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Abstract

Vehicle re-identification remains challenging due to

large intra-class difference and small inter-class variance.

To address this problem, in AICity Vehicle Re-ID task

2020, we propose a two-branch adaptive attention net-

work—Further Non-local and Channel attention (FNC) to

improve feature representation and discrimination. Specifi-

cally, inspired by two-stream theory of visual cortex, based

on Non-local and channel relation, a two-branch FNC net-

work is constructed to capture multiple useful information.

Second, an effective attention fusion method is proposed to

sufficiently model the effects from spatial and channel at-

tention. The experimental results show that our algorithm

achieves 66.25%/Rank-1 and 53.54%/mAP in 2020 AIC-

ity Challenge Vehicle Re-ID task without using extra data,

annotation and other auxiliary information, which demon-

strate the effectiveness of the proposed FNC network.

1. Introduction

Vehicle re-identification (Re-ID) refers to the recogni-

tion of the car of interest in different cameras. This process

possesses diverse real-world applications and plays an im-

portant role in AI cities, which are now attracting increasing

attention. However, conducting vehicle Re-ID is challeng-

ing when large intraclass variants (e.g., viewpoints, illumi-

nations, and occlusions) are present.

Given that person and vehicle Re-ID conceptually be-

long under image retrieval problems, some commonly used

strategies for the former are also useful for the latter. Most

of state-of-the-art CNN-based person Re-ID methods adopt

pretrained CNN models (e.g., ResNet [5]) on ImageNet and

fine-tune them on the Re-ID datasets under the supervi-

sion of different losses (e.g., softmax and triplet losses [6]).

In person Re-ID, the human body is vertically symmetri-

cal and can be partitioned into head, torso, legs, and feet

along the height dimension, rendering height-wise partition

practical[12][16][21]. However, this type of partition is not

sufficient in vehicle Re-ID because predicting the direction

of the vehicle is difficult. Therefore, this study focuses on

enhancing the representation of the global features instead

of performing a height-wise partition.

Attention mechanism plays an important role in the hu-

man visual perception system. This system is widely used

in Re-ID because of its capability to let the model focus on

the subject of the target rather than the background. From

a dimensional perspective, attention mechanism can be di-

vided into two main categories. The first category is spatial

attention, which focuses on “where” the informative parts

of a given image are (e.g., Non-local block [17]). The sec-

ond one is channel attention, which determines “what” the

most meaningful parts of an image are (e.g., SENet [7]).

Several recent works have combined the two categories into

one attention model (e.g., CBAM [19]).

However, modeling visual attention is still insufficient in

most existing works. The attention network like Non-local

block may be further explored to enhance its suitability for

the vehicle Re-ID. In this paper, we propose a simple yet ef-

fective approach, Further Non-local and Channel attention

(FNC), to effectively learn the discriminative features and

eliminate the negative impacts caused by the background of

the vehicle image. The proposed method aims to simultane-

ously utilize the global and channel information of a vehi-

cle image for the Re-ID task in a highly robust and efficient

manner. The contributions of this paper are summarized as

follows.

1) A two-branch adaptive attention network, i.e., Further

Non-local and Channel attention (FNC) is constructed

to simulate two-stream theory of visual cortex, and ad-

ditionally, empirical network architecture and training

strategy are explored and compared.

2) Based on Non-local and channel relation, two blocks,

namely, spatial attention block (SAB) and channel at-

tention block (CAB) are built and fused by a sigmoid

function to emphasize spatial and channel attention,

which enhances feature discrimination.

3) The proposed algorithm achieves 66.25%/Rank-1 and

53.54%/mAP in the AI City 2020 Challenge vehicle



Re-ID task without using any additional data, annota-

tion and other auxiliary information.

2. Related works

The main purpose of Re-ID is to facilitate the network in

extracting a discriminative feature that can accurately repre-

sent the image. Related studies can be roughly summarized

into three aspects.

Receptive field optimization: Most of the feature ex-

traction networks are implemented on the basis of CNN;

thus, the features are mainly extracted from convolution op-

erations. The filter can only process one local neighbor-

hood at a time due to the limitation of the kernel size. If

the filter can obtain the global receptive field, then the net-

work can achieve an enhanced performance. Wang et al.

