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Abstract

This paper focuses on the Multi-Target Multi-Camera

Tracking (MTMCT) task in a city-scale multi-camera net-

work. As the trajectory of each target is naturally split into

multiple sub-trajectories (namely local tracklets) in differ-

ent cameras, the key issue of MTMCT is how to match local

tracklets belonging to the same target across different cam-

eras. To this end, we propose an efficient two-step MTMCT

approach to robustly track vehicles in a camera network.

It first generates all local tracklets and then matches the

ones belonging to the same target across different cameras.

More specifically, in the local tracklet generation phase, we

follow the tracking-by-detection paradigm and link the de-

tections to local tracklets by graph clustering. In the cross-

camera tracklet matching phase, we first develop a spatial-

temporal attention mechanism to produce robust tracklet

representations. We then prune false matching candidates

by traffic topology reasoning and match tracklets across

cameras using the recently proposed TRACklet-to-Target

Assignment (TRACTA) algorithm. The proposed method is

evaluated on the City-Scale Multi-Camera Vehicle Tracking

task at the 2020 AI City Challenge and achieves the second-

best results.

1. Introduction

Multi-Target Multi-Camera Tracking (MTMCT) aims to

locate the positions of interested targets, maintain their i-

dentity both within and across cameras and infer a complete

trajectory for each target in a multi-camera network. It has

a wide range of applications in customer-behavior analy-

sis [30], auto-driving assisting [27] and etc. When the track-

ing targets are vehicles, the MTMCT has great application

value for Intelligent Transportation System (ITS) and is a

key component for city traffic management [45].

∗Corresponding author.

The MTMCT methods are mainly faced with the follow-

ing two challenging problems: 1) How to generate high-

quality sub-trajectories (namely local tracklets) for all the

targets under each camera; 2) How to match the local track-

lets in different cameras to generate an accurate, complete

global trajectory for each target across all the cameras, i.e.,

the cross-camera tracklet matching problem. The first prob-

lem is often referred as a single camera multi-target tracking

problem and can be solved by the tracking-by-detection ap-

proaches [55, 25, 48, 56, 44, 53, 31]. To tackle the second

problem, there are two more problems attached to match the

local tracklets across different cameras. First, how to com-

pute the affinity of different local tracklets in different cam-

eras when there are dramatic variations in visual appearance

and ambient environment under different viewpoints. Sec-

ond, how to optimize the matching of local tracklets when

the occurrence of each target in different cameras and the

total number of targets in the camera network are both un-

known.

There are methods [20, 11] propose to project region-

s of targets in synchronized frames to a reference plane

and match the targets from different views by finding the

targets that co-occupy the same locations in the reference

plane. However, these methods rely on the overlapping

field of views (FOV) of cameras views, and thus the ap-

plication is limited in real-world scenarios. Research stud-

ies [52, 18, 6, 7] propose to match the local tracklets across

different cameras without requiring the overlapping FOV of

different cameras. They calculate the tracklet affinity by ex-

ploiting target trajectory temporal consistency [42], appear-

ance features [38, 28], camera geometry [21, 18] and etc,

and solve the cross-camera tracklet matching problem by

hierarchical matching [51, 29], data association graph [7]

or camera link models [19].

In this paper, we focus on the city-scale cross-camera

vehicle tracking problem. As illustrated in Figure 1, to ob-

tain a wide range of FOV and reduce the costs, the cam-

eras are often placed far apart and their FOV are always

non-overlapping. The target attributes such as appearance
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Figure 1: Illustration of city-scale multi-camera vehicle tracking. The number upon each bounding box denotes the ID label

of each target and the arrows point to the city locations of the cameras. The pictures are from the dataset of the AI City

challenge.

features and motion patterns of the same target could be

significantly different in different cameras. Moreover, as

the occurrences of each target under different cameras are

different and unknown (such as the target #2 occurs in cam-

eras 1,2,4,5, the target #8 occurs in cameras 5,6, and tar-

gets 1,3,4,7 occur only once in the camera network), it is

difficult to solve the tracklet matching problem and gener-

ate a complete global trajectory for each target across al-

l the cameras. To tackle these problems, we provide an

efficient two-step approach to track multiple vehicles in a

city-scale multi-camera network, which first generates local

tracklets for all the targets under each camera, respectively,

and then connects these local tracklets across different cam-

eras to generate a complete global trajectory for each target.

