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Abstract

Anomaly detection on road traffic is a fundamental com-
puter vision task and plays a critical role in video struc-
ture analysis and urban traffic analysis. Although it has
attracted intense attention in recent years, it remains a very
challenging problem due to the complexity of the traffic
scene, the dense chaos of traffic flow and the lack of fine-
grained abnormal labeled data. In this paper, we propose a
multi-granularity tracking approach with modularized com-
ponents to analyze traffic anomaly detection. The modu-
larized framework consists of a detection module, a back-
ground modeling module, a mask extraction module, and
a multi-granularity tracking algorithm. Concretely, a box-
level tracking branch and a pixel-level tracking branch is
employed respectively to make abnormal predictions. Each
tracking branch helps to capture abnormal abstractions at
different granularity levels and provide rich and comple-
mentary information for the concept learning of abnormal
behaviors. Finally, a novel fusion and backtracking opti-
mization is further performed to refine the abnormal predic-
tions. The experimental results reveal that our framework is
superior in the Track4 test set of the NVIDIA Al CITY 2020
CHALLENGE, which ranked first in this competition, with
a 98.5% F1-score and 4.8737 root mean square error.

1. Introduction

Anomaly detection of traffic accidents plays a critical
role in urban traffic analysis and potential down-stream ap-
plications like evidence investigation. With the rapid de-
velopment of computer vision in recent years, anomaly de-
tection in road traffic has attracted more attention, an ef-
fective and automated anomaly detection method can pro-
mote effective and efficient traffic management. As shown
in Figurel, due to the complexity of traffic conditions, the
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Figure 1. Overview of anomaly detection of traffic accidents.
Complex road scenes make the task very challenging. The red
boxes denote the abnormal locations in the picture.

diversity of weather and the size of vehicles, there are great
challenges in the detection of traffic anomalies.

In recent years, deep learning based anomaly detec-
tion methods have been developed rapidly, but it remains
a very challenging problem due to the serious imbalance
between normal and abnormal samples, the serious lack of
fine-grained labeling data about abnormal events and the
ambiguity about the concept of abnormal behaviors. In
contrast, normal data is easier to obtain, previous studies
[16, 2, 11, 15, 5, 3] generally leverage normal training sam-
ples to model abnormal concepts, and identify the distinc-
tive behaviors that deviate from normal patterns as anoma-
lies. However, these works are not accessible to abnormal
videos, which may incorrectly classify some normal behav-
iors with abrupt action as abnormal ones. On the other hand,
Anomaly detection of traffic accidents needs to be compe-
tent in all traffic scenarios, these deep learning-based meth-
ods can just work on homogeneous scenes datasets, most of
them perform poorly when faced with unknown road traffic
scenes and complex traffic conditions.

To deal with the above challenges, we tackle the traf-
fic anomaly detection problem based on vehicle detection
and tracking. By analyzing various traffic accident videos,
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Figure 2. The illustration of multi-granularity tracking with modularlized components framework. This framework involves fusion from
box-level tracking branch and pixel-level tracking branch. The backtracking optimization is performed to further improve the predictions.

we conclude that when a traffic accident occurs, the rele-
vant vehicles will usually stop abruptly and last for a pe-
riod of time. So we assume that if a stopped vehicle stays
longer than the traffic light signal period, it can be re-
garded as an abnormal event. In this paper, we propose a
multi-granularity tracking approach with modularized com-
ponents to address the traffic anomaly detection task. Con-
cretely, the novel multi-granularity tracking mechanism in-
volves a box-level tracking branch and an improved pixel-
level tracking branch inspired by [1]. Each branch manages
to model abnormal concepts at different granularity levels
and compensates for each other to make a robust predic-
tion. The box-level branch links the detected boxes and
constructs the tube to enclose the trajectory of the anomaly.
The pixel-level branch introduces a similarity backtrack al-
gorithm to accurately locate the start time of the anomaly.
In modularized components, a vehicle detection model is
exploited to detect vehicles in the video frames. Then we
develop background modeling based on the Gaussian Mix-
ture Model (GMM) to eliminate moving vehicles, so that
stationary vehicles are easier to detect. To eliminate the in-
terference outside the main road, such as parking lots and
side roads that allow parking, we design a segmentation
method based on frame changes and vehicle tracking re-
sults. Moreover, we introduce an anomaly fusion and back-
tracking optimization method to further boost the perfor-
mance of anomaly predictions. The main contributions are
summarized as follows:

e We present a multi-granularity tracking framework
which contains a box-level tracking branch and a pixel-level
tracking branch. Each branch contributes to capturing ab-
normal abstractions at different granularity levels for abnor-
mal concepts modeling.