[17] proposed a Non-local structure that compromised some

ideas of spatial attention. The Non-local block generates a

weighted mask relies on the similarity among mapped pix-

els, and it then computes the response at a position as a

weighted sum of the features at all positions. This pro-

cess allows the distant pixels to contribute to the filtered

response at a location based on the patch appearance simi-

larity, which yields a global receptive field. The SENet pro-

posed in [7] is a channel-wise attention mechanism. Two

FC layers are connected after the global average pooling of

each channel. The structure then learns how to generate a

weighted mask that can place large attention on the right

channel of the feature map for each identity and establishes

the connection for each channel. These receptive field op-

timizations promote several improvements in recent tasks

and competitions.

Local feature extraction: Given that the scale of Re-ID

datasets is not always extremely large, training using the en-

tire image may cause the network to acquire the background

information of the dataset, which always leads to overfit-

ting. To address this problem and improve the generaliza-

tion capability of the Re-ID models, Wang et al. [16] de-

signed a multiple granularity network (MGN), which con-

sists of one branch for global feature representations and

two branches for local ones. The images are divided into

several stripes, and these branches can obtain the local fea-

ture representations with multiple granularities. This struc-

ture forces each branch to learn from their local parts. Sim-

ilar ideas have also been presented in other studies. The

batch feature erasing (BFE) approach [1] introduces a “fea-

ture dropping branch,” in which some parts of the feature

map will be cropped. In [24], the cropped operation is

implemented on the image, and some image parts are ran-

domly deleted. To some extent, these methods force the

network to learn further about the identity than the back-

ground, thereby preventing overfitting.

Loss optimization: Most works have combined ID and

triplet loss to constrain the same feature. ID loss aims to

constructs several hyperplanes to separate the embedding

space into different subspaces, in which the cosine distance

is more suitable than the Euclidean one. Conversely, triplet

loss aims to enhance the intraclass compactness and inter-

class separability in the Euclidean space and then selects

the Euclidean distance. If both losses will be used to si-

multaneously optimize a feature vector, then the goals may

be inconsistent, and the network might hardly converge. To

overcome this problem, Luo et al. [10] designed a structure

called BNNeck, which adds a batch normalization (BN)

layer after the origin feature. In this case, triplet loss will

optimize the feature generated before the BN layer, and the

ID loss will be computed by the feature made by the BN

layer. This structure eases the conflict of the two losses, as

well as the separation of the embedding space into different

subspaces.

Although above mentioned works use attention mecha-

nism to learn weight maps, not all weight maps play a posi-

tive role on feature representation. Moreover,[2] propose to

partition the image into height-channel and width-channel

to obtain local feature. This scheme is effective, however, it

significantly increase computational cost. [8] use key-point

model to infer vehicle orientation and use vehicles seman-

tic attributes to help improve performance. Attributes are

highly useful for Re-ID , yet they require additional anno-

tation and other pretrained model. Therefore, we propose

a novel two-branch Re-ID framework, in which visual at-

tention is explored sufficiently, and comparable results are

achieved without using any additional data, annotation and

other auxiliary information.

3. Proposed method

This section describes the proposed network. FNC con-

sists of a backbone architecture similar to the one used in

[10], a proposed spatial attention module based on the Non-

local block and a modified channel attention module.

3.1. Network architecture

Figure 1 shows the overall network architecture, which

includes a backbone network, a spatial attention branch, and

a channel attention branch. We use SE-ResNeXt-101 as the

building foundation to enhance the feature extraction capa-

bility of the backbone network. Then, we change the last

spatial down-sampling operation stride from 2 to 1 to pro-

vide a large spatial view for the spatial attention module,

thereby capturing highly detailed spatial correlations. This

manipulation causes a minimal increase in the computation

cost and does not involve additional training parameters.

We follow the modification strategies in state-of-the-art per-

son Re-ID models [12] [16]. Accordingly, we duplicate the

convolutional layers after the conv4 1 layer to split the SE-

ResNeXt-101 into two branches. Finally, we adopt the BN-

Neck [10] to separate the optimized ID and triplet losses.



Figure 1. Overall network architecture, se-resnext-101 is used as the backbone network. Layers after res3 are duplicated to split our network

into 2 independent branches. Spatial attention and channel attention are the corresponding SAB and CAB, and will be described in section

3.2 and 3.3.GAP refers to Global Average Pooling.BN-Neck is the BNN layers. In the inference stage, two branch feature vectors are

concatenated as an appearance signature(dim = 1536).

