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Abstract

This paper introduces our solution for the Track2 in Al
City Challenge 2020 (AICITY20). The Track2 is a vehicle
re-identification (RelD) task with both the real-world data
and synthetic data.

Our solution is based on a strong baseline with bag
of tricks (BoT-BS) proposed in person RelD. At first,
we propose a multi-domain learning method to joint the
real-world and synthetic data to train the model. Then,
we propose the Identity Mining method to automati-
cally generate pseudo labels for a part of the testing
data, which is better than the k-means clustering. The
tracklet-level re-ranking strategy with weighted features
is also used to post-process the results. Finally, with
multiple-model ensemble, our method achieves 0.7322 in
the mAP score which yields third place in the competition.
The codes are available at https://github.com/
heshuting555/AICITY2020_DMT_VehicleRelID.

1. Introduction

Al City Challenge is a workshop in CVPR2020 Confer-
ence. It focuses on different computer vision tasks to make
cities’ transportation systems smarter. This paper intro-
duces our solutions for the Track2, namely city-scale multi-
camera vehicle re-Identification (RelD).

Vehicle RelD is an important task in computer vision. It
aims to identify the target vehicle in images or videos across
different cameras, especially without knowing the license
plate information. Vehicle RelD is important for intelligent
transportation systems (ITS) of the smart city. For instance,
the technology can track the trajectory of the target vehicle
and detect traffic anomalies. Recently, most of works have
been based on deep learning methods in vehicle RelD, and
these methods have achieved great performance on some
benchmarks such as Veri-776[12] and VehicleID[11].
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Figure 1. Some examples of the real-world and synthetic data.

Track2 cannot be fully considered as a standard vehi-
cle RelD task where the model is trained and evaluated on
same-domain data. As shown in Figure 1, both the real-
world and synthetic datasets are provided to train the model
in Track2. There exists great bias between these two differ-
ent datasets, so it remains some challenge that how to rea-
sonably use the synthetic dataset. In addition, some special
rules in Track?2 are introduced as follow:

e External data cannot be used. Public person- and
vehicle-based datasets, which includes Market1501
[29], DukeMTMC-reID [18], VeRi , VehicleID, etc,
are forbidden. Private datasets collected by other in-
stitutions are also not allowed.

e Additional manual annotations can only be made on
the training sets. Automatic annotations can be applied
to the test sets also.



e Teams can use open-source pre-trained models trained
on external datasets (such as ImageNet [1] and MS
COCO [10]) that have been published by other people.

e There is no restriction on the use of synthetic data.

e Top-100 mean Average Precision (mAP) determines
the leaderboard.

Since the task is similar to person RelD, we used a
strong baseline with bag of tricks (BoT-BS) in person RelD
[13, 14] as the baseline in this paper. BoT-BS introduces
the BNNeck to reduce the inconsistency between ID loss
(cross-entropy loss) and triplet loss in the training stage.
BoT-BS is not only a strong baseline for person RelD, but
also suitable for vehicle ReID while it can achieve 95.8%
rank-1 and 79.9% mAP (ResNet50 backbone) accuracy on
Veri-776 benchmark. In the paper, we modify some train-
ing settings, such as learning rates, optimizer and loss func-
tions, etc, to improve the RelD performance on the new
dataset.

Except modifying the BoT-BS, we also focus on how to
use the synthetic data to improve the ReID performance on
the real-world data. Because there exists great bias between
the real-world and synthetic data, it is a more challenging
task than cross-domain or domain adaption tasks in vehicle
RelD. We observe that both directly merging the real-world
and synthetic data to train models and pre-training mod-
els on the synthetic data cannot improve the RelD perfor-
mance. Based on the motivation that low-level features such
as color and texture are shared in the real-world and syn-
thetic domain, we propose a multi-domain learning (MDL)
method that the model is pre-trained on the real-world and
a part of synthetic data and then is fine-tuned on the real-
world data with the first few layers being frozen.

In addition, the testing set is allowed to used without
manual annotations. Some unsupervised methods, such as
the k-means clustering, can be adopted to generate pseudo
labels for the testing data. However, the pseudo labels
are not accurate enough because of the poor performance
of ReID models.Therefore, We propose the Identity Min-
ing (IM) method to generate more accurate pseudo labels.
IM selects some samples of different IDs with high confi-
dence as clustering centers, where only one sample of each
identity can be selected. Then, for each clustering center,
some similar samples are labeled with the same ID. Differ-
ent from the k-means clustering dividing all data into sev-
eral clusters, our IM method just automatically labeled a
part of data with high confidence.

