3 [19] are widely used in

many systems.

Single-camera multi-target tracking methods [4, 8, 5,

15, 14] mostly follow the tracking-by-detection paradigm,

in associating per-frame object detections into consistent

tracklets. Occlusion recovery and tracklet identity switch

avoidance are the challenges for these algorithms. Pop-

ular tracking methods include correlation filter based ap-

proaches (KCF [8], SRDCF [5], ECO [4]) and CNN-based

approaches (DeepSORT [26], MDNet [15], TCNN [14]).

Multi-camera multi-target tracking involves not only

Multiple Object Tracking (MOT) but also two additional

difficulties/enhancements: (1) How best to associate track-

lets across synchronous, overlapping camera views, where

camera calibration is often used to reason about the ge-

ometry among tracklets in physical world coordinates. (2)

How best to link tracklets across non-overlapping camera

views, which is essentially the re-identification problem

across cameras. Popular methods typically rely on a form

of spatial-temporal inference across camera views [25, 10]

or ensemble fusion [21].

Vehicle re-identification has drawn significant atten-

tions, as method developed for e.g. person re-id can be di-

rectly applied to vehicle re-id. However real-world vehicle



re-id remains challenging due to various factors: (1) the un-

balanced intra- and inter- class variabilities, (2) vehicles of

the same make, even same model year, can belong to dif-

ferent owners, where only tiny difference such as the wind-

shield tags is the sole hint to distinguish them, (3) the po-

tentially huge number of vehicles to compare with. Notably,

leading methods from AIC19 [9, 13] rely on three general

strategies: (1) vehicle keypoint identification (that can lead

to 3D modeling of vehicles) that can improve view-invariant

feature extraction, (2) leveraging vehicle type, make, and

color classification for re-id [9], and (3) multi-stage re-

id: re-ranking after an initial ranking (often obtained via a

triplet-loss re-id network) using extra information or meta-

data. Popular dataset for training vehicle re-id dataset in-

cludes: VRIC (based on UA-DETRAC), PKU VehicleID,

and VeRi datasets. 2

Vehicle counting is traditionally achieved by deploying

coil sensors under the road [22]. With the advancement of

CV, AI visual systems can now perform non-intrusive ve-

hicle counting based on object detection and tracking [27],

which can be deployed at large scales. Challenges of CV

vehicle counting include image quality and resolution limi-

tations, view angle variations, occlusions, and weather con-

ditions (raining or snow).

Traffic anomaly detection from real-world traffic

videos is not straightforward, where standard data-driven

abnormal event detection or outlier detection algorithms

(SVM, isolation forests) can easily fail. The winning teams

in AIC19 [18] use optical-flow or background modeling, to

segment out a moving traffic mask that can effectively re-

duce search. Abnormal events such as a stalled vehicle can

be detected using a spatio-temporal anomaly matrix [1], or

a multi-stage framework based on anomaly candidate iden-

tification [23].

3. Method

We describe each method developed for the four AIC20

challenge tracks in the following sections.

3.1. (T1) Multi­Class Multi­Movement Vehicle
Counting

We perform multi-class multi-movement vehicle count-

ing on the AIC20 Track 1 challenge dataset, which contains

annotated videos viewing urban intersection and highway.

We adopt a winning method of Li et al. [10] from AIC19,

which uses Hungarian matching for vehicle track linking.

Since the AIC20 Track 1 dataset does not come with cam-

era calibration, we directly use image pixel coordinates (in-

stead of the GPS coordinates in [10]). Our vehicle counting

pipeline in Fig. 1 consists of steps that we will describe in

the following two parts.

2Available at https://github.com/knwng/

awesome-vehicle-re-identification.

(i) Vehicle detection and tracklet linking (§ 3.1.1). We

first use Mask-RCNN to detect vehicles and extract re-id ap-

pearance features from each vehicle in order to form track-

lets for use in later steps. We use a standard Hungarian

matching algorithm to associate detections into tracklets, by

considering both the spatial and appearance features. After

such bottom-up vehicle tracklet linking, tracklets can still

be broken due to poor detection results, e.g. tiny vehicles,

occlusions, or camera shaking. To this end, we enforce a

tracklet matching and linking step to recover broken track-

lets that can hopefully connect into longer trajectories.

(ii) Vehicle movement matching and counting (§ 3.1.2.)