The spatial and channel attention branches share a simi-

lar structure; both branches consist of a global average pool-

ing layer, a feature reduction module, and a BNNeck mod-

ule. The global average pooling layer produces a 2048-

dimensional vector from the spatial or channel attention

module. The feature reduction module contains a 1*1 con-

volution, a BN layer, and a rectified linear unit (ReLU) layer

to reduce the dimension to 1024 or 512, thereby providing a

compact feature representation. We then use the BNNeck to

separately normalize the feature for the triplet and ID losses.

3.2. The spatial attention block (SAB)

Figure2 shows the overview of the SAB module. Let

x ∈ RB∗C∗H∗W be the input to the SAB module, where

B is the batch number; H and W are the spatial height and

width of the tensor, respectively; and C is the number of the

channels.

We use a 1*1 convolution in forming function g to reduce

the number of channels C to C/r and reshape the tensor to

B ∗ HW ∗ C/r. r refers to the reduction factor, which is

set to 2 in our experiments, h and p play the same role as

g. Therefore, we obtain two tensors with shape HW ∗C/r.

Subsequently, we apply matrix multiplication to determine

the Non-local relation and use softmax function to change

the value to the probability of the region. After this opera-

tion, we can acquire an attention map xp, which is then mul-

tiplied to xr we get from function p to obtain the weighted

Figure 2. The architecture of the spatial attention block (SAB).

g(x) and h(x) are the 1*1 convolution to reduce the dim from c to

c/r. p(x) plays the same role to adapt the attention weight. T (x)
is a simple learnable transformation.

feature map.

xp = softmax(g(x)h(x)) (1)

The tensor shape is now B∗HW ∗C/r. We use a simple

learnable transformation T , which in this case is a 1*1 con-

volution, to restore the channel dimension of the attended

tensor from C/r to C. We do not directly use element-wise

addition to obtain the final feature map. Instead, we use a

sigmoid function to activate the reshaped feature and apply

element-wise multiplication to the origin feature map to ob-

tain the final feature.

Sf = sigmoid(T (xp ∗ xr)) ∗ xraw (2)



By using the sigmoid function, the effect of the weight

value on the feature map can be increased, and nonlinear

factors can be introduced.

3.3. The channel attention block (CAB)

CAB aims to generate a channel mask to indicate the

important channel responses, which serve as the supplement

to the spatial branch. Figure 3 shows the CAB architecture,

where SE-block is the squeeze and excitation module in [7].

The first step is to feed the raw feature map xf ∈ B ∗ C ∗
H ∗W into the two convolutional blocks.

Cf = sigmoid(SE(xraw)) ∗ xf (3)

Each block consists of three consecutive operations: a

convolutional layer, a BN layer, and a ReLU. The first con-

volutional block has 1024 filters and a kernel size of 1*1

to reduce the feature dimension. Similarly, the second con-

volutional block has 1024 filters, but the kernel size is set

to 3*3. Moreover, the latter uses 32 groups to enhance the

feature expression capability.

Next, the output of the two blocks are fed into another

convolutional layer with a kernel size of 1*1 to generate the

spatial map xraw ∈ B ∗ C ∗ H ∗ W . Then, we use the

SE block to obtain the part channel attention. Finally, the

channel attention map (i.e., SAB) is normalized into [0, 1]

through the sigmoid function to multiply the origin feature

map.

Figure 3. The architecture of the channel attention block (CAB).

Four numbers refer to the output channel, the input channel and

the shape of the kernel in sequence.

On the basis of previous works [1] [17], we directly

added the attention map on the origin map to enhance the re-

sponse of some regions. However, this step is cannot suffi-

ciently reflect the weight function (the details for this claim

will be discussed in Section 4.4). Therefore, we use the sig-

moid function in the two branches to normalize the attention

map to [0,1] and achieve an enhanced performance.

3.4. Loss functions

Cross entropy loss with smooth label. Cross-entropy

loss is the most commonly used loss function in Re-ID

tasks. To prevent the Re-ID model from overfitting the

training IDs, we generate a soft label for each image [13]

to facilitate the smooth training of the model.

The loss can be expressed as

Lid =
Ni
∑

i=1

− qi log (pi) (4)

where Ni denotes the number of images in the mini

batch, pi is the ID prediction logits of class i, and qi can

be defined as

qi =

{

1− N−1

N
ε, if y = 1

ε
N
, otherwise

(5)

where i is the index of the image; y is the identification

of the image; N is the number of the samples in the dataset;

and ε is a small constant, which is set to 0.1 in our imple-

mentation.

Triplet loss. The triplet loss with hard mining is intro-

duced in [6] as an improved version of the original semi-

hard triplet loss [11]. We randomly sample P identities and

K instances for each mini batch to meet the requirement of

the batch-hard triplet loss.