e We propose a novel mask extraction mechanism based
on frame difference and vehicle tracking trajectory. It man-
ages to effectively generate hypothetical anomaly regional
masks at a lower false-positive rate.

e We propose an anomaly fusion and backtracking opti-
mization method to refine the abnormal predictions, which
can significantly improve the robustness and accuracy of the

results.

Based on the above technical points, we evaluated our
method on the Track 4 test set of the NVIDIA Al CITY
2020 CHALLENGE, We ranked first among the 8 partici-
pating teams, and we obtain the F1-score metric at 0.9855
and the RMSE metric at 4.8737. The source codes have
been released at https.//github.com/WuJiel010/AICity2020-
Anomaly-Detection.

2. Related Work

As a most challenging task in the computer vision field,
anomaly detection has been extensively studied for a long
time [8, 17, 9, 6, 16, 2, 5, 27, 23, 32, 30, 33]. Most
works employ normal videos to model abnormal concepts
and treat the behaviors that deviate from the normal ab-
straction as anomalous. These researches have been con-
ducted to leverage a series of statistic patterns, e.g., Hidden
Markov Model [9, 6], Markov Random Field [8, 17], and
sparse reconstruction [16, 2, 31, 15] to learn anomaly. With
the development of deep learning technology, [5, 27] resort
to the autoencoders with reconstruction loss to address the
anomaly forecasting task. Sultani er al. [23] first propose
weakly supervised anomaly detection that merely resorts to
video-level labels (indicates whether the video is abnormal)
to model abnormal concepts. They also attempt to optimize
the detection model via both normal and abnormal videos.

Sultani et al. [23] collect the UCF-Crime [23] dataset,
which is the largest anomaly detection datasets contain-
ing anomaly videos of diverse categories in complicated
surveillance scenarios. Zhong et al. [32] formulate this
weakly-supervised task as a supervised learning task under
noise and employ a graph convolutional network to correct
the noise labels. However, these works [23, 32, 30, 33] fail
to take into account two core issues. First, they use the
abnormal data with label information to model abnormal
abstraction, which requires labor-intensive manual annota-
tions. On the other hand, they fail to account for the more
practical and meaningful anomaly such as vehicle anomaly
detection.



Vehicle anomaly detection is more fine-grained anomaly
detection, which is specially used to detect anomalies such
as lane violations, wrong-direction driving, etc. In NVIDIA
Al CITY CHALLENGE 2018[18] and NVIDIA AI CITY
CHALLENGE 2019[19], unsupervised vehicle anomaly
detection for road scenes have attracted considerable inter-
ests, which contributes to fine-grained anomaly detection
in actual traffic accident scenarios and promoting the de-
velopment of intelligent transportation. [28, 25] design the
background modeling method to analyze the potential sta-
tionary vehicles. [20] proposes to use multiple adaptive ve-
hicle detectors for abnormal proposals and adopt heuristics
properties extracted from proposals to determine anomaly
events. [1] presents a novel spatial-temporal information
matrix, which transforms the analysis of a strip trajectory
into an analysis of the spatial position. [1] ranked first
among the 23 participating teams, and won the champi-
onship of anomaly detection track in NVIDIA Al CITY
CHALLENGE 2019[19].

In this paper, we propose a multi-granularity tracking
approach for unsupervised vehicle anomaly detection. We
employ a box-level tracking branch and a pixel-level track-
ing branch to model abnormal concepts at different gran-
ularity levels, which jointly facilitate framework learning
and improve the final performance. our proposed method
achieves 0.9695 S4 score and ranks the first place among
all the participant teams in the NVIDIA AI CITY CHAL-
LENGE 2020.