Given the refined vehicle tracklets, we next match each ve-

hicle trajectory against the Movement of Interest (MOI)

given from the AIC20 contest for each site. The vehicle

traveling direction is determined as a classification problem,

and the final traffic counting results are obtained.

3.1.1 Vehicle detection and tracklet linking

We adopt the tracking-by-detection method of [10], where

Mask-RCNN [6] is first perform to detect vehicles. We

confirmed that Mask-RCNN produces more accurate detec-

tions compared to other detectors such as YOLOv3[19], es-

pecially for small vehicles. Tracklets are next associated

based on a fusion of spatial and re-id appearance features.

This re-id appearance feature extraction network is based

on a Resnet50 backbone with a bottleneck structure [29].

We train this network using the AIC20 Track 2 re-id dataset

with both the triple and classification losses.

We found the tiny vehicles (around 10 to 20 pixels) in

the view is difficult to detect in the setting of [10]. To this

end, we initialize the feature extractor network using pre-

trained weights, and fine-tune it using the down-sampled

vehicle boxes obtained from the AIC20 Track 2 and Track

3 training sets.

Tracklets are created and linked from detected vehicles

between consecutive frames. We calculate the distance

(loss) between each vehicle box bi and its corresponding

box bj in the previous frame. The distance between such

pair (bi, bj) is calculated as:

d(bi, bj) = ||p1 − p2||2 + λp||f1 − f2||2, (1)

where p1 and p2 are pixel coordinates; f1, f2 are the re-id

features in 2048 dimension; λp is set as 0.01. Standard Hun-

garian matching is applied to link these vehicle box pairs by

minimizing association distances, which yields off-line ve-

hicle tracking trajectories.

We observed that the cameras can appear to be shak-

ing in the AIC20 Track 1 test set, which hinders Mask-

RCNN from producing reliable vehicle detections. To ad-

dress this issue, we improved the tracklet handling steps

in [10]. Specifically, in the case when a tracklet does not



Figure 1. Track 1 multi-movement vehicle counting method overview.

(a) (b)
Figure 2. Track 1 multi-movement vehicle counting in the spec-

ified Movement of Interest (MOI) zones. (a) Each MOI corre-

sponds to a traffic lane, where vehicle counting is to be calculated.

(b) We match each vehicle trajectory against each MOI, by calcu-

lating the spatial distance of each vehicle box to each MOI starting

point.

match to any detection boxes in a frame, we store the track-

let rather than discard it immediately. We discard tracklets

in the case where the number of times with no matching

detections exceeds a threshold τ = 5.

3.1.2 Vehicle movement matching and counting

We match each vehicle trajectory against a set of Movement

of Interest (MOI) zones specified by the AIC20 contest or-

ganization as in Fig. 2(a). MOI is used to determine vehicle

passing counts as the traffic flows.

To deal with erroneous counts resulting from tracking

losses, broken tracks, or ID switches, we enforce tracklet

linking to recover likely disconnected tracklets. We con-

sider each tracklet pair (Ta, Tb), where Ta denotes the track-

let appearing earlier than Tb. If the minimum loss distance

of last five boxes of Ta and the first five boxes of Tb is lower

than a predefined threshold, we re-connect such tracklet pair

(Ta, Tb). We also connect (Ta, Tb) if the Euclidean distance

between the first box of Tb and the last box of Ta is lower

than a threshold τp of 400 pixels.

Matching MOT starting points (Fig. 2). To match each

vehicle tracklet to a MOI zone, we match the first vehi-

cle position in the tracklet with a manually labeled starting

point of MOI. We manually specify such starting point for

each traffic lane in each camera view. The distance between

each MOI starting point (xs, ys) to the center of each ve-

hicle box xv, yv is calculated using Manhattan distance in

pixels:

dsv = |xs − xv|+ |ys − yv|. (2)

3.2. (T2) City­Scale Multi­Camera Vehicle Re­
Identification

Our vehicle re-id pipeline is a two-stage approach. In

the first stage, we propose a vehicle metadata (type, make

and color) learning network (§ 3.2.2) that is trained on a

newly labeled dataset (§ 3.2.1). Specifically, for the training

of the vehicle metadata recognition network, we performed

annotation of the vehicle types, makes, and colors on the

AIC20 CityFlow Vehicle Re-Id Dataset [20]. We did not

make use of the AIC20 VehicleX synthetic dataset. In the

second stage, we adopt the Pyramid Granularity Attentive

Model (PGAM), an improved re-id network from our pre-

vious work of [2] in AIC19 (§ 3.2.3). The pipeline is shown

in Fig. 3.