To further improve the ReID performance, some effec-
tive methods are introduced. For instance, re-ranking (RR)
strategy [30] is a widely used method to post-process the
results. The original RR is a image-to-image RelD method,
but the tracklet information is provided in Track2. There-
fore, we introduce a tracklet-level re-ranking strategy with

weighted features (WF-TRR) [4]. Although our single
model can reach 68.5% mAP accuracy on CityFlow[16],
we further improve the mAP accuracy to 73.2% with the
multiple-model ensemble.

Our contributions can be summarized as follow:

e A multi-domain learning strategy is proposed to jointly
exploit the real-world and synthetic data.

e The Identity Mining method is proposed to automat-
ically generate pseudo labels for a part of the testing
data.

e We achieves 0.7322 in the mAP score which yields
third place in the competition.

2. Related Works

We introduce deep RelD and some works of AIC-
ITY2019 in this section.

2.1. Deep RelD

Re-identification (RelD) is widely studied in the field
of computer vision. This task possesses various impor-
tant applications. Most existing ReID methods based on
deep learning. Recently, CNN-based features have achieved
great progress on both person ReID and vehicle RelD.
Person RelD provides a lot of insights for vehicle RelD.
Our method is based on a strong baseline [13, 14] in per-
son RelD. For vehicle RelD, Liu ef al. [11] introduced a
pipeline that uses deep relative distance learning (DRDL) to
project vehicle images into an Euclidean space, where the
distance can directly measure the similarity of two vehicle
images. Shen et al. [20] proposed a two-stage framework
that incorporates complex spatial-temporal information of
vehicles to effectively regularize RelD results. Zhou et al.
[31] designed a viewpoint-aware attentive multi-view infer-
ence (VAMI) model that only requires visual information
to solve multi-view vehicle RelD problems. While He et
al. [3] proposed a simple yet efficient part-regularized dis-
criminative feature-preserving method, which enhances the
perceptive capability of subtle discrepancies, and reported
promising improvement. Some works also studied discrim-
inative part-level features for better performance. Some
works [25, 9, 8] in vehicle RelD had utilized vehicle key
points to learn local region features. Several recent works
[3, 24, 2, 23] in vehicle RelID had stated that specific parts
such as windscreen, lights and vehicle brand tend to have
much discriminative information. In [32], different direc-
tional part features were utilized for spatial normalization
and concatenation to serve as a directional deep learning
feature for vehicle Re-ID. Qian et al. [17] proposed Stripe-
based and Attribute-aware Network (SAN) to fuse the infor-
mation of global features, part features and attributed fea-
tures.
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Figure 2. The framework of our baseline model BoT-BS.

2.2. AICITY19

Since AICITY20 is updated from AI CITY Challenge
2019 (AICITY19), some methods of AICITY19 are help-
ful for our solution. The organizers outlined the methods
of leading teams in [15]. Since some external data could
be used in AICITY 19, there were many different ideas last
year. Tan et al. [21] used a method based on extracting vi-
sual features from convolutional neural networks (CNNs),
and leveraged semantic features from traveling direction
and vehicle type classification. Huang ef al. [7] exploited
vehicles semantic attributes to jointly train the model with
ID labels. In addition, some leading teams were used pre-
trained models to extract vehicle pose, which could infer the
orientation information [7, 9]. Re-ranking methods were
used as a post-processing method to improve the RelD per-
formance by many teams[7, 9, 6, 19]. External data and ad-
ditional annotations were add into training model by some
leading teams, but it is not allowed in AICITY?20.

3. Methods
3.1. Baseline Model

Baseline model is important for the final ranking. In
track2, we use a strong baseline (BoT-BS) [13, 14] pro-
posed for person RelD as the baseline model. To improve
the performance on Track2’ datasets, we modify some set-
tings of BOT-BS. The output feature is followed by the
BNNeck [13, 14] structure, which separates ID loss (cross-
entropy loss) and triplet loss [5] into two different embed-
ding spaces. The triplet loss is the soft-margin version as
follow:

Lrri =log [1+exp(||fa = fol3 = [Ifa = fall3 +m)]
(D
Hard example mining is used for soft-margin triplet loss.
We delete center loss because it does not greatly improve
the retrieval performance while increasing computing re-
sources. We tried to modify cross-entropy loss into arc-

face loss, but arcface loss achieved worse performance on
CityFlow. In the inference stage, we observe that the fea-
tures f; obtains better performance than f; by a little mar-
gin. Due to better performance, we use the SGD optimizer
instead of the Adam optimizer. To improve the perfor-
mance, we train the BoS-BS with deeper backbones and
larger-size images. The framework of the baseline model
is shown in 2, and more details can be referred to [13, 14].
For reference, our modified baseline achieves 96.9% rank-1
and 82.0% mAP accuracy on Veri-776 benchmark.