More specifically, we first follow the tracking-by-detection

paradigm to generate local tracklets for all the targets under

each camera, respectively. Then we compute the affinity

of local tracklets in different cameras by semantic attribute

parsing, which produces a robust tracklet representation us-

ing a spatial-temporal attention mechanism and prunes false

matching candidates by traffic topology reasoning. Tak-

ing the local tracklet affinity as input, the TRACklet-to-

Target Assignment (TRACTA) algorithm [17] is exploited

to solve the cross-camera tracklet matching problem, and

the complete trajectory of each target across all the cameras

is obtained by reconnecting the split local tracklets. Experi-

mental evaluations on the City-Scale Multi-Camera Vehicle

Tracking at the NVIDIA AI City Challenge 2020 demon-

strate the superior of the proposed method.

In summary, the main contributions of this paper include:

• We provide an efficient two-step MTMCT method for

city-scale multi-camera vehicle tracking.

• We propose the semantic attribute parsing for tracklet

affinity measurement.

• We introduce a spatial-temporal attention mechanism

to generate a robust representation for each target.

2. Related Work

2.1. SingleCamera MultiObject Tracking

In recent years, there is a large literature on Single-

Camera Multi-Object Tracking (SCMOT). Due to the rapid

development of object detection techniques, the tracking-

by-detection paradigm has become the mainstream for SC-

MOT task.

A large number of research studies use bipartite match-

ing to tackle multiple object tracking problems [3, 9, 48, 40,

50]. Simple Online and Realtime Tracking (SORT) [3] uses

Kalman Filter [22] and Hungarian algorithm [35] to tackle

frame-to-frame prediction and association problems. To in-

crease robustness against occlusions and misses, Wojke et

al. [48] integrate appearance information for Simple Online

and Realtime Tracking(SORT) through a pre-trained deep

association metric. Instance Aware Tracker (IAT) [9] in-

tegrates single object tracking (SOT) algorithms for MOT,
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which dynamically refreshes tracking models with a learned

convolutional neural network. The method [39] proposes to

use a structure of Recurrent Neural Networks (RNN) that

integrates appearance, motion, and interaction cues to joint-

ly learn a representation to improve tracking robustness. X-

u et al. [50] propose a method of spatial-temporal relation

networks (STRN) for similarity measurement between an

object and a tracklet, which uses a spatial-temporal rela-

tion module to make object and tracklet features compati-

ble. Shen et al. [40] propose a Tracklet Association Tracker

(TAT) to directly learn the association results from features

which uses a bi-level optimization formulation to unit fea-

ture learning and data association.

There are research studies [10, 14, 24] that tackle MOT

problems based on finding the most likely tracking propos-

als. Han et al. [14] propose an algorithm named trajectory

tracking to find the optimal state sequence which maximizes

the joint state-observation probability. Kim et al. [24] use

Multiple Hypothesis Tracking (MHT) to train appearance

models for each track hypothesis on all detections from the

entire track. The method [49] formulates learning a simi-

larity function for data association as learning a policy for

the Markov Decision Processes (MDPs), where a trajectory

corresponds to a MDP. Recurrent Autoregressive Network

(RAN) [12] uses an external memory to store previous in-

put features of each trajectory, and uses an internal memory

to learn long-term tracking information and associate detec-

tions by decision making.

There are also methods [54, 34, 44, 47] that use graph

models to link detections (or tracklets) in the graph into tra-

jectories. The method [34] builds different graph structures

to generate local tracklets and uses a hierarchical correla-

tion clustering (HCC) framework to get globally associat-

ed tracks. Tang et al. [44] propose a graph-based formu-

lation that clusters and associates person hypotheses over

time by tackling a minimum cost lifted multicut problem.

TrackletNet Tracker (TNT) [47] uses a graph model to gen-

erate tracklets based on appearance similarity and spatial

consistency and measure the similarity of two tracklets by

the multi-scale TrackletNet.

2.2. MultiTarget MultiCamera Tracking

Recent approaches in MTMCT problem follow the two-

step paradigm: 1) generating local tracklets of all targets

within each single camera [3, 50, 47, 10]; 2) matching local

tracklets across all cameras [20, 51, 52, 4]. Xu et al. [51]

propose a hierarchical composition approach to adaptive-

ly exploit multiple cues such as ground occupancy consis-

tency, appearance similarity and motion coherence. Bred-

ereck et al. [4] present a greedy matching algorithm to iter-

atively match local tracklets across different cameras.