3.2.1 A newly labeled AIC20 vehicle metadata set

We annotate the following 3 attributes on the 15, 000 vehi-

cle images in the AIC training set:

• Vehicle type: Sedan, SUV, truck, minivan, pickup truck,

hatchback, bus; totally 7 types.

• Vehicle make: Dodge, Ford, Chevrolet, GMC, Honda,

Chrysler, Jeep, Hyundai, Subaru, Toyota, Buick, KIA,

Nissan, Volkswagen, Oldsmobile, BMW, Cadillac, Volvo,

Pontiac, Mercury, Lexus, Saturn, Benz, Mazda, Scion,

Mini, Lincoln, Audi, Mitsubishi, Others; totally 30 makes.

• Vehicle color: black, white, gray, blue, red, gold, silver,

green, yellow; totally 9 color types.

Our annotated vehicle dataset will be released upon the

acceptance of this paper.

3.2.2 Vehicle type and color metadata learning

We use the 29-layer light CNN framework from Wu et al.

[9] to perform vehicle metadata classification. In this ar-

chitecture, Max-Feature-Map (MFM) is used to replace the

original ReLU function. MFM can be regarded as a way

of maxout, which makes low-activation neurons robust to

noise, thus leads to meaningful features. The Semantic

Bootstrapping in the architecture can handle noisy labeled

images in a large dataset.

We train this model by taking the CompCar [30] pre-

trained model as initialization, and perform training on our

newly annotated AIC20 dataset. We obtain top-3 test ac-

curacy of 73.90%, 6.05%, and 17.40%, for the vehicle type,



Figure 3. Track 2 vehicle re-identification method overview.

(a)

(b)

Figure 4. Track 2 vehicle re-id visual results. (a) Vehicle query

results based on only using the vehicle type and color metadata.

Observe that the accuracy of the car type is quite high, but in the

color part, you can see that the light red, dark red, and dark red are

all divided into the same among of the categories. (b) Final Re-Id

query image (on the left) and the Re-Identified vehicles from the

gallery images ranked ordered by similarities (row and column).

make, and color, respectively. This result shows that vehicle

type and color are reliable features, however vehicle make is

not reliable. This can be due to factors regarding data qual-

ity, as we observed that in the AIC20 dataset, many vehicle

makes are hard to identify even from human eyes. Fig. 4(a)

shows an example of vehicle type and color classification.

3.2.3 Pyramid Granularity Attentive Model

We use the Pyramid Granularity Attentive Model

(PGAM) [2], a method we developed in AIC19 par-

ticipation for vehicle re-id contest. The design of PGAM

integrates the advantages of two recent deep re-id networks,

namely the Multiple Granularity Model (MGN) [24] and

Region-Aware deep Model (RAM) [12]. MGN is originally

designed for person ReID, where the model contains a

multi-branch deep network architecture. Specifically,

MGN consists of a network branch for global feature

representations, and two other branches for local feature

representations. RAM operates similarly for re-id compar-

ison, however several paths are used to deal with global

and local features. PGAM is based on a ResNet-152 [7]

backbone for better performance.

Specifically, to effectively focus the re-id learning on

class centers in PGAM, we use the loss Lcen to tighten the

clustering of learned class features. Losses Lid and Lcolor

consider the summation of the three branches of losses re-

garding vehicle ID and color classification. Our vehicle

PGAM re-id loss Lreid is defined as:

Lreid = α1 (Lid + Lcolor) + α2 Lcen + α3 Ltri, (3)

where Ltri denotes the standard triplet loss; weights α1 ,

α2, and α3 control the importance among loss terms.

The training of PGAM takes the metadata-classified ve-

hicle sets (i.e. vehicles of the same types and colors) as

input. At run time, PGAM generates 1052 ranking result

for each re-id query. Fig. 4(b) shows the example results.

Observed that the ranking in Fig. 4(b) is more accurate and

consistent compared to the raw metadata classification re-

sults in Fig. 4(a).