The triplet loss can be defined as

Ltriplet =

P
∑

i=1

K
∑

a=1

[α+ max
p=1,. . . ,K

||ai − pi||2

− min
n=1,. . . ,K,j=1,. . . ,P,j 6=i

||ai − nj ||2]+

(6)

Total loss. We utilize the batch-hard triplet and the soft-

max losses; each branch has one triplet loss and one softmax

loss. Then, we determine the sum of the two branch losses.

Ltotal = λ

N
∑

i=1

Lid
i +

N
∑

j=1

Ltriplet
j (7)

where N is the branch number, and λ = 2.

4. Experiment details

Training set Validation set Testing set

Identifies 233 100 333

Images 24627 12208 18290

Table 1. The information of the dataset.



4.1. Dataset and evaluation metrics

We conduct the experiments on the benchmark dataset

[15] shown in Table 1, which contains 666 vehicles (56277

images in total) captured by 40 cameras in a real-world traf-

fic environment. On average, each vehicle has 84.5 image

signatures from 4.5 camera views. A total of 36935 im-

ages are included in the training set and 1052 images are

used for the query in the testing set. We then divided the

training set into a smaller training set and a validation set.

The latter comprises 100 identities and 12208 images. Af-

ter the appropriate hyperparameters are obtained, we train

the network using the entire training set. The test set con-

sists of 18,290 images belonging to the other 333 identities.

The main evaluation metrics include the mAP and the Top-

1/Top-5 accuracy of the CMC.

4.2. Implementation details

SE-ResNeXt101 [7] is chosen as the backbone to gen-

erate the feature. Given that a high spatial resolution can

enrich the granularity of the feature, we remove the last

spatial down-sampling operation in the backbone network.

The RGB channels for each pixel are normalized, and the

images are resized to 288*384 [14] before feeding to the

network. Label smoothing and random erasing augmenta-

tion are also implemented to improve the generalization ca-

pability of the Re-ID model. The smoothing parameter ε
and the probability of random erasing are set as 0.1 and 0.5,

respectively.

The initial learning rates are set as 3.5∗10−5. Ten epochs

are used to linearly increase the learning rate to 3.5∗10−4 as

warm up [4]. Then, the learning rate is decayed to 3.5∗10−5

and 3.5 ∗ 10−6 at the 40th and 70th epochs, respectively.

The batch size is set to 64 and the Ranger (i.e., combina-

tion of LookAhead [20] and RAdam [9]) is adopted as the

optimizer. In the inference stage, we select the k-reciprocal

re-ranking method [23] as the re-ranking algorithm. The

hyperparameters are set as follows: k1 = 75, k2 = 10, and

λ = 0.1.

4.3. Experimental results

We compare the proposed model with other state-of-the-

arts Re-ID models on the validation dataset.

method Top-1 Top-5 Top-10 mAP

Baseline(resnet-50) 78.0% 83.0% 87.0% 58.3%

Baseline(se-resnext-101) 81.0% 86.0% 88.0% 61.8%

MGN[16] 82.0% 87.0% 90.0% 65.4%

BFE[3] 84.0% 91.0% 93.0% 66.6%

FNC(ours) 85.0% 87.0% 91.0% 70.8%

Table 2. The table shows mAP and Top1/5/10 in our validation

set. MGN and BFE both use se-resnext-101 as the backbone for

fair comparison.

In the validation dataset, we select the strong baseline

[10] due to its high performance on person Re-Id by only

using the global features without any other additional in-

formation. This baseline is therefore suitable for person

and vehicle Re-ID. In addition, different backbones may

lead to different results [22]. As shown in Table 3, the SE-

ResNeXt101 [7] achieves the most satisfactory performance

in the validation set.

backbone Top-1 mAP

Resnet-50 78.0% 58.3%

Resnet-101 79.0% 59.5%

Resnet-101-ibn-a 81.0% 61.3%

Se-Resnext-101 81.0% 61.8%

Table 3. The Top-1 and mAP accuracy with different backbones

on the validation set.

Optimizing large neural networks and selecting them as

the strong baseline’s backbone network can be difficult.