There is a large literature on the assumption of over-

lapping Fields of Views (FOV) between cameras to tack-

le the MTMCT task [13, 23, 2]. The method [13] uses a

generative model to estimate the probabilistic occupancy

map (POM), and combines these probabilities with color

and motion model to process trajectories. Berclaz et al. [2]

reformulate the association step as a constrained flow op-

timization which results in a convex problem, and use the

k-shortest paths (KSP) algorithm to solve the problem.

There is another category of MTMCT works based on

non-overlapping FOVs [46, 5, 28, 8, 38]. Cai et al. [5]

and Lee et al. [28] exploit appearance cues to match lo-

cal tracklets across cameras. Tesfaye et al. [46] propose

a unified three-layer hierarchical framework based on the

constrained dominant sets clustering (CDSC) technique to

tackle tracking problems in non-overlapping cameras which

uses the first two layers to solve within-camera tracking and

exploits the third layer to match tracklets of the same objec-

t in all cameras in a simultaneous fashion. Chen et al. [6]

use a piecewise major color spectrum histogram represen-

tation (PMCSHR) to match tracklet across multiple non-

overlapping camera views. Cheng et al. [8] match local

tracklets between every two cameras of interests.

There are also methods [18, 41, 26] that tackle MTMCT

task based on graph models. Hofmann et al. [18] propose a

maximum a posteriori (MAP) formulation to jointly model

multi camera as well as temporal data association, and con-

struct a constrained min-cost flow graph to track objects in

3D world space. Shitrit et al. [41] formulate multi-object

tracking problem as a multi-commodity min-cost max-flow

problem which involves a layered graph, where each possi-

ble spatial location has several grid cells, and one cell corre-

sponds to one possible identity group. Leal et al. [26] define

a graph structure which captures both temporal correlations

between targets and spatial correlations enforced by camer-

a configuration, and use Dantzig-Wolfe decomposition and

branching to tackle the complex combinatorial optimization

problem caused by the graph structure.

There are two relevant methods [17, 36] applicable to

multi cameras with or without overlapping FOVs. M-

DA [36] enumerates all the tracklet matching hypotheses

to nd the most likely hypothesis, and assigns tracklets in

the same hypothesis to the same target. In the TRACklet-

to-Target Assignment (TRACTA) [17], each tracklet is as-

signed to a unique target and the optimal assignment is com-

puted by a restricted non-negative matrix factorization algo-

rithm in[17].

3. Methodology

The proposed method contains two major modules:

the local tracklet generation module and the cross-camera

tracklet matching module. The input of the proposed

method is M video sequence from M cameras. In the lo-

cal tracklet generation module, we follow the tracking-by-

detection paradigm to track target vehicles in each camera
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Figure 2: The pipeline of the local tracklet generation mod-

ule, which first detects the targets in each frame and then

links the detections to local tracklets by graph clustering.

and generate a local tracklet for each target. In the cross-

camera tracklet matching module, we calculate the affinity

of local tracklets in different cameras by semantic attribute

parsing, and match the local tracklets belonging to the same

target across different cameras by tracklet-to-target assign-

ment. By reconnecting the split local tracklets of the same

target in different cameras, each target obtains a complete

trajectory across all the cameras. In the following, we pro-

vide detailed descriptions of the key techniques, i.e., the lo-

cal tracklet generation, the semantic attribute parsing and

tracklet-to-target assignment, of the proposed framework.

3.1. Local Tracklet Generation

Given a video sequence from camera i, we aim to track

targets robustly with target interaction and occlusion han-

dling and maintain target identities across image frames.

Due to the impressive progress of Deep Convolutional Neu-

ral Netowrk (DCNN), the DCNN based object detectors

have achieved significant improvement. We employ the

tracking-by-detection paradigm to track multiple targets in

a single camera and generate a local tracklet for each target.

As illustrated in Figure 2, for each camera i, the local track-

let generation module first detects the targets in each image

frame and then links detections into local tracklets by graph

clustering [47].