3.3. (T3) City­Scale Multi­Camera Vehicle Track­
ing

The AIC20 Track 3 challenge videos are captured by

multiple concurrent cameras (as shown in Fig. 5). Diffi-

culties arisen from the large variation of image qualities,

viewing angles, occlusions, weather conditions, and the vast

amount of potential vehicles to consider. How best to per-

form effective space-time tracklet fusion across cameras is

the key problem to consider here. Our approach consists of

three components:

(1) multi-target single-camera tracking (§ 3.3.1),
(2) across-camera tracklet association filtering (§ 3.3.2),
(3) multi-camera tracking and re-id linking (§ 3.3.3).

In step (1), the single-camera tracking considers both ve-

hicle appearance and space-time features on the global (lon-

gitude, latitude) GPS coordinates. Steps (2) and (3) can be

treated as the vehicle re-identification problem addressed in

the AIC20 Track 2 challenge. However here the consid-

eration can possibly extend to re-id of the whole vehicle

tracks. In addition, here the space-time fusion of vehicles

along the traffic flow provides an important cue. Vehicles

moving along a traffic cue in most cases simply follow the



Figure 5. Track 3 city-scale multi-camera vehicle tracking examples.

traffic — lane switching or turning happen only occasion-

ally, not all the time. So in step (2) we focus our approach

on filtering out unlikely pair of vehicle trajectories before

we feed them into the re-id network for considering trajec-

tory linking. In step (3), we developed a new Multi-Camera

Tracking Network (MCTN) that can effective link tracklets

across camera views, by optimizing both physical and ap-

pearance cues.

3.3.1 Multi-target single-camera tracking

The AIC20 contest provides 3 vehicle detection results,

namely Mask-RCNN [6], SSD512 [11], YOLOv3 [19]. We

use Mask-RCNN detections as feed to our tracker. We adopt

the leading method of [10] in AIC19 as our single-camera

tracking method. Similar to the pipeline described in § 3.1

for vehicle tracking for counting, we perform Hungarian

matching upon the combination of criteria (appearance re-id

features and GPS spatial features), to find the matching of

detection box pairs for vehicle tracklet formation. Vehicle

GPS coordinates are obtained via projective transformation

of camera views using the camera calibration matrices pro-

vided by the AIC20 contest. Vehicle appearance features

are extracted using the re-id model based on the ResNet50

backbone. The re-id model is trained using the AIC20 Track

2 and Track 3 datasets.

3.3.2 Across-camera tracklet association filtering

To maintain a manageable multi-camera vehicle tracking

(i.e. tracklet linking) across a large, cit-scale camera net-

work, the aim here is to reduce the necessary amount of

across-camera tracklet comparisons. We use two metrics to

filter out vehicle tracklet pairs (Tp, Tq) that can be safely

omitted.

The first cue we use is the physical (space-time) con-

strain between any pair of vehicle tracklets. Since all

AIC20 Track 3 challenge videos are given with synchro-

nized timestamps, from tracking we know the precise space-

time localization of each tracklet, we can calculate the ve-

hicle speed in MPH for each tracklet. This speed estimation

together with the known distance between (Tp, Tq), we can

estimate arrival time. In other words, suppose the track-

let pair (Tp, Tq) belongs to the same vehicle, we can esti-

mate the arrival time based on the putative pair of vehicle

tracklets using extrapolation. We denote ta the estimated

arrival time between (Tp, Tq), and tb the the time differ-

ence between the first frames of (Tp, Tq). The difference

δt = |ta − tb| can be used to filter out unlikely vehicle pairs

across cameras:

if δt > τt, remove tracklet pair (Tp, Tq), (4)

where τt is set to 90 (frames).

We further filter out vehicle tracklet pairs (Tp, Tq) that

travel in opposite directions, which is less likely to occur in

a traffic flow. Specifically, let vectorp and vectorq denote

the first and last sample points of two tracklets Tp and Tq ,

respectively. We consider the dot product (angle) between

the vectors (vp, vq):

if vp · vq < 0, remove tracklet pair (Tp, Tq). (5)

3.3.3 Multi-camera tracking and re-id linking

We next describe our Multi-Camera Tracking Network

(MCTN) model developed for the AIC19 Track 3 chal-

lenge. We adopt the leading method of [10] from AIC19 to

perform multi-camera tracking and re-id linking here. We

found that the original method in [10] relies on many hand-

crafted threshold parameters for the cosine distance feature

comparison for tracklet linking. To make the approach less

problem-dependent, we use a data-driven approach to train

a two-branch network in Fig. 6, with an aim to process the

appearance features and physical features separately. The

advantage of our design is that the 5-dim physical weights

in the second branch can be learned independently and thus

not affected by the 4096-dim appearance feature channel.