3.2. Multi-Domain learning

In this section, we will introduce a novel multi-domain
learning (MDL) method to exploit the synthetic data.

Both real-world and synthetic data are provided in this
challenge, so how to learn discriminative features from two
different domains is an important problem. For conve-
nience, the real-world and synthetic data/domains are de-
noted as Dgr and Dg, respectively. The goal is to train a
model on Dy U Dg and make it achieve better performance
on Dg. There are two simple solutions as follow:

e Solution-1: Directly merging the real-world and syn-
thetic data to train ReID models;

e Solution-2: Train a pre-trained model on the synthetic
data Dy first and then fine-tune the pre-trained model
on the real-world data Dg.

However, these two solutions do not work in the challenge.
Because the number of data in Dg is much larger than the
one in Dg, Solution-1 will cause the model to be more bi-
ased towards Dg. Because there exists great bias between
Dr and Dg, the pre-trained model on Dg may not be bet-
ter than the pre-trained model on ImageNet for CityFlow
dataset. Therefore, Solution-2 is either not a good manner
to solve this problem. However, some works [21, 7] used
pre-trained models on Veri-776, VehicleID or CompCar[27]
datasets to obtain better performance in Al CITY Challenge
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Figure 3. The first stage of our Identity Mining (IM) method. Each step can label a sample with the new ID. The radius of the yellow circle
is the distance threshold of the negative pair as d,,. The samples outside yellow circles are candidates satisfying the distance constraint.

Finally, all samples are covered by at least one yellow circle.

2019, which shows that the pre-trained model trained on
reasonable data is effective. Based on aforementioned dis-
cussion, we proposed a novel MDL method to exploit the
synthetic data VehicleX. The proposed method includes two
stages, i.e., pre-trained stage and fine-tuning stage.

Pre-trained Stage. All training data of the real-world
data Dp are denoted as the image set /R. Then, we ran-
domly sample a part of identities from the synthetic data Dg
to construct a new image set S. The model is pre-trained on
the new training set R U S. To ensure that pre-trained mod-
els are not biased towards Dg, the number of identities of
S is not larger than the one of R. In specific, great perfor-
mance is achieved when the number of identities of S is set
to 100. We simply select the first 100 IDs of Dg.

Fine-tuning Stage. To further improve the performance
on Dp, we fine-tune the pre-trained model without S. Al-
though there exists great domain bias between Dp and Dg,
low-level features such as color and texture are shared in
these two domains. Therefore, first two layers of the pre-
trained model are frozen to keep low-level features in the
fine-tuning stage. Reducing the learning rate is also neces-
sary.

3.3. Identity Mining

The testing set is allowed to be used for unsupervised
learning. A widely used method is to use the clustering
method to label the data with pseudo labels. Due that the
testing set includes 333 identities/categories, we can di-
rectly use the k-means clustering to cluster the testing data
into 333 categories. However, this way dose not work
in Track2 because the poor model can not give accurate
pseudo labels. When adding these automatically annotated
data to train the model, we observe that the performance
becomes worse. We argue that it is unnecessary to add all
testing data to train the model, but it is necessary to ensure

the correctness of pseudo labels. Therefore, we proposed
an Identity Mining (IM) method to solve this problem.

The query set is denoted as Q@ = {q1,¢2,93, -, qm }>
while the gallery set is denoted as G = {g1, 92,93, .-, gn }-
We use the model trained by MDL to extract global
features of () and G, which are denoted as fo =
{far:fa fass o fan b and fo = {fo1: fous foar s S}
respectively. As shown in Figure 3, the first stage is
to find samples of different IDs to form the set L =
{l1,12,13, ...,1;} from ). We randomly sample a probe im-
age [y to initial set L:

LZ{ll},h GQ (2)

Then we calculate the distance matrix Dist(Q, L) and de-
fine the distance threshold of the negative pair as d,,. The
goal is to find a sample of new ID to add into set L. To
achieve such goal, ¢; is considered as a candidate when the
sub-matrix min(Dist(g;, L)) > d,. However, there may
be multiple candidates satisfying this constraint. We select
the most dissimilar candidate with all samples in set L as
follow:

l; = argminZDist(qi,L), q € Q
qi

s.t. min(Dist(g;, L)) > d,

where [; will be added into the set L with a new ID. We
will repeat the process until no g; satisfies the constraint
min(Dist(q;, L)) > d.