More specifically, we denote by Ii = {I1, I2, ..., IT } the

input image sequence of camera i, where It is the image

frame at time t and T is the length of the image sequence.

Firstly, we detect targets in Ii using an object detector and

denote by Di = {D1
i ,D

2
i , ...,D

T
i } the detection collection

of the whole image sequence, where Dt
i is the detection set

of the t-th image frame in camera i. Then we construct a

weighted graph model G = (V, E) based on the detection

collection Di, where each element vx ∈ V in V denotes a

detection observation in Di and each element ex,y ∈ E in E
represents an edge between nodes x and y. Each edge ex,y
is assigned with a connectivity cost wx,y that measures the

cost of connecting nodes x and y:

wx,y = ψ(vx, vy), (1)

where ψ(vx, vy) is the connectivity measurement algorithm

in [47]. On this basis, the single camera multi-target track-

ing can be achieved by graph clustering, where nodes cor-

responding to the same target are clustered together, and

each cluster corresponds to a local tracklet. We denote

by Ti = {T 1
i , T

2
i , ..., T

Ni

i } the local tracklet collection of

camera i, where T j
i is the j-th local tracklet in camera i and

Ni is the tracklet number of Ti.

3.2. Semantic Attribute Parsing

Taking the generated local tracklet set T =
{T1, T2, ..., TM} of the M cameras as input, we pro-

pose to calculate the affinity of local tracklets in different

cameras by exploiting robust tracklet representations and

prune infeasible matching candidates by traffic topology

reasoning.

3.2.1 Robust Tracklet Representation

To measure the tracklet affinity in different cameras, we

train a vehicle re-identification (ReID) model to produce

a robust and discriminative representation for each input

tracklet. As illustrated in Figure 3, we first extract the

image-based appearance feature of each tracklet using an

appearance feature extractor and then integrate the sequen-

tial features into a robust tracklet representation using a

spatial-temporal attention mechanism.

Appearance Feature Extractor. We adopt the ResNet

architecture [16] as the backbone of our feature extractor

and add a bottleneck layer before the classification layer,

which has been proved effective for robust ReID feature

learning [33, 32]. For each input image frame, the fea-

ture extractor outputs a 2048-D feature vector of the fully

connected-layer before the classification layer.

During tracking, the objective function of the feature ex-

tractor consists of two parts: the cross-entropy loss for i-

dentity classification and the triplet loss for metric learn-

ing. The input of the cross-entropy loss is the last fully-

connected layer of the ReID model whose node number is

equal to the number of the identities H . For each input im-

age i, we denote by yi the ground-truth one-hot label of i

and pi the prediction vector of the classification layer. The

objective of identity classification is to ensure the prediction

vector pi is equal (or close) to the ground-truth label yi, and

the cross-entropy loss function can be written as:

Lxent(Ii) = −

H
∑

u=1

log(pi(u)) · yi(u), (2)
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Figure 3: Illustration of the feature extraction procedure. Given an input local tracklet, the proposed method first exploits

the spatial attention to mitigate the influence of the background and then integrates the extracted features into a final target

representation using the temporal attention mechanism.

whereH is the number of target identities and log(·) output-

s the logarithm of the input scalar. To improve the robust-

ness of the feature model, a label smooth mechanism [43]

is exploited to prevent the over-fitting to the training identi-

ties, where the ground-truth one-hot label yt is converted to

a smooth label y′i by:

y′i(u) =







1− H−1

H
η if yi(u) = 1,

η
H

otherwise,

(3)

where η is a small constant. On this basis, the cross-entropy

loss with label smoothing can be written as:

L′

xent(Ii) = −

H
∑

u=1

log(pi(u)) · y
′

i(u). (4)

To constrain the obtained feature representation is ro-

bust and discriminative, i.e., the feature distance of im-

ages from different targets is larger than the distance of

the same targets, the triplet loss is adopted for discrimi-

native feature learning. Given a constructed image triplet

Ii = {Iai , I
p
i , I

n
i } of image i, where Iai and I

p
i are images of

the same target identity and I
n
i is an image with a differen-

t target identity. The objective of triplet loss is to constrain

the feature distance between I
a
i and I

n
i is larger than the dis-

tance between I
a
i and I

p
i with a certain margin, which can

be formulated as:

Ltrip(Ii) =
[

‖ϕ(Iai )−ϕ(I
p
i )‖2−‖ϕ(Iai )−ϕ(I

n
i )‖2+m

]

+
,

(5)

where ϕ(·) outputs the feature vector of the input image and

m is the margin parameter.

