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Abstract

Vehicle re-identification aims to obtain the same vehicles

from vehicle images. It is challenging but essential for ana-

lyzing and predicting traffic flow in the city. Although deep

learning methods have achieved enormous progress in this

task, requiring a large amount of data is a critical short-

coming. To tackle this problem, we propose a novel frame-

work called Synthetic-to-Real Domain Adaptation Network

(StRDAN), which is trained with inexpensive large-scale

synthetic data as well as real data to improve performance.

The training method for StRDAN is combined with domain

adaptation and semi-supervised learning methods and their

associated losses. StRDAN shows a significant improve-

ment over the baseline model, which is trained using only

real data, in two main datasets: VeRi and CityFlow-ReID.

Evaluating with the mean average precision (mAP) metric,

our model outperforms the reference model by 12.87% in

CityFlow-ReID and 3.1% in VeRi.

1. Introduction

Vehicle re-identification (Re-ID) aims to identify the

same vehicles that are captured by various cameras. It is

an essential technology for analyzing and predicting traffic

flow in a smart city and uses visual appearance-based Re-ID

methods in general. However, Vehicle Re-ID is challenging

for two reasons. First, different lighting and complex envi-

ronments create difficulties with appearance-based vehicle

Re-ID. Also, if the vehicle is captured using different cam-

eras, large variations in appearance will be produced. Sec-
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Figure 1. Synthetic-to-Real Domain Adaptation method to im-

prove the performance of vehicle Re-ID. In general, it is difficult

to get labels for real data, but it is easy for synthetic data.

ondly, different vehicles can be very similar to each other

visually when they are in the same category.

Deep learning methods [24, 9, 17] are used to tackle

this complex vehicle Re-ID task and achieve significant

progress. They extract features using deep learning net-

works and distinguish vehicles by comparing the distances

between their features. However, requiring a large amount

of data to improve performance is a drawback of deep learn-

ing. The reported result [33] shows that the more training

data a model has, the better performance it makes. Data

from the wild environment need a heavy workload of an-

notation. Many studies have attempted to use inexpensive

synthetic data to replace real data. Such research is called



domain adaptation.

In this paper, we explore how to improve model perfor-

mance using inexpensive synthetic data (see Fig.1). First,

we have adopted an adversarial domain adaptation approach

[3] in which a neural network learns features that are as

discriminative as possible for the main classification task

on the real data, while, at the same time, learning indistin-

guishable features between real and synthetic data [1] [4].

To implement this idea, we introduce a domain discrimi-

nation layer and associated cross-entropy loss to train the

network indiscriminative for both domains. Secondly, to

exploit the specific labels in synthetic data such as color,

type, and orientation, we have also adopted semi-supervised

learning methods. Since these labels exist only in syn-

thetic data, a semi-supervised learning approach that can

handle unlabeled data is applicable to improve the perfor-

mance. In training, classification losses for the exclusive

labels are selectively applied depending on the data domain

[31]. Our model trained the real and synthetic data of the

AI City Challenge using the domain-adaptation and semi-

supervised learning approach was 12.87% better than the

baseline model that was trained with only real data.

In this work, we propose a novel framework named StR-

DAN, standing for Synthetic-to-Real Domain Adaptation

Network. Our major contribution is threefold:

• StRDAN is trained with inexpensive large-scale syn-

thetic data as well as real data to improve the perfor-

mance.

• A new training approach for StRDAN is proposed,

which is combined with domain adaptation and semi-

supervised learning methods and corresponding losses.

• StRDAN shows a significant improvement over the

baseline model in two main data sets: VeRi [14] and

CityFlow-ReID [26].

2. Related Work

In this section, we review the prior works from two as-

pects: vehicle Re-ID and the domain adaptation method

with synthetic data.

Vehicle Re-ID: Vehicle Re-ID methods generally have

two characteristics: contrastive loss and spatio-temporal

feature. First, in terms of contrastive loss, prior works

[13, 14, 15] proposed methods that use constrative loss in

forms of siamese network, triplet loss, and metric learn-

ing. Liu et al. [14] also introduced the VeRi dataset for

the first large-scale vehicle Re-ID benchmark. Second,

spatio-temporal feature is the key to performance improve-

ment. Vehicle Re-ID task achieved a huge progress using

the spatio-temporal features. Tan et al. [23] uses spatial-

temporal features for multi-camera vehicle tracking and ve-

hicle Re-ID, and their method proved by winning The AI

City Challenge 2019[18]. Shen et al. [21] proposed a two-

stage framework for matching visual appearance and an

LSTM based path inference mechanism.