And in the experiments, the center loss [18] will degrade

the performance, which is why this method is not used in the

baseline. In comparison with the baseline (i.e., ResNet-50),

the proposed model can achieve a 7%/12.5% advance on

Top-1 and mAP. To compare MGN and BFE fairly, we use

SE-ResNeXt-101 as their new backbones. Table 2 shows

that BFE performs more satisfactorily in terms of the Top-

5 and Top-10 than FNC. This result might be because the

former can handle some extent occlusion better than FNC,

and the latter is not sufficient when only random erasing is

used. Therefore, we fuse the BFE result with our proposed

model to improve the performance.

method Top-1 mAP

DenseNet121+Xent+Htri[15] 51.7% 31.0%

ResNext101+Xent+Htri[15] 48.8% 32.0%

MobileNetV1+BH[15] 48.4% 32.0%

Baseline(se-resnext-101)[10] 60.74% 46.40%

BFE(se-resnext-101)[3] 58.75% 47.98%

FNC(separate) 62.93% 50.92%

FNC+BFE 66.25% 53.54%

Table 4. Comparison of results on the testset of CityFlow-

ReID[15] with 2 evaluation metrics: Top-1 and mAP. FNC+BFE

refers to FNC feature and BFE feature.

We also compare the results of the FNC with the several

baselines mentioned in the CityFlow dataset [15]. The re-

sults based on a private test set are reported in Table 4. FNC

outperforms the baselines on the Top-1 accuracy and mAP

by a large margin. In comparison with the other methods

in the 2019 AI City Challenge, we did not use any addi-

tional data nor annotate the training data and only adopt two

model ensembles to obtain comparable results.



4.4. Ablation experiments

Extensive experiments are conducted on the validation

dataset to verify the effectiveness of the crucial components

in FNC. We compare the performance of the different struc-

tures to identify the optimal architecture for the proposed

model.

method Top-1 mAP

Baseline(se-resnext-101) 81.0% 61.8%

Baseline + CAB 82.0% 66.0%

Baseline + SAB 83.0% 68.6%

FNC(not separate) 84.0% 68.5%

FNC(separate) 84.0% 70.8%

Table 5. SAB and CAB are the spatial attention block and channel

attention block. FNC(not separate) refers to use same res4 in two

branch. The results are on the validation set.

SAB and CAB: We separately test the effects of SAB

and CAB on the model’s advance (Table 5). The results

show that using only CAB can garner 1%/4.2% Top-1 ac-

curacy and mAP advance. When only SAB is used, the

model yields 2%/6.6% Top-1 accuracy and mAP advance.

However, when both branches are used to train the network

together, only 1%/0.1% increment from the results of using

SAB is obtained. It seems that the CAB branch is not neces-

sary for the whole network. However, the experiments sug-

gest that CAB brings advance indeed. The problem is that

the same res4 is used when we train the entire network.But

when we form the spatial and channel attention maps, they

may produce totally different effect on the res4, even the op-

positely. We then separated res4 from res3 in Figure 1. We

obtain the final version of FNC and achieve 3%/9% Top-

1 accuracy and mAP advance compared with the baseline.

On the private test set, we reach a 5.51%/7.14% advance

compared with the baseline, as well as a large margin of the

official baseline in Table 4.

method Top-1 mAP

Baseline(se-resnext-101) 81.0% 61.8%

FNC(separate + add) 84.0% 67.1%

FNC(separate+ multiply) 84.0% 70.8%

Table 6. ‘add’ refers to add residual x with the processed feature

to learn residual in [1][17]. ‘multiply’ refers to this paper method

by using sigmoid to activate weight value. The results are on the

validation set.

Addition or multiplication: In common practice

[1][17], the residual x is added to the processed feature xp

to learn the residual and reduce the learning difficulty. How-

ever, this process will weaken the attention weight, and the

model cannot focus on the important spatial or channel re-

gion. Therefore, we use a simple function (i.e., sigmoid

function) to normalize the weighted value to [0,1]. Then, we

multiply this value with the origin map, which enlarges the

weighted value effect compared when the value is added.

Table 6 shows that multiplication can obtain a 3.7% mAP

advance compared with addition.

5. Conclusion

In this paper, inspired by typical attention model, used

in person Re-ID, we propose an adaptive attention network

for vehicle Re-ID. By obtaining Non-local and channel rela-

tion, we use sigmoid function to enlarge the weighted value

and get more sufficient spatial and channel attention map.

In the inference stage, we concatenate two part feature to

obtain better performance. In 2020 AICity challenge track2

vehicle Re-ID task, our algorithm achieves 66.25%/Rank-1

and 53.54%/mAP without using extra data, annotation and

other auxiliary information, which demonstrate the effec-

tiveness of the proposed FNC network.
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