The overall objective function is a combination of the

triplet loss and the cross-entropy loss with label smoothing:

L =

O
∑

i=1

L′

xent(Ii) + λLtrip(Ii), (6)

where O is the total number of training samples and λ is a

weight parameter.

Spatial-Temporal Attention. To generate a robust rep-

resentation of each tracklet, we propose a simple but ef-

ficient spatial-temporal attention mechanism to reduce the

influence of background clutter and target occlusion in the

tracklets. Each input tracklet T j
i is composed of a set of

aligned images of a target and we denote by C
j
i,t ∈ R

W×H

the aligned image of T j
i at time t, where W and H are the

width and height of the aligned image, respectively.

The spatial attention mechanism aims to assign a low at-

tention weight to the background region and a high attention

weight to the target regions. Let M
j
i,t ∈ R

W×H be the at-

tention map of C
j
i,t, where each element M

j
i,t(u, v) in M

j
i,t

denotes the attention weight of C
j
i,t(u, v). We then calcu-

late the spatial weighted image C
j∗

i,t of C
j
i,t by:

C
j∗

i,t = C
j
i,t ⊙M

j
i,t, (7)

where ⊙ denotes the element-wise matrix multiplication.

For the efficiency purpose, the attention map M
j
i,t in this

paper is a binary mask that is calculated by the Mask-

RCNN [15].

Then we feed the spatial weighted images to our feature

extractor ϕ(·) to obtain the appearance feature of each im-

age. To mitigate the influence of ineffective features when

targets are mostly occluded or disappear, we propose to as-

sign a low temporal attention weight to partially occluded

targets and assign a high weight to full-body captured tar-

gets by:

w
j
i,t =

||Mj
i,t||2

∑

t∈π
j

i

||Mj
i,t||2

, (8)

where π
j
i is the time index set of tracklet T j

i . The robust

feature representation f
j
i of the local tracklet T j

i can be ob-

tained by:

f
j
i =

∑

t∈π
j

i

ϕ(Cj∗

i,t) · w
j
i,t . (9)
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3.2.2 Traffic Topology Reasoning

In a real-world traffic network, the movements of vehi-

cles are following the traffic rules and limited by the traffic

topology. This allows us to model the movement of the traf-

fic flows and prune infeasible tracklet matching candidates

in different cameras by traffic topology reasoning.

Figure 4 (a) depicts a T-junction traffic topology of three

cameras, where the green and yellow arrows point to the

movement of two-direction traffic flows, respectively. As

the movements of vehicles are usually consistent and the

vehicles in different traffic flows (pointed by the green and

yellow arrows, respectively) are disjunctive, infeasible lo-

cal tracklet matching candidates (such as tracklets whose

moving direction are opposite) can be pruned by exploit-

ing the traffic topology. More specifically, for each camera

i, we construct a traffic flow set Fi = {F l
i ,F

r
i ,F

u
i ,F

d
i }

that collects the local tracklets in different moving direc-

tions, where F l
i ,F

r
i ,F

u
i ,F

d
i are the tracklet collection for

left, right, up, down directions, respectively. Based on

the traffic topology structure, we conduct a topology ma-

trix Bi,j ∈ {0, 1}4×4 for each pair of cameras i and j,

where Bi,j(u, v) = 1 denotes the u-th direction in cam-

era i and the v-th direction in camera j are connected and

Bi,j(u, v) = 0 denotes the disconnection. As illustrated

in Figure 4 (b), according to the connection between each

camera pair, we estimate the traffic topology of the camera

network. On this basis, we prune the matching candidates

between disconnected camera pair, which both improves the

cross-camera tracklet matching efficiency and accuracy.

Moreover, as there is no overlapping FOV between dif-

ferent camera views, each vehicle will not appear in multi-

ple cameras at the same time. We further narrow the match-

ing candidates by exploiting the during time of each track-

let, where tracklets in different cameras with overlapping in

time are neglected in matching.

3.3. TracklettoTarget Assignment

In this section, the TRACklet-to-Target Assignmen-

t (TRACTA) algorithm in [17] is employed to match local

tracklets across different cameras and the split local track-

lets are reconnected into a complete trajectory for each tar-

get across all the cameras.