3. Methodology

Figure 2 illustrates the proposed framework and its mod-
ular components. In the following sections, we first illus-
trate our detection model in section 3.1. Then we describe
the background modeling and the extraction of the hypo-
thetical abnormal masks in section 3.2 and 3.3, respectively.
Section 3.4 introduces the proposed multi-granularity track-
ing approach, which employs a box-level tracking branch
and a pixel-level tracking branch to model abnormal con-
cepts at different granularity levels. Finally, how to obtain
the fusion results and the backtracking optimization process
are described in Section 3.4.3.

3.1. Detection Model

Recently, object detection becomes popular in both
single-stage and two-stage detectors [14, 10]. In the single-
stage pipelines, the locations of the target objects are gen-
erated directly from the feature map of the end of CNN. In
two-stage pipelines, e.g. Fast R-CNN[4] and Faster-RCNN
[22], the final predictions are obtained from features that
generated in a specific region of interests, and the final pre-
dicted boxes are refined by CNN. Although single-stage de-
tectors are efficient, current state-of-the-art object detectors
usually adopt two-stage approaches for higher accuracy. In

Figure 3. Examples of detection results, which from video 13, 18,
23 and 28 in track4 test dataset. From the visualization, we ob-
serve that small targets can be predicted accurately.

this task, we use a Faster R-CNN [22] to build our detec-
tion framework, which adopts SENet [7] with the depth of
152 as the backbone feature extractor. FPN [12] is worked
on the backbone to increase semantic features information
at each level in the extracted features. To fit into the track4
detection task, we clustering anchors on the track4 training
dataset. Specifically, we used k-means clustering algorithm
, and the distance metric is defined as:

D(box, centroid) = 1 — IoU (box, centroid). (1)

The larger resolution, data flipping and data cropping are
also exploited as data augmentation for facilitating training:
1) large resolution input is used to further boost the detec-
tion recall, especially for small targets. 2) Data flipping is
used to ease the problem of false-positive caused by spe-
cial scenarios. The data flipping method adopts a random
mirror flip of the images, and the random probability is 0.5.
For instance, the vehicles do not appear in specific areas of
images in the training set. And the data flipping method can
make up for this and provide more robust information for
detection. 3)We observe that many vehicles only occupy
pixel-level size in the image. and the vehicle size on the
top area of the image is smaller than the bottom area of im-
ages due to the 3D perspective. Hence we adopt the random
cropping method to learn multi-scale concepts. Concretely,
randomly crop is employed to the whole images and then
resize the cropped image to 1333 x 800.

The model is pre-trained on COCO [13], the detection
training dataset is from AICity2020 track4 training videos
[24]. The final model is trained on PaddlePaddle frame-
work . We extract one frame every four seconds from the
training set video and assign bounding box level labels to
the vehicles in images. Some visualizations of the detection
predictions are shown in Figure 3.

Uhttps://github.com/PaddlePaddle/PaddleDetection
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Figure 4. Examples of background modeling. From the left to the
right: original frame, background modeling by Moving Average,
background modeling by MOG2 ordinally.

3.2. Background Modeling

As abnormal traffic events generally bring about stopped
vehicles, detecting static vehicles is regarded as a robust and
effective way in anomaly detection.

To obtain the stationary parts meanwhile fade the mov-
ing vehicles into the background, we try several algo-
rithms for background modeling. As shown in Figure 4,
MOG?2[34, 35] is more stable than Moving Average [29].
Thus we adopt MOG?2 in this paper, which selects the ap-
propriate number of components of GMM for each pixel
and provides better adaptability to varying scenes. In
MOG?2, T denotes the time period for updating GMM pa-
rameters and a larger 1" adapts better to gradual changes.
In our work, the update interval is set as 120 frames at 30
fps, which corresponds to set 1" as 4s for test videos. As
a result, all normal moving vehicles are removed from the
frames and static vehicles remain in the background.

The background is extracted both in the forward and
backward directions. The forward part is utilized to predict
the candidate anomalies and the backward part is designed
to refine the start time of abnormal traffic events precisely.