Domain Adaptation with Synthetic Data: To over-

come the lack of data, Zhou et al. [36, 37] proposed

a method that improves the Re-ID performance by aug-

menting various viewpoint vehicle images with Generative

Adversarial Networks (GAN). There is also a method to

deal with inconsistency in the distribution of different data

sources. When deploying the well-trained model directly to

a new dataset, the performance drops significantly due to

the differences among datasets named domain bias. Peng et

al. [19] proposed a domain adaptation framework to address

this problem, which contained an image-to-image transla-

tion network and an attention-based feature learning net-

work. We can use VehicleX[30] simulator to leverage syn-

thetic data and domain randomization to overcome the re-

ality gap [27, 28]. Liu et al. [11] also proposed a domain

adaptation method. However, they only considered real-

to-real domain adaptation. The recent vehicle Re-ID re-

search [25] proposed PAMTRI uses synthetic data to im-

prove the performance and have a similar architecture with

ours. Compared to PAMTRI that requires additional effort

to get vehicle pose and label for real data, our StRDAN uses

domain adaptation to utilize synthetic data and adopts semi-

supervised learning that doesn’t need to extra annotation

workload. Our method is simple and easy to train.

3. Synthetic-to-Real Domain Adaptation Net-

work (StRDAN)

3.1. Datasets

In this work, we developed a neural network using the

real and synthetic vehicle datasets provided for the Track

2 of the 2020 AI City Challenge. The real dataset is the

CityFlow-reID dataset, which is a subset of CityFlow made

available for the Track 2 challenge and consists of 56,277

images for 666 unique vehicles collected from 40 cameras.

Here, 36,935 images from 333 vehicle identities are pro-

vided for training, while 18,290 images from the other 333

identities are given for testing. The remaining 1052 images

from the same identities in the test set are provided as query

data.

The synthetic vehicle dataset consists of 192,150 images

from 1,362 distinct vehicles created using a large-scale syn-

thetic dataset generator called VehicleX [30] to form an aug-

mented training set. The synthetic dataset has not only the

vehicle ID but also additional information such as the color,

type, and orientation of an object, whereas the real dataset

has only the vehicle ID. Here, vehicles are distinguished

into 12 colors and 11 types. The orientation is represented

by a rotation angle on the horizontal plane in the range of

[0, 360).



We also trained and evaluated our model using the VeRi

real dataset [8] and the City Challenge synthetic data to ex-

amine the validity and robustness of our approach. The Veri

dataset contains over 50,000 images of 776 vehicles cap-

tured by 20 cameras. The training set contains 37,781 im-

ages of 576 vehicles, while the testing set contains 11,579

images of 200 vehicles. We don’t VeRi has additional labels

that are color and type.

3.2. Overall Architecture

The overall architecture of the proposed synthetic-to-real

domain adaptation network (StRDAN) is shown in Figure

2. The model consists of a backbone network for feature

extraction and multiple fully connected (FC) softmax lay-

ers for classification. Input images are sampled in batch in

equal numbers from the real and synthetic datasets. For a

mini-batch, n different vehicle identities are chosen from

the real and synthetic datasets, respectively, then m samples

are randomly selected from the images of the chosen iden-

tities. Therefore, each batch contains 2× n×m images.

The backbone network extracts a highly-abstracted fea-

ture vector (dim = 2048) from an input image. Concep-

tually, any convolution neural network designed for im-

age classification can be used as a backbone network. In

prior work, various CNN networks, such as VGG-CNN-M-

1024 [2], MobileNet [8], ResNet [6], have been adopted as

a backbone for vehicle Re-ID. In the proposed StRDAN,

ResNet-50 has been selected as a backbone network. The

feature map extracted by the backbone network is flattened

and fed into various FC softmax layers for classification of

vehicle id, real or synthetic, color, type, and orientation.