More specifically, given the generated local tracklets in

the M cameras, i.e., T = {T1, T2, ..., TM}, we aim to as-

sign a unique Target ID (TID) label to each tracklet. Let

Ni be the number of tracklets in Ti and N =
∑M

i=1
Ni is

the total number of trackets in Ti. For each pair of cam-

eras i and j, we calculate the pairwise similarity matrix

Si,j ∈ [0, 1]Ni×Nj of tracklet set Ti and Tj , where each

element Si,j(u, v) in Si,j denotes the similarity of tracklet

T u
i and tracklet T v

j . The similarity Si,j(u, v) of tracklets

(a)

(b)

Figure 4: Illustration of the traffic topology reasoning,

where (a) shows the traffic flows in a T-junction and (b)

shows the traffic topology of the four-camera network in

(a).

T u
i and T v

j is calculated by:

Si,j(u, v) =







exp(−||fui − f
v
j ||2) if δ(T u

i , T
v
j ) = 1,

0 otherwise,
(10)

where δ(T u
i , T

v
j ) = 1 denotes the tracklets T u

i and T v
j are

connected in the traffic topology, exp(·) denotes the expo-

nential function, and f
u
i and f

v
j denote the extracted track-

let representation of tracklets T u
i and T v

j , respectively, us-

ing (9). The full tracklet similarity matrix S ∈ [0, 1]N×N

is constructed by the pairwise tracklet similarity matrices

Si,j , ∀ i, j = 1, ...,M .

As illustrated in Figure 5, different from the most exist-

ing tracklet-to-tracklet matching methods [7, 52, 19] that di-

rectly determine the matching or not matching of two track-

lets, the TRACTA proposes to infer the matching of track-

lets according to the assignment from tracklets to target-

s, where tracklets assigned to the same target are matched

together and tracklets assigned to different targets are not

matched. Compared with the tracklet-to-tracklet matching

paradigm, the tracklet-to-target assignment has the follow-

ing advantages: 1) When the number of tracklets for dif-

ferent targets is unknown and the occurrence of each target

in different cameras is uncertain, it is difficult to determine

how many tracklets should be matched with a specific track-

let. On the contrary, in TRACTA, each tracklet should be

assigned to a unique target with no doubt. 2) The solution
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Figure 5: Illustration of the tracklet-to-target assignment al-

gorithm, where the bounding box and circle denote the local

tracklet and target identity, respectively, with the connection

lines for the assignment of tracklets to targets.

spaces of the tracklet-to-tracklet matching and the TRAC-

TA areN×N andN×K dimension, respectively, whereN

and K are the number of tracklets and targets, respectively.

SinceK ≪ N when there are multiple tracklets correspond

to a target, solving the assignment problem is more efficient

than the matching problem.

To optimize the assignment of local tracklets, we denote

by Ai ∈ [0, 1]Ni×K the assignment matrix from Ni track-

lets to K targets in camera i. Each element A(u, v) in A

denotes the probability of assigning tracklet T u
i to target

v. We estimate the total number of targets K by the tar-

get number estimation algorithm in TRACTA and conduct

the full tracklet-to-target assignment matrix A ∈ [0, 1]N×K

with assignment matrices Ai, ∀ i = 1, ...,M from M cam-

eras.

The high similarity of two tracklets indicates that they

might be assigned to the same target, i.e., S(u, v) → 1 ⇒
A(u, :)A(u, :)T = 1, and a low similarity is on the con-

trary, i.e., S(u, v) → 0 ⇒ A(u, :)A(u, :)T = 0. Thus,

the AA
T is an approximation of S, i.e., AA

T → S. On

this basis, the tracklet-to-target assignment problem can be

formulated as the following problem:

A
∗ = argmin

A

‖S−AA
T ‖2, (11)

s.t AI1 = I2, (12)

where I1 and I2 are all-one vectors of dimension K and N ,

respectively, and Eq. (12) constrains the assignment from

tracklets to targets is a mapping (∀u,
∑

A(u, :) = 1).

The optimal solution of Eq (11) is obtained by the Re-

stricted Non-negative Matrix Factorization (RNMF) in [17],

and each tracklet u is assigned to a unique target v by find-

Algorithm 1 Tracking algorithm of the proposed method

Input: Image sequences collected from M cameras I =
{I1, I2, ..., IM}.