After the first step, the set L contains several samples
with different IDs. The second step is mining samples be-
longing to same IDs. Similarly, we define the distance
threshold of the positive pair as d,,. For an anchor image
Iy, if a sample x, z € Q U G satisfies Dist(x,l;) < d,, the



sample x will be labeled with the same ID with [;. However,
x can be labeled with multiple IDs under this constraint. A
simple solution is to label x and the most similar /; as the
same ID. Then, these samples are added into set L with
pseudo labels. It is noted that only a part of samples are
labeled because we set d,, < d,.

Compared with the k-means clustering, our IM method,
which can automatically generate the clustering centers in
the first stage, does not need to know the number of classes.
However, the proposed method is a local optimization that
is sensitive to the initial sample of L. In the future, we
will further study it as a global optimization problem. We
consider it has the potential to obtain better pseudo labels
than other clustering methods.

3.4. Tracklet-Level Re-Ranking with Weighted Fea-
tures

The tracklet IDs are provided for the testing set in
Track2. A prior knowledge is that all frames of a track-
let belong to the same ID. In the inference stage, standard
RelD task is an image-to-image (I2I) problem. However,
with the tracklet information, the task becomes an image-
to-track (I2T) problem. For the I2T problem, the feature of
tracklet is represented by features of all frames of the track-
let.

He et al. [4] compared average features (AF) and
weighted features (WF) of tracklets. Specifically, for a
tracklet T; = t;1,%¢;2,%3,...,1; 4, the average feature is
calculated as:

1
fro == > fu, 3)

However, although some frames are of poor quality due to
occlusion, viewpoint or illumination, average features give
each frame the same importance. Therefore, average fea-
tures remains some challenge in I2T RelD.

He et al. [4] proposed weighted features to address this
problem. Specifically, at first, we calculate the sub-matrix
Dist(Q,T;), where T is the set of tracklet from gallery, and
T; is the it" trajectory in 7. Then we choose the rows of
Dist(Q,T4%) whose min values are lower than 0.2, denoted
as D', to get the most similar images as the trajectory. Then
We calculate the mean value of each column in D to get
an average distance vector A; of T;. The weights can be
calculated as follow:

1
Wy=—" 4
A;j +0.01 @)

Then, the weighted feature of the tracklet T; can be calcu-
lated as follow:

fr.= S F(T), W )
=0

, where fr, is the weighted features of T}, and F'(T;) =
{ftirs ftins ftiss oo f1.; } is the feature set of T;. Then we
can get the image-to-track distance matrix Dist(Q,T) to
get the RelD result and tile tracks’ images.

Apart from weighted features, k-reciprocal re-ranking
(RR) method is another post-processing method that can
improve RelD performance. However, RR is a frame-level
method for image-to-image RelID. To address such prob-
lem, we regard each probe image as an independent tracklet
which has one frame. Then RR method can be applied into
features of tracklet. We name it as track-level re-ranking
with weighted features (WF-TRR).

4. Experimental Results
4.1. Datasets

Different from the standard vehicle RelD task defined
by the academic researches, the Track2 can train models on
both real-world and synthetic data, as shown in Figure 1.
In addition, unsupervised learning on the testing set is also
permitted.

Real-world data. The real-world data, which is called
as CityFlow dataset[16, 22] in this paper, is captured by 40
cameras in real-world traffic surveillance environment. It
totally includes 56277 images of 666 vehicles. 36935 im-
ages of 333 vehicles are used for training. The remaining
18290 images of 333 vehicles are for testing. In the testing
set, there are 1052 query images and 17238 gallery images,
respectively. On average, each vehicle has 84.50 image sig-
natures from 4.55 camera views. The single-camera track-
lets are provided on both training and testing sets. The per-
formance on the testing set determines the final ranking on
the leaderboard.

Synthetic data. The synthetic data, which is called as
VehicleX dataset in this paper, is generated by a publicly
available 3D engine VehicleX [28]. The dataset only pro-
vides training set, which contains 192150 images of 1362
vehicles in total. In addition, the attribute labels, such as
car colors and car types, are also annotated. In Track2, the
synthetic data can be used for the model training or transfer
learning. However, there exists great domain bias between
the real-world and synthetic data.