The outputs are fed into five cross-entropy loss functions

and one triplet loss function. Our model is trained in an

end-to-end manner by updating the parameters in the net-

work to reduce the total loss, which is a combination of the

cross-entropy losses and the triplet loss.

3.3. Key Features

Adversarial Domain Adaptation. An annotated dataset

is essential for supervised learning of a deep neural net-

work. However, collecting and manually annotating a large

amount of data is a time consuming and expensive task. To

overcome this problem, an approach to generate automati-

cally labeled data using a graphic simulator has been intro-

duced. In the AI City Challenge, a synthetic vehicle dataset

created using VehicleX is provided to overcome the lack of

real data. However, the synthetic data has similar but dif-

ferent distributions, compared to the real data. Therefore,

it is necessary to train a neural network to be predictive of

the classification task, but uninformative as to the domain

of the input.

We adopted the adversarial domain adaptation approach

in which a neural network learns features that are as dis-

criminative as possible for the main classification task on

the real domain and , at the same time, as indistinguish-

able as possible between the real and synthetic domains [1]

[4]. To implement this idea, we introduced a domain dis-

crimination layer and its associated cross-entropy loss to

make the network be trained indiscriminative to the two

domains. Also, to train the network more discriminative

for vehicle identities and shape signatures, we introduced

not only a vehicle-id classification layer and its associated

cross-entropy loss but also a triplet loss.

Semi-supervised Learning. The synthetic data has la-

bels such as vehicle type, color, and orientation unlike the

real data. We use the labels as multi-task learning to im-

prove generalization performance of all the tasks [32]. In

this case, various approaches for semi-supervised learn-

ing can be introduced to improve learning accuracy be-

cause semi-supervised learning basically combines a small

amount of labeled data with a large amount of unlabeled

data during training. In Zhai et al. ’s work [31], they cre-

ate artificial labels for both unlabeled and labeled data and

utilize them in training. Their approach inspired us an idea

to use joint and disjoint labels between real and synthetic

data for improving the performance. Here, joint labels at-

tached to both real and synthetic data are vehicle ID and

domain (real or synthetic), while disjoint labels attached to

only synthetic data are vehicle type, color, and orientation.

As shown in Figure 2, the losses are also classified into joint

and disjoint losses, which are associated with joint and dis-

joint labels, respectively. The triplet loss is classified as a

joint loss because the vehicle id contributes to distinguish-

ing batch images into anchor, positive and negative images.

The semi-supervised learning approach we consider in

this paper has a learning objective in the following form:

min
θ

Ljoint(θ) + wLdisjoint(θ), (1)

where Ljoint is the joint loss defined in both real and syn-

thetic domains and Ldisjoint is the disjoint loss defined in

the synthetic domain. θ is parameters of the network. In the

next section, we will describe the losses in more detail.

4. Loss Function

4.1. Joint Losses

Vehicle ID. A cross-entropy loss following the softmax

function is the most common loss in image classification.

The cross-entropy loss of the vehicle ID classifier, Lid, is

represented as follows:

Lid = −
1

N

N
∑

i=1

C
∑

j=1

yij log(ŷij), (2)

where N denotes the number of images in a mini-batch,

C represents the number of classes, yij is the jth element



Figure 2. The architecture of the proposed synthetic-to-real domain adaptation network (StoRDAN) that consists of a ResNet-50 backbone

for fearure extraction and five fully-connected softmax layers for classification, trained using the joint and disjoint losses between synthetic

and real data.

of an one-hot encoded vector for the ground-truth of the

ith sample in a mini-batch, and ŷij corresponds to the jth

element of the output of the softmax FC layer for the ith

image.

Domain. We adopted the adversarial domain adaptation

approach. In this work, domains are real and synthetic. A

softmax FC layer for domain discrimination is added to the

backbone network. The loss to make the network be trained

indiscriminative to two domain is defined as follows:

Ldomain =
1

N

N
∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi). (3)

The domain discrimination loss is defined as the negative

value of binary cross-entropy loss. Since the cross-entropy

loss makes the network be trained discriminative between

two domains, its negative loss would make the model more

indistinguishable. If a vehicle captured by a camera is

drawn by a graphic simulator in the same orientation, the

features extracted from a synthetic image would be similar

to that from a real image as the domain-dependent features

are suppressed. The negative cross-entropy loss function is

implemented by the gradient reversal layer [3].