Output: Global trajectory set G = {G1,G2, ...,GM}.

1: for camera i = 1 :M do

2: Generate local tracklet set Ti using single camera

multi-object tracking technique.

3: end for

4: Generate robust representation f
j
i of each tracklet Ij

i

using Eq. (9) and prune infeasible matching candidates

by traffic topology reasoning.

5: Construct tracklet similarity matrix S using Eq. (10).

6: Compute tracklet-to-target assignment matrix A
∗ by

optimizing Eq. (11).

7: Generate global trajectory set G according to A
∗.

ing the most likely target identity:

v = argmax
v

A
∗(u, v). (13)

Based on the tracklet-to-target assignment results, we

then generate global trajectory set G = {G1,G2, ...,GM} by

reconnecting the split local tracklets assigned to the same

target across all the cameras, where Gi denotes the global

trajectory set of camera i. We overview our tracking frame-

work in Algorithm 1.

4. Experiment

We participate in the track 3: the City-Scale Multi-

Camera Vehicle Tracking task, of the 4-th AI City Chal-

lenge [1]. As described in [1], the benchmark dataset con-

tains 215.03 minutes of video sequences collected from 46

cameras in a mid-sized U.S. city. The dataset contains 6 s-

cenarios, including intersections, stretches of roadways and

highways, where three of them are used for training, two

are used for validation and the remaining one is used for

testing. In total, there are nearly 300K bounding boxes an-

notated for 880 distinct annotated vehicle identities where

each vehicle is at least captured by two cameras. The reso-

lution of each video is at least 960p and the majority of the

videos have a frame rate of 10 FPS.

4.1. Implementation Details

In the local tracklet generation module, the Mask-

RCNN [15] is employed to detect vehicle in each image

frame, where the NMS and confidence are fixed to 0.3 and

0.8, respectively. The parameter setting of the graph clus-

tering follows to the parameters in [47]. In the seman-

tic attribute parsing, the feature extractor is trained on the

training data of the track2 and track3 of the AI City Chal-

lenge, and the weight parameter λ is set to 0.9 for train-

ing. For each input image, the input image is first resized to

7



256 × 128 and fed to the feature extractor model, and then

the feature extractor outputs a 2048-D feature vector of the

input image. In the tracklet-to-target assignment module, as

the cameras are placed along with a roadway, we employ the

TRACTA algorithm to match tracklets in adjacent cameras

for computational efficiency.

4.2. Experimental Results

The widely adopted tracking evaluation metric IDF1 [37]

is used for performance evaluation, which measures the tra-

jectory consistency in the camera network. The final rank-

ing result on the testing sequence is shown in Table 1, where

our result is in bold. We can see that, the proposed method

achieves the second-best result and significantly outper-

forms most of the competitive methods by a large margin.

Table 1: Comparison results with other teams

Rank Team ID IDF1 (%)

1 92 45.85

2 11 44.00

3 63 34.83

4 111 34.11

5 72 12.48

6 75 6.20

7 30 4.52

8 31 3.87

Moreover, to investigate the effectiveness of differen-

t components of the proposed method, an ablation exper-

iment result is conducted in Table 2, where the baseline

outputs the multi-camera tracking results based on greedy

matching, ST denotes the spatial-temporal attention, TT de-

notes the traffic topology reasoning and TRACTA denotes

the tracklet-to-target assignment. As shown in Table 2, the

Table 2: Ablation study

Method IDF1 (%) IDP (%) IDR (%)

baseline 31.28 23.29 35.12

baseline+ST 34.51 29.54 41.50

baseline+ST+TT 38.61 47.19 32.80

baseline+ST+TT+TRACTA 44.00 53.63 37.31

proposed method significantly improves the tracking per-

formance with more than 10% improvement on IDF1.