3.3. Extraction of Hypothetical Abnormal Mask

There is no unified definition of anomaly but basically
it refers to anything we don’t expect to happen normally
[19]. Generally, anomalies happen on vehicles driving on
the main road, and vehicles stop for a long time on parking
lot are not anomaly. In order to avoid interference from
stopping vehicles on the side roads and parking lots, we
need to segment out hypothetical abnormal mask regions
automatically. Due to the complexity of the road surface
scene, and the anomalies sometimes deviate from the main
road, it is hard to use the segmentation model to distinguish
the hypothetical abnormal area. We propose a combined
method to extract abnormal mask based on frame difference
and vehicle tracking trajectory :

motion-based mask. We analyze differences between
two frames to construct the abnormal mask. There are k
interval frame between these two frames, if the differences
exceed di f f, we consider that the area has moving objects
and retain this area. To cope with the camera shake and
scene changes, we discard the result if the abnormal mask

Figure 5. Examples of abnormal mask. From the left to the right:
motion-based mask, trajectory-based mask, final fused mask. The
top row shows motion-based mask can reduce false recall of de-
tection, the bottom row shows trajectory-based mask can reduce
the false recall of auxiliary roads.

of a frame is greater than the set threshold M. Finally, we
add up all the changes areas of a video to generate a motion
mask.

trajectory-based mask. We use the multi-target tracking
algorithm DeepSORT[26] to get the trajectory of the vehi-
cle. For each trajectory, if the length of it is less than the
threshold n or the travel distance of the trajectory is less
than the threshold d, the trajectory is considered to be a
false recall or a trajectory on the auxiliary road, and the
vehicle detection results in this trajectory is not to be con-
sidered. For the qualified trajectories, in order to avoid the
false recall of the parking lot that close to the main road, we
process the detection results according to the size of the ve-
hicle. Specifically, we narrow large vehicle detection boxes.
Based on the above results, we sum up the detection result
of each trajectory to the corresponding position, so as to
obtain a trajectory-based mask. Additionallywe remove the
connected region with small area to eliminate noises such
as auxiliary road.

Finally, we take the intersection of the above two masks
to get the final mask. These two mask can complement each
other and Figure 5 shows some results of abnormal mask.

3.4. Multi-Granularity Tracking

In this paper, we design a multi-granularity tracking al-
gorithm to analyze the candidate abnormal vehicles, which
involves a box-level tracking branch and a pixel-level track-
ing branch. We illustrate the multi-granularity tracking al-
gorithm in Figure 6.

3.4.1 Box-level Tracking Branch

To generate box-level tracking results, we first adopt the de-
tection algorithm in section 3.1 to detect all bounding boxes,
{B} in the video frames after the forward background mod-
eling process, with corresponding confidence scores S(B).
Subsequently, we link the detections across the single frame
to produce a temporarily consistent spatio-temporal tube to
track a particular vehicle. This box-level tracking process
consists of four steps and the whole process is outlined in
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Figure 6. The illustration of multi-granularity tracking algorithm. This framework involves fusion from box-level tracking branch and

pixel-level tracking branch.

detail in the Algorithm 1. The first step is the box link-
ing and tube construction process, which can be seen as a
hierarchical clustering problem. Detection results that re-
flect the same object in the video are grouped into one clus-
ter. We first sort the detections according to the confidence
score and pick the one with the max score B? as the start-
ing point of a cluster. Then the linking process is extended
both forward and backward via the greedy search algorithm
and the box with the max linking score in the consecutive
time is added to the corresponding cluster. Specifically, the
linking score S;(B;, B;) is defined as the intersection-over-
union (IoU) of B; and B;. We continue the linking process
until there is no box could obtain the IoU greater than A;.
When a special cluster is constructed, we remove the linked
boxes and collect a new cluster repeatedly until all boxes
are grouped.

In complex traffic conditions, the detection results are
crucial to the final performance of the task. To deal with
possible missed and false detections, we designed two
mechanisms to compensate for the detection performance.
First, we compare the starting boxes of the extracted tubes
one by one. When their IoU exceeds the threshold \;, we
think that these two tubes are related to the same object and
combine their tubes. Second, We observe that the abnormal
vehicle has basically no pixel difference during parking, but
the road background and the vehicle are generally different.
Namely, the detection box area will have a big difference
before the vehicle stops and after the vehicle drives away.