Validation data. Since each team has only 20 submis-
sions, it is necessary to use the validation set to evaluate
methods offline. We split the training set of CityFlow into
the training set and the validation set. For convenience, we
named them as Split-train and Split-test, respectively. Split-
train and Split-test include 26272 images of 233 vehicles
and 10663 images of 100 vehicles, respectively. In Split-
test, 3 images are sampled as probe for each vehicle, and
the remaining images are regarded as gallery.



4.2. Implement Details

All the images are resized to 320 x 320. As shown in the
Figure 2, We adopt the ResNet101_IBN_a [26] as the back-
bone network. As for data augmentation, we use random
flipping, random padding and random erasing. In the train-
ing stage, we use soft margin triplet loss with the mini-batch
of 8 identities and 12 images of each identity which leads
to better convergence. SGD is applied as the optimizer and
the initial learning rate is set to le 2. Besides, we adopt the
Warmup learning strategy and spend 10 epochs linearly in-
creasing the learning rate from le 3 to 1le~2. The learning
rate is decayed to le and 1le~* at 40th and 70th epoch,
respectively. We totally train the model with 100 epoches.

For the pre-trained stage of MDL, 14536 images of first
100 identities in VehicleX are added to pre-train the model.
These sampled images are fixed at each epoch. For the
fune-tuning stage of MDL, the model is fine-tuned with 40
epoches, where the initial learning rate is set to le=3 for
the layer in the backbone network and 2¢~3 for the fully-
connect layer. For the IM method, distance threshold d,, is
set to 0.49 and d,, is set to 0.23. The features used to cal-
culate the distance are normalized by L2 normalization. In
total, 7084 images of 130 identities were selected as set L
from 333 categories.

4.3. Comparison of Different Re-Ranking Strate-

gies
Split-test CityFlow
Model mAP r=1| mAP r=1
Baseline(BoT-BS) 76.7  89.7 / /

BoT-BS + RR [30] 804 893 | 545 674
BoT-BS + AF-TRR 82.0 90.1 | 555 673
BoT-BS + WF-TRR [4] | 90.6 93.0 | 59.7 69.3

Table 1. Comparison of different re-ranking strategies. RR and
TRR mean k-reciprocal Re-Ranking and Track-Level Re-Ranking.
AF and WF mean that average feature and weighted feature of
each tracklet. BoT-BS is not evaluated on CityFlow.

We evaluate different re-ranking strategies on the valida-
tion set Split-test in Table 1. The baseline BoT-BS achieves
76.7% mAP on Split-test. The image-to-image k-reciprocal
re-ranking (RR) [30] improves 3.7% mAP on Split-test.
Since tracklet IDs are provided, we evalute two tracklet-
level re-ranking strategies (TRR), i.e., AF-TRR and WF-
TRR. Directly averaging all features of the tracklet to rep-
resent its features, AF-TRR beats RR by 1.6% mAP on
Split-test. It demonstrates that the tracklet information is
useful for the RelD performance. Finally, WF-TRR obtains
significant performance reaching 90.6% mAP on Split-test,
surpassing RR and AF-TRR by large margins.

On CityFlow benchmark, RR, AF-TRR and WF-TRR

achieve 54.5%, 55.5%, 59.7% mAP, respectively. The
weighted features weaken the contribution of some low-
quality images. BoT-BS + WF-TRR is the baseline for the
following sections.

4.4. Analysis of Multi-Domain Learning

Split-test
Model mAP r=1
Baseline(BoT-BS) 76.7  89.7
Solution-1 729 85.7
Solution-2 71.5 83.0

BoT-BS + MDL(50IDs) | 77.1  88.7
BoT-BS + MDL(100 IDs) | 79.4  90.7
BoT-BS + MDL(200 IDs) | 76.6  88.3
BoT-BS + MDL(300IDs) | 76.8 87.0

Table 2. The results of MDL on Split-test.

CityFlow
Model mAP r=1
Baseline(BoT-BS+WF-TRR) | 59.7 69.3
Baseline + MDL 653 720

Table 3. The results of MDL on CityFlow.