Triplet Loss. In a mini-batch that contains P identities

and Q images for each identity, each image (anchor) has

Q− 1 images of same identity (positives) and (P − 1)×Q

images of different identities (negatives). The triplet loss

aims at pulling the positive pair (a, p) together while push-

ing the negative pair (a, n) away by a margin. That is, this

loss forces the network to be trained to minimize the dis-

tance between the features from the same classes of images

and, at the same time, to maximize the distance between

the features from the different classes of images. The triplet

loss[7] is defined as follows:

Ltri =

P
∑

i=1

Q
∑

a=1









m+ max
p=1...Q

D(va,i, vp,i)− min
j=1...P
n=1...Q

j 6=i

D(va,i, vn,j)









+

(4)

where va,i represents predicted vector of ath image of the

ith identity group and m is the margin to control the differ-

ence between positive and negative pair distances and helps

cluster the distribution more dense.



4.2. Disjoint Losses

Color, Type, and Orientation. The softmax cross-

entropy loss is applied for these three targets. In fact, in

terms of data type, orientation is continuous and of ratio

type, whereas color and type are categorical and nominal.

Therefore, it is natural to use regression to predict orienta-

tion. However, orientation estimation is one of the toughest

problems for regression due to the wide range of the regres-

sion target. Actually, in our experiments, the optimization

has not been converged for regression. Therefore, we con-

vert the orientation regression to a direct classification into

n discrete bins, with softmax cross-entropy loss, as shown

in [35] or [5]. We divide the 360-degree orientation space

into six bins of 60 degrees each. The cross-entropy losses

for the color, type, and orientation are applied only to the

synthetic images and set zero to the real images. The loss

function can be presented as follows:

Lx = −
1

N

N
∑

i=1

C
∑

j=1

δiyij log(ŷij), δi ∈ {1, 0}, (5)

where x is one of color, type, and orientation, and δi is a

mask value that is set to 1 if the ith data in a mini-batch has

x, and 0 otherwise.

5. Experiments

5.1. Evaluation Metric

To evaluate the performance of each model, we used the

official evaluation metric for the AI City Challenge, which

is the rank-K mean Average Precision (mAP) that measures

the mean of average precision for each query considering

only the top K matches. K is chosen to be 100. The aver-

age precision is computed for each query image by calculat-

ing the area under the Precision-Recall curve, and then the

mean of the average precision over all the queries is com-

puted.

5.2. Implementation

Our backbone network, ResNet-50, is initialized with the

weights pre-trained on ImageNet [8] to accelerate the train-

ing process. We train the model end-to-end with an AMS-

Grad optimizer [20] for 60 epochs. The initial learning rate

is set to 0.0003 and reduced by 0.1 after 20 and 40 epochs.

The weight decay factor for L2 regulation is set to 0.0005,

and the batch size is 64. For each mini-batch, two and two

different vehicle-ids are selected from the real and synthetic

datasets, respectively, and four images with the same ID are

sampled. Therefore, a total of 16 different images with four

different IDs from the real and synthetic datasets are sam-

pled. An input image is resized to (128, 256). We adopt

Case O C T V D Dataset mAP

1 X R 25.48

2 X X X R+S not converge

3 X X X R+S 35.16

4 X X X R+S 38.35

5 X X X X R+S 34.12

6 X X X X R+S 37.54

7 X X X X R+S 35.29

8 X X X X X R+S 33.96

Table 1. Results on the CityFlow-reID and VehicleX dataset for

the 2020 AI City Challenge - Track 2. The results are from the

official evaluation leaderboard. O, C, T, V, and D denote orienta-

tion, color, type, vehicle ID, and domain, respectively. Each box is

checked if the target loss is included. In the dataset column, R and

S represents real and synthetic data, respectively. The best result

is bold.