However, if the candidate anomaly is caused by false detec-
tion of the background, the above phenomenon will disap-
pear. Hence we introduce a similarity filtering module to
filter out some false detections that are not actually vehi-
cles. The similarity filtering module uses the Peak Signal
to Noise Ratio (PSNR) as the measurement metric. Specifi-
cally, when the PSNR of inter-tube PSNRter exceeds a cer-
tain value 7, (the PSNR difference of inter-tube PSNRzer
and intra-tube PSNRtra exceeds a certain value ), we
think they are actually background information and filter
them out.

Then we merge the obtained tubes in the temporal di-
mension. When the end time of the current abnormal tube
tTi and the start time tsTi+1 of the next one are within 7, we
think they belong to the same abnormal event and combine
these tubes.

3.4.2 Pixel-level Tracking Branch

Inspired by [1], time-related pixel-level information is
leveraged to predict anomaly in this paper. As shown in
Figure 6, six spatial-temporal information matrices, i.e.,
Vundetecteds Vdetected’ Vvscor& V;;tates Vvsta'rt and V:end are
established to update each pixel information in the iterative
manner.

A suspicious state is designed in [1] to record potential
anomaly, which has a lower time restriction than the ab-
normal state. We follow this setting in this paper. When a
suspicious anomaly is detected, the region of the anomaly



Algorithm 1 Box-level Tracking.

Algorithm 2 Pixel-level Backtrack methods.

1: Input: Boxes set { B}; scores S(B); length threshold
(y; linking IoU threshold A;; PSNR absolute thresh-
old v,; PSNR relative threshold ~,; Temporal fusion
threshold 7; initial tube list L1 = @.

2: Stepl: Box Linking and Tube construction process.
3: while B # @ do

4: BP = argmax gy S(B);

5 Btpfm =B T= [Btp,m];

6: Forward Linking: t = tp

7: while Sl(Bt,my Bt+1,j) >\, J € [1, Nt+1] do
8: Bitim = argmaxpg, Si(Bt,ms Bit1,5)s
9: T.add(Bt+1’m), t=t+1.

10: end while

11: Backward Linking: t = tp

12: while Sl(Bt,nu Bt—l,j) > )\1,j S [I,Nt_l] do
13: Bi_1.m = arg maxpg, . Si(Bt,m, Bi-1,5);
14: T.add(Bi—1m), t =1t —1.

15: end while

16: if len(T") > (; then:

17: Ly.add(T);

18: end if

19: {B}.delete(T).

20: end while

21: Step2: Cross Tube Fusion.

22: if Sl(Bg, Bl?) > )\; then:

23: Fuse T}, and Ty in L.

24: end if

25: Step3: Similarity Filtering.

26: for each T after step 2 do

27: Compute PSNR,, inside of T,

28: Compute PSNR,., between inside and outside of
T,

29: if PSNR;e,r > 74 or PSNRyq - PSNRyer <
then:

30: Discard T from L.
31: end if
32: end for

33: Step4: Temporal Fusion.
34: for each T after step 3 do

35: i (o - t% () then:

36: Fuse T} and T;41 in L;.
37: end if

38: end for

39: Output: L.

and the bounding boxes in the previous frames are com-
pared in the IoU and similarity backtracking algorithm. The
backtracking strategy is described in detail in Algorithm 2.
Specifically, we follow [1] to update the start time of the
anomaly when the IoU is greater than 0.5 for the overlapped
bounding boxes. However, sometimes the vehicle doesn’t

1: Input: A suspicious anomaly A records start time
Agiart, end time A.,q, bounding box Apps; the ;"
bounding box on frame 1 C’j’: (before Agiqrt); width
of a bounding box w, the shift of two boxes along
width shift,,; similarity measurements PSNR and
ColorHist.