The 4096-dim appearance feature branch of MCTN

(Fig. 6) consists of five fully-connected (FC) layers. Given

a pair of tracklets (Tp, Tq), this network branch takes the

pair of tracklet-average appearance features as input. Batch

normalization is used in every hidden FC layers.

The 5-dim physical feature branch of MCTN (Fig. 6)

consists of three fully connected layers. We use five physi-

cal features, namely three vehicle GPS distances d
gps
1

, d
gps
2

,

d
gps
3

, and two vehicle timestamp distances dts
1

, dts
2

as the

branch input. Specifically, dgps1 denotes the Euclidean dis-

tance between the first sample points of (Tp, Tq) in GPS

coordinates. Similarly, d
gps
2

denotes the same quantity be-

tween (Tp, Tq), d
gps
3

denotes the same between the last sam-

ple points of (Tp, Tq). The time difference terms dts
1

and dts
2



Figure 6. Track 3 city-scale multi-camera vehicle tracking using the proposed MTCN.

Table 1. Track 3: MTCN evaluation and ablation study results.

Model experiments Accuracy

Only appearance branch 65%

Appearance + physical in a single branch 68%

MTCN appearance + physical branches 71%

denote the time difference between the first frames and last

frames of (Tp, Tq), respectively.

The output of the above two branches are concatenated

and fed to a FC layer. The output of MCTN is a 2D soft-

maxed vector indicating the (similarity, dis-similarity) prob-

abilities between (Tp, Tq), which is denoted as (p0, p1), re-

spectively. We use focal loss with an improved performance

over cross entropy loss.

For the training of MTCN, we gather positive samples

from vehicle tracklets of the same groundtruth IDs. We

gather negative samples from different ID pairs. We keep

the sizes of the both sets equal.

Table 1 shows the performance evaluation and ablation

study of the proposed MTCN. We obtained 65% accuracy

when using only the appearance features. After adding the

physical features in a single branch, we obtained 68% accu-

racy. With the proposed two-branch design, we obtain 71%

accuracy.

3.4. Traffic Anomaly Detection

Our traffic anomaly approach is based on a simple as-

sumption that, in most cases after an anomaly condition oc-

curs, the vehicles will not move and stay stationary on the

road. Thus, the background extraction and smoothed av-

eraging method are effective methods that can analyze the

traffic flow to obtain road segmentation mask as well as the

continuous stationary region (i.e. the vehicle of anomaly).

We use a segmentation mask to filter out the “non-road” re-

gions, such that we can perform anomaly detection without

interference. In order to obtain the more continuous sta-

tionary region and background region, the MOG2 [31] and

the smoothed averaging method [1] are used and combined

their results. We use the Hybrid Task Cascade network [3]

with ResNeXt backbone [28] as our vehicle detector, and

fine-tune it on the AIC20 T4 vehicle detection training sets.

Fig. 7 overviews our traffic anomaly detection pipeline.

We observed that in the traffic scene of the AIC20 Traffic

Anomaly Detection Dataset (which consists of 100 training

videos and 100 test videos), there exists many small vehi-

cles in the distant which cannot be detected. This leads to

miss-detected anomaly events. To address this problem, we

use the perspective method in [1] to scale the small targets

in the distant. This way, small vehicles will be maintained

in a consistent and manageable size for applying our vehicle

detector network.

After the position and the time information of the con-

tinuous stationary vehicles are obtained, we found that not

all detected stationary vehicles are abnormal. For example,

there are several vehicles waiting in the red light, which

belongs to false-positive detections. Furthermore, the re-

quirements in the T4 Challenge in accurately determining

the anomaly starting time for the detected anomaly event is

difficult in general. We apply the spatial-temporal matrix

discrimination from [1] to determine the start time of the

anomaly event.

4. Challenge Evaluation and Results

4.1. (T1) vehicle counts by class at multiple inter­
sections

The AIC20 Track 1 challenge (vehicle counts by class

at multiple intersections) provides 9 hours videos cap-

tured from 20 different vantage points. Video views in-

clude intersections of single ways, full intersections, high-

way segments, and city streets, covering various lighting

and weather conditions (including dawn, rain, and snow).