We evaluate multi-domain learning (MDL) method on
Split-test and CityFlow. In Table 2, both Solution-1 and
Solution-2 cannot surpass the performance of BoT-BS. Be-
cause there exists great bias between the real-world data and
the synthetic data, joint training or pre-training are invalid
for Track2. In addition, we evaluate our MDL method with
adding different number of IDs. The results in Table 2 show
that MDL (100 IDs) achieves the best performance. If the
first two layers are not frozen during the fine-tuning stage,
the performance will be reduced by 1.4% mAP. Less identi-
ties provide less knowledge while more identities may cause
the model to be more biased towards the synthetic data.
However, MDL achieves better performance than Baseline,
Solution-1 and Solution-2, which shows its effectiveness.

On CityFlow benchmark, MDL also improves the mAP
accuracy from 59.3% to 65.3% in Table 3.

4.5. Analysis of Identity Mining

We compare results of our IM method and the k-means
clustering in Table 4. For the k-means clustering, the num-
ber of categories are set to 100 and 333 for Split-test and
CityFlow, respectively. Because of the poor performance
of the trained model, k-means clustering cannot generate
pseudo labels that are accurate enough. On Split-test, we
observe that the accuracy of pseudo labels generated by
the k-means clustering is 84.0%, while our IM method
can generate pseudo labels with the accuracy of 98.7%.



Figure 4. Visualization results of the baseline model (BoT-BS). The first column shows several different query images, each row demon-
strates the 10-nearest gallery images ranked by the model. Green and red box correspond to the positives and negatives, respectively.

Figure 5. Visualization results of the proposed method. The query images are the same with Figure 4.

The mAP scores on CityFlow further show the effective-
ness of our IM method. The k-means clustering cannot
improve the RelD performance of Baseline, while Base-
line+IM achieves 68.5% mAP that is better than Baseline
by 3.2% mAP.

CityFlow
Model mAP r=1 r=5 r=10

Baseline(BoT-BS+MDL) | 653 720 724 733
Baseline +k-means 639 722 722 726
Baseline +IM 68.5 7477 749 753

Table 4. The results of IM on CityFlow.

4.6. Ablation study on CityFlow

As shown in Table 5, BoT-BS with WF-TRR achieves
59.7 mAP on CityFlow, which is improved to 65.3% by

MDL. When jointing the a part of testing data labeled by IM
to train the model, the single model with ResNet101-IBN-a
backbone reaches 68.5% on CityFlow. To achieves better
performance, we fuse the results of five models reaching
73.2% mAP. The increase in mAP score shows the effec-
tiveness of each module.

WEF-TRR MDL IM ENS | mAP

v 59.7
v v 65.3
v v v 68.5
v v v v 73.2

Table 5. Ablation study on CityFlow. WF-TRR means tracklet-
level re-ranking strategy with weighted features. MDL and IM
mean the proposed multi-domain learning method and Identity
Mining method, respectively. Ens means the ensemble of five dif-
ferent model.



4.7. Competition Results

Our team (Team ID 39) achieves 0.7322 in the mAP
score which yields third place among the total 41 submis-
sions in the 2020 NVIDIA AI City Challenge Track 2. As
shown in the Table 2, it is the performance of top-10 algo-
rithms and detailed statistics is shown in the Table 6. Some
other scores such as rank-1, rank-5 and rank-10 are shown
in Table 7. The scores has not been checked by the organiz-
ing committee, so this may not be the final ranking.

Rank | Team ID | Team Name | mAP Scores

1 73 Baidu-UTS 0.8413
2 42 RuiYanAl 0.7810
3 39 DMT(Ours) 0.7322
4 36 IOSB-VeRi 0.6899
5 30 Bestlmage 0.6684
6 44 BeBetter 0.6683
7 72 UMD_RC 0.6668
8 7 Ainnovation 0.6561
9 46 NMB 0.6206
10 81 Shahe 0.6191

Table 6. Competition results of AICITY20 Track?2.

mAP | r=1 | r=5 [ r=10 | r=15 | r=20 |
0.7322 [ 0.8042 | 0.8051 | 0.8108 [ 0.8203 [ 0.8337 |

Table 7. mAP and CMC scores of our method.

5. Conclusion

The paper introduces the solution of our team (Team
ID 39) in the 2020 NVIDIA AI City Challenge Track
2, CVPR2020 Conference. Our solution is based on a
strong baseline in person RelD. In addition, we observe
that tracklet-level re-ranking strategy improves the RelD
performance by post-processing the results. We propose
multi-domain Learning method to exploit the synthetic data
and Identity Mining method to automatically labeled a part
of the testing data. The model can achieve better perfor-
mance with these additional data. Finally, our team achieves
0.7322 in the mAP score which yields third place among the
total 41 submissions.
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