2: Params: Backtrack time threshold 73};,,., relaxed
constraint satisfaction ratio 77, ; IOU threshold
Trovand relaxed IOU threshold T7,;;; PSNR thresh-
old Tpsnrand relaxed PSNR threshold T’ g 5 ;5 color
histogram threshold T-,;,, and relaxed color histogram
threshold T¢. ;.-

3: ent = 0; ent”™ = 0; raio” = 0; i0Umae = 0;

while 70Uy, > Tioy or ent < Tiime or Taio” >

Trraio do
cnt=cnt + 1
raio” = ent"” /ent;

SPSNR = 0; chlor = 0;
for each j in C; do
if abs(w(C}) — w(Abbom))/w(A?)boz) > 0.1
or shift,(C}, Appor) > 3 x maz(w(C5), w(Appos))
then:

»

R A

10: Discard C};

11: end if

12: SPSNR :ma.Z‘(SpSNR,PSNR(A(;[)OQ;,OJZ-)))

13: Scolor = MAZ(Scotor, Color Hist( Appog, C;))

14: end for

15: if ioumaz > Tioy Or sSpsnr > Tpgyp OF
Scolor > Trgp,, then:

16: ent” =ent” + 1

17: if ioumar > Trou or spsyr > Tpsngr OF
Scolor > Tcolo’r‘ then:

18: Astart = 1/ framerate

19: end if

20: end if

21: i=1—1

22: end while
23: Output: Agqre

stop immediately in case of an abnormal event, which pre-
vents us from getting an accurate start time. Therefore, we
further design a similarity backtrack method, where PSNR
and color histogram features are both extracted for the non-
overlapped bounding boxes to measure the box similarity.
Considering that the same vehicle has spatially and tem-
poral coherence, we employ some restrictions to eliminate
disturbances. The backtracking algorithm will continue un-
til the vehicle is no longer detected in the proposed region.
Furthermore, some relaxed constraints are used to expand
the backtracking time to deal with discontinuous detection
results.



Then we further refine to get final results for the prelim-
inary abnormal candidate results. First, we use the simi-
larity filtering module mentioned in section 3.4.1 to filter
out some false positives that are not actually vehicles. Sec-
ond, we use the similarity to backtrack the start time again,
i.e., the time when the similarity has changed significantly
is considered is to be a more accurate start time. Finally, we
merge these results in the temporal dimension.

3.4.3 Fusion and Backtracking Optimization

As each branch helps to capture abnormal abstractions at
different granularity levels, we can combine the predicted
anomaly from each branch to achieve more robust results.
Specifically, we take the union of the prediction results of
the two branches. When both branches predict abnormal be-
haviors for the same video, we choose the time of the branch
with earlier prediction starting time as the final results.

Considering that the results of background modeling in
the forward direction may delay the appearance of vehicles,
we additionally employ the results of background modeling
in the backward direction to refine and trace the abnormal
results. Specifically, we use the detections of the start time
of the predicted anomaly to compare with the detections of
the corresponding time in the backward modeling. When
the number of traceback frames is less than the max trace-
back frame (5 and the IoU between the detections is greater
than a traceback IoU threshold A,, we update the starting
time of this anomaly to the time of the current detection in
backward modeling. The backtracking process is repeated
until the threshold condition is not met.

4. Experiments
4.1. Experimental Setup

The track4 dataset in NVIDIA AI CITY CHALLENGE
2020 is divided into the training set and test set. Each set
contains 100 videos with a length of approximately 15 min-
utes, a frame rate of 30 fps and a resolution of 800 x 410.
The algorithm should identify all anomalies present in all
100 test set videos, and give the start time and confidence
score. The anomalies can be due to car crashes or stalled ve-
hicles. We first conduct the experiments in the training set to
determine the model parameters through cross-validation.
Then we directly adopt the parameters of each component
obtained by cross-validation to obtain the final result in the
test set.

4.2. Implementation Details

Detection Model. SENet-152 [7] is used as our detection
backbone network. Specifically, Stochastic Gradient De-
scent (SGD) is adopted for the training process, and our
model is trained with 50K iterations with the initial learn-