Case O C T V D Dataset mAP

1 X R 73.0

2 X X X R+S 76.1

3 X X X R+S 74.2

4 X X X R+S 74.9

5 X X X X R+S 74.7

6 X X X X R+S 75.3

7 X X X X R+S 74.8

8 X X X X X R+S 74.6

Table 2. Results on the VeRi and VehicleX dataset. O, C, T, V, and

D denote orientation, color, type, vehicle ID, and domain, respec-

tively. Each box is checked if the target loss is included. In the

dataset column, R and S represents real and synthetic data, respec-

tively. The best result is bold.

horizontal-flip and randomly-erase augmentations. In post-

processing, we use the re-ranking algorithm proposed by

Zhong et al. et al. [34], which is ordering the distance ma-

trix between the features with the Jaccard distance and orig-

inal output distance.

5.3. Results and Discussion

We trained and evaluated our models using the

CityFlow-reID real dataset and the VeRI real dataset to-

gether with the synthetic data generated by VehicleX. The

evaluation results of the models trained using the selected

disjoint losses are shown in Table 1 and Table 2.

Performance on AI City Dataset. The baseline is Case

1 where a neural network is composed of the backbone net-

work and the vehicle ID classifier. The baseline is trained

with the real dataset using the vehicle-ID cross-entropy and

triplet losses. As shown in Table 1, comparing with the

baseline, the domain adaptation and semi-supervised learn-

ing approaches introduced in this study improve signifi-

cantly the model performance by at least 8.48% (in Case



Method mAP

FACT[12] 18.73

ABLN[38] 24.92

OIFE[29] 48.00

PROVID[16] 48.47

PathLSTM[22] 58.27

GSTE[] 59.47

VAMI[39] 61.32

BA[10] 66.91

BS[10] 67.55

PAMTRI[25] 71.88

StRDAN (baseline) 73.0

StRDAN (R+S, best) 76.1

Table 3. Comparing with other methods on VeRi dataset. Our StR-

DAN outperforms other methods.

8) and up to 12.87% (in Case 4). One interesting thing is

that the model shows the best performance in Case 4 where

only the vehicle type is considered among three labels of

the synthetic image. On the contrary, in Case 8 where all

three labels are considered, the model shows the worst per-

formance.

Performance on VeRi Dataset.Table 2 also shows that

the domain adaptation and semi-supervised learning ap-

proaches with synthetic dataset and additional losses con-

tribute to performance improvement. The performance is

improved by up to 3.1% in Case 2 and at least 1.2% in

Case 3. Unlike the cases with the AI City dataset, the case

with only the orientation label shows the best performance.

However, in this case, the model cannot converge with the

AI City dataset. In terms of performance, the models with

Veri data is much better than those with AI City data. In ta-

ble 3 we compare our StRDAN with other methods. Except

for PAMTRI and StRDAN (R+S), all the models have been

trained using only VeRi dataset. The table shows that our

model outperforms the other methods in the table.

Domain Adaptation and Semi-supervised Learning.

Based on the experimental results, it is clear that the do-

main adaptation and semi-supervised learning approaches

contribute to extracting more important semantic features

for vehicle Re-ID. However, there remains further research

on unexpected phenomena: First, a model trained with only

one loss out of three disjoint losses performs best. Second,

the more disjoint losses are included, the lower the perfor-

mance. Third, the best performance depends on the real

dataset.

6. Conclusions

In this paper we propose an approach using domain

adaptation and semi-supervised learning to fully utilize the

synthetic data. Based on the experiment results, we found

that increasing training data via with domain adaptation,

improves performance. We also explored specific labels

that only synthetic data has and discovered that using these

labels with semi-supervised learning helps model extracting

more semantic features.

As future work, the following issues need to be ad-

dressed.

• Synergy between disjoint losses and the real-world

data dependency in the disjoint losses, which are dis-

cussed in previous section

• Effect of reality on synthetic data. The image data

synthesized by VehicleX is easily distinguishable from

real image data and very far from realistic. More real-

istic synthetic data obtained by driving simulation soft-

ware can improve the performance much more.

• Prediction of orientation. We convert orientation re-

gression to a direct classification into six discrete bins.

However, as we have not tried various bin counts, it

is necessary to investigate the optimal number of bins.

Since the orientation is one of the key features to iden-

tify vehicles that are captured in various camera an-

gles, the proper representation of orientation can boost

performance.
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