Videos are split into two data sets A and B. Data set A (5

hours in total) along with all the corresponding instruction

documents and a small subset of ground truth labels (for

demonstration purpose) are made available to all participant

teams. Data set B will be reserved for later testing use.

The ranking of AIC20 Track 1 challenge is justified us-



Figure 7. Track 4 traffic anomaly detection method overview.

ing both vehicle counting accuracy and running efficiency

in terms of execution time. The vehicle counting accuracy

calculates the counts of passing vehicles travelling along a

set of pre-defined Movement of Interest (MOT) trajecto-

ries in the videos. The execution time measures how fast

the test system process all tasks from the beginning to the

end, using a given running efficiency python program (ef-

ficiency.py). Each participant team must execute this pro-

gram to calculate an efficiency factor as part of submission

results. The final evaluation score S1 is a weighted of effec-

tiveness S1effectiveness and efficiency S1efficiency scores:

α S1efficiency + β S1effectiveness (6)

We obtained S1 score of 0.3241 which ranks 18-th in the

AIC20 general leaderboard. For the AIC20 public leader-

board, we obtained S1 score of 0.3116 with ranks 13-th.

4.2. (T2) multi­camera vehicle re­identification

The AIC Track 2 contest (city-scale multi-camera ve-

hicle re-identification) provides 56, 277 vehicle images, of

which 36, 935 come from 333 vehicle identities form the

training set and 18,290 from the other 333 identities in the

test set. An additional 1, 052 vehicle images are used as

queries in the evaluation. The vehicle re-id performance is

evaluated by the standard mean Average Precision (mAP)

of the top-K matches calculated from vehicle images in the

query set, K = 100. The mAP is essentially the area under

the Precision-Recall curve (PR-AUC) over all the queries.

The AIC20 evaluation system calculates the mAP of the

top-100 matches to rank the performance of each team.

We obtained mAP of 0.0368, which ranks 57-th in the

AIC20 general leaderboard (41-th in the AIC20 public

leaderboard) out of all participant teams.

4.3. (T3) city­scale multi­camera vehicle tracking

The AIC Track 3 contest (city-scale multi-camera vehi-

cle tracking) provides 215.03 minutes of videos collected

from 46 cameras spanning 16 intersections in a mid-sized

U.S. city. The multi-cam tracking performance of each par-

ticipant team is evaluated using the F1 score of vehicle iden-

tity (IDF1), which measures the ratio of correctly identi-

fied detections over the average number of ground-truth and

computed detections:

IDF1 =
2TPid

2TPid + FPid + FNid

, (7)

where TPid denotes THE identity true-positive, FPid de-

notes the identity false-positive, FNid denotes the identity

false-negative.

We obtained IDF1 score of 0.0620, which ranks 6-th

out of the 9 world-wide participant teams in the AIC20 gen-

eral leaderboards. We rank also 6-th in the AIC20 public

leaderboard out of 8 total teams.

4.4. (T4) traffic anomaly detection

The AIC20 Track 4 contest (traffic anomaly detection)

data contains 100 training videos and 100 test videos in

800× 410, each about 15 min long in 30 fps. These videos

represent real-world traffic data covering large variety of

traffic conditions, weather conditions (day, nights, snow,

rainy, sunny), and traffic anomaly events (emergency stops,

crashes).

Traffic anomaly detection is evaluated using the F1

score multiplied by the event detection time error in

RMSE (unit in seconds) as the final S4 score:

S4 = F1 × (1−NRMSE), (8)

where the NRMSE is the RMSE normalized with mini-

mum 0 and maximum 300.

We obtained F1-score of 0.9706, RMSE 6.6058, S4

94.92%, which ranks 4-th out of 13 world-wide participant

teams in the AIC20 general leaderboard.

5. Conclusion

We presented methods and results for our participa-

tion to all four contest tracks of the AI City Challenge

2020: on (T1) multi-class multi-movement vehicle count-

ing, (T2) city-scale multi-camera vehicle re-identification,

(T3) city-scale multi-camera vehicle tracking, and (T4)

traffic anomaly detection, respectively. For T2 challenge,

our newly annotated vehicle type and color classification

dataset will share to the community that should enrich the

available dataset. We achieved top-6 and top-4 ranking on

the AIC20 general leaderboard for the T3 and T4 contests,

respectively. Future work includes the continue improve-

ment of the proposed method, as well as improving the ex-

ecution speed running on edge devices.
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