Table 1. Our results on Track4 test-set

F1 | RMSE | S4 Score
0.9855 | 4.8737 | 0.9695

ing rate being 0.01 and a minibatch of 8. The learning rate
is reduced by a factor of 10 at iteration 30K and 40K, re-
spectively. Weight decay and momentum are set as 0.0001
and 0.9, respectively. We initialize our network with the
weights pre-trained on COCO [13]. The shorter side of the
input images is resized to 800 and the longer side is resized
to less or equal to 1333. We have 5 layers feature map for
FPN [12], from level 2 to level 6. We follow [21] to cluster
ground truth boxes in the training dataset, and the selected
anchors for each level are [16, 32, 64, 128, 256].
Extraction of Hypothetical Abnormal Mask. For the
motion-based mask, the threshold of interval frame £ is
5, and we extract five frames per second to calculate the
changing area. The difference threshold di f f is 99 and M
is set to 13,000. For the trajectory-based mask, the min
trajectory length n is 5, and the min distance d of the tra-
jectory is set to 50. The filtering area is 3,000 pixels for a
small connected region.

Box-level Tracking. The length threshold (; is fixed to 50s
and the linking IoU threshold A; is 0.4. In the similarity
filtering module, the PSNR absolute threshold ~, is set to
22 and the PSNR relative threshold ~, is 2.0; The temporal
fusion threshold is set to 7000 frames.

Pixel-level Tracking. Thresholds for the normal-suspicious
state transition and the suspicious/abnormal-normal state
transition are fixed to 3 consecutive frames equally. Time
thresholds for filtering suspicious candidates and coarse
anomaly candidates are set to 20s and 40s respectively. The
shortest traceback time 7};,,,. is 40s and relaxed constraint
satisfaction ratio 77, is 0.6. IOU threshold T7or and re-
laxed IOU threshold T7,;; are 0.3 and 0.5; PSNR thresh-
old Tpsnr and relaxed PSNR threshold T g are 18 and
20; color histogram threshold T¢;,, and relaxed color his-
togram threshold T¢. ;. are 0.88 and 0.9.

Backtracking Optimization. The max traceback frame (s
is 160 frames and the traceback IoU threshold )5 is set to
0.6.

4.3. Evaluation Metric

A combined metric is adopted to evaluate the total per-
formance of anomaly detection, which is determined in two
aspects: Fl-score and normalized root mean square error
(NRMSE):

S4 = F1 x (1 — NRMSE). )

The F1-score is the harmonic mean of precision and re-
call. Specifically, a true-positive (TP) detection is consid-
ered as the correct anomaly within (before or after) 10 sec-



(b) Background modeling in the forward direction
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Figure 7. Example results, By background modeling in the forward direction, we can get a delayed start time of the anomaly, and then we
get a more accurate time positioning by backtracking the detection result of images from background modeling in the backward direction.
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Figure 8. Compared results on the Track 4 test-set on the leader-
board.

onds of a real abnormal event. A false-negative (FN) is a
real anomaly that our algorithm can not correctly predict.
A false-postive (FP) denotes the predicted anomaly is not a
real anomoly actually. The F1-score can be summarized as:

2TP

Fl= —/——¢———.
2TP + FN + FP

3)

Normalized root mean square error (NRMSE) reveals the
detection time error of the predicted time and ground truth
anomaly time for all true-positive predictions. NRMSE em-
ploys a max-min normalization with a maximum value of
300 and a minimum value of 0. In short, NRMSE is defined
as follow:

NRMSE =

minty/ oy DI (P30
300 ’

where tft denotes the ground truth starting time of the

anomaly and t! is the predicted starting time via our
method.

4.4. Experimental results

We evaluate our method on the Track 4 testing data. As
shown in Table 1, we achieve 0.9855 F1-score while the
start time error is only 4.8737 seconds, which demonstrates
the superiority and robustness of our proposed method. The
final leaderboard results among all the teams are shown in
Figure 8, we achieve 0.9695 S4 score and rank the first place
among all the participant teams.

5. Conclusions

In this paper, we design a multi-granularity tracking ap-
proach with modularlized components, which contains the
extraction of hypothetical anomaly regional mask, back-
ground modeling to eliminate dynamic traffic disturbance,
the detection model to get all stopped vehicles, a multi-
granularity tracking mechanism to analyze the candidate ab-
normal vehicles, and finally a fusion and backtracking opti-
mization method to achieve more robust results. Results on
NVIDIA AI CITY CHALLENGE 2020 show our proposed
method shows promising performance, which gets a 0.9695
total score, 98.55% F1-score and 4.8737 RMSE.
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