5. Conclusion

In this paper, we propose a two-step approach for city-

scale multi-camera vehicle tracking. The proposed method

consists of two major steps: local tracklet generation and

the cross-camera tracklet matching. Firstly, in local tracklet

generation, we follow the tracking-by-detection paradigm

and generate a local tracklet for each target by graph cluster-

ing. Secondly, taking the local tracklets from different cam-

eras as input, the cross-camera tracklet matching step aim-

s to match the local tracklets belonging to the same target

across different cameras and produce a complete trajectory

for each target across all the cameras. The proposed method

is evaluated on the City-Scale Multi-Camera Vehicle Track-

ing task in the 2020 AI City Challenge and achieves the

second-best result.
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[41] Horesh Ben Shitrit, Jérôme Berclaz, François Fleuret, and

Pascal Fua. Multi-commodity network flow for tracking mul-

tiple people. IEEE transactions on pattern analysis and ma-

chine intelligence, 36(8):1614–1627, 2013.

[42] KA Shiva Kumar, KR Ramakrishnan, and GN Rathna. Dis-

tributed person of interest tracking in camera networks. In

Proceedings of the 11th International Conference on Dis-

tributed Smart Cameras, pages 131–137. ACM, 2017.

[43] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception archi-

tecture for computer vision. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2818–2826, 2016.

[44] Siyu Tang, Mykhaylo Andriluka, Bjoern Andres, and Bernt

Schiele. Multiple people tracking by lifted multicut and per-

son reidentification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3539–

3548, 2017.

[45] Zheng Tang, Milind Naphade, Ming-Yu Liu, Xiaodong

Yang, Stan Birchfield, Shuo Wang, Ratnesh Kumar, David

Anastasiu, and Jenq-Neng Hwang. Cityflow: A city-scale

benchmark for multi-target multi-camera vehicle tracking

and re-identification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8797–

8806, 2019.

[46] Yonatan Tariku Tesfaye, Eyasu Zemene, Andrea Prati, Mar-

cello Pelillo, and Mubarak Shah. Multi-target tracking in

multiple non-overlapping cameras using constrained domi-

nant sets. arXiv preprint arXiv:1706.06196, 2017.

[47] Gaoang Wang, Yizhou Wang, Haotian Zhang, Renshu Gu,

and Jenq-Neng Hwang. Exploit the connectivity: Multi-

object tracking with trackletnet. In Proceedings of the 27th

ACM International Conference on Multimedia, pages 482–

490, 2019.

[48] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple

online and realtime tracking with a deep association metric.

In Image Processing (ICIP), 2017 IEEE International Con-

ference on, pages 3645–3649. IEEE, 2017.

[49] Yu Xiang, Alexandre Alahi, and Silvio Savarese. Learning to

track: Online multi-object tracking by decision making. In

Proceedings of the IEEE international conference on com-

puter vision, pages 4705–4713, 2015.

[50] Jiarui Xu, Yue Cao, Zheng Zhang, and Han Hu. Spatial-

temporal relation networks for multi-object tracking. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 3988–3998, 2019.

[51] Yuanlu Xu, Xiaobai Liu, Yang Liu, and Song-Chun Zhu.

Multi-view people tracking via hierarchical trajectory com-

position. In Proceedings of the IEEE Conference on Comput-

er Vision and Pattern Recognition, pages 4256–4265, 2016.

[52] Yuanlu Xu, Xiaobai Liu, Lei Qin, and Song-Chun

Zhu. Cross-view people tracking by scene-centered spatio-

temporal parsing. In Processing of AAAI Conference on Ar-

tificial Intelligence, pages 4299–4305, 2017.

[53] Fengwei Yu, Wenbo Li, Quanquan Li, Yu Liu, Xiaohua Shi,

and Junjie Yan. Poi: Multiple object tracking with high per-

formance detection and appearance feature. In European

Conference on Computer Vision, pages 36–42. Springer,

2016.

[54] Amir Roshan Zamir, Afshin Dehghan, and Mubarak Shah.

Gmcp-tracker: Global multi-object tracking using general-

ized minimum clique graphs. In Computer Vision–ECCV

2012, pages 343–356. Springer, 2012.

[55] Bineng Zhong, Bing Bai, Jun Li, Yulun Zhang, and Yun

Fu. Hierarchical tracking by reinforcement learning-based

searching and coarse-to-fine verifying. IEEE Transactions

on Image Processing, 28(5):2331–2341, 2018.

[56] Ji Zhu, Hua Yang, Nian Liu, Minyoung Kim, Wenjun Zhang,

and Ming-Hsuan Yang. Online multi-object tracking with d-

ual matching attention networks. In Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV), pages 366–

382, 2018.

10


