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Abstract

The AI City Challenge was created to accelerate intel-

ligent video analysis that helps make cities smarter and

safer. Transportation is one of the largest segments that

can benefit from actionable insights derived from data cap-

tured by sensors, where computer vision and deep learn-

ing have shown promise in achieving large-scale practical

deployment. The 4th annual edition of the AI City Chal-

lenge has attracted 315 participating teams across 37 coun-

tries, who leverage city-scale real traffic data and high-

quality synthetic data to compete in four challenge tracks.

Track 1 addressed video-based automatic vehicle counting,

where the evaluation is conducted on both algorithmic ef-

fectiveness and computational efficiency. Track 2 addressed

city-scale vehicle re-identification with augmented synthetic

data to substantially increase the training set for the task.

Track 3 addressed city-scale multi-target multi-camera ve-

hicle tracking. Track 4 addressed traffic anomaly detection.

The evaluation system shows two leader boards, in which

a general leader board shows all submitted results, and a

public leader board shows results limited to our contest par-

ticipation rules, that teams are not allowed to use external

data in their work. The general leader board shows results

more close to real-world situations where annotated data

are limited. Our results show promise that AI technology

can enable smarter and safer transportation systems.

1. Introduction

Transportation is one of the largest segments that can

benefit from actionable insights derived from data captured

by sensors. However, difficulties including poor data qual-

ity, the lack of annotations, and the absence of high-quality

models are some of the biggest impediments to unlocking

the value of the data [20]. The AI City Challenge was first

launched in 2017 to accelerate the research and develop-

ment in Intelligent Transportation Systems (ITS) by pro-

viding access to massive amounts of labeled data to feed

learning-based algorithms. We shared a platform for par-

ticipating teams to innovate and address real-world traf-

fic problems, as well as evaluate their algorithms against

common datasets and metrics. The past three annual edi-

tions [22, 23, 24] of the challenge have witnessed major

impact in research areas of traffic, signaling systems, trans-

portation systems, infrastructure, and transit.

The 4th edition of the challenge is organized as a work-

shop at CVPR 2020, which has pushed the development of

ITS in two new ways. First, the challenge introduced a track

that not only measured effectiveness on tasks that were rel-

evant to transportation but also measured the efficiency of

completing these tasks and the ability of systems to operate

in real time. To the best of our knowledge, this is the first

such challenge that combines effectiveness and efficiency

evaluation of tasks needed by the Department of Transporta-

tion (DOT) for operational deployments of these systems.

The second change in this edition was the introduction of

augmented synthetic data for the purpose of substantially

increasing the training set for the task of re-identification.

The four tracks for the challenge are listed as follows:

• Turn-counts for signal timing planning: This task

counts four-wheel vehicles and freight trucks that follow

pre-defined movements from multiple camera scenes.

The data set contains 31 video clips (about 9 hours in

total) captured from 20 unique camera views.

• Vehicle re-identification with real and synthetic train-

ing data: This task is tested against the CityFlow-



ReID benchmark [37], where teams perform vehicle re-

identification (ReID) based on vehicle crops from multi-

ple cameras placed at multiple intersections. A synthetic

dataset [40, 36] with over 190,000 images of over 1,300

distinct vehicles forms an augmented training set to be

used along with the real-world data.

• City-scale multi-target multi-camera vehicle track-

ing: In this task, teams perform multi-target multi-

camera (MTMC) vehicle tracking, which is evaluated on

the CityFlow benchmark [37]. We introduced a new test

set for the challenge this year that contains over 200 an-

notated vehicle identities across nearly 12,000 frames.

• Traffic anomaly detection: This task evaluates meth-

ods on a dataset provided by the DOT of Iowa. Each

participating team submitted at most 100 anomalies de-

tected, including wrong turns, wrong driving direction,

lane change errors, and all other anomalies, based on

video feeds available from multiple cameras at intersec-

tions and along highways.

We had over 1,100 total submissions to the evaluation

system (§ 4) across the four challenge tracks. When submit-

ting results, teams could choose to submit to the Public or

the General leader boards. As the name suggests, the Public

leader board has been shared with the public, where the sub-

missions compete for the challenge prizes. We enforce two

rules for Public leader board contest: (1) Teams may not

use external data in computing their prediction models for

any of the tracks. (2) Teams must submit their code, mod-

els, and any labels they created on the training datasets to

the competition organizers before the end of the challenge.

Alternatively, teams could submit to the the General leader

board, which ranks all submissions, including the Public

leader board submissions.

We have seen strong participation in the past three edi-

tions of the AI City Challenge. Statistics of the 4th AI

City Challnege show growing impact among academic and

industrial research communities. This year, we have 315

participating teams composed of 811 individual researchers

from 37 countries. We received 233, 258, 239, and 224

requests, respectively, for participating in the challenge

tracks. From these, 93 of the teams signed up for an eval-

uation system account, out of which 76 and 55 individual

teams submitted results to the General and Public leader

boards, respectively.

This paper summarizes the 2020 AI City Challenge

preparation and results. In the following sections, we de-

scribe the challenge setup (§ 2), challenge data preparation

(§ 3), evaluation methodology (§ 4), analysis of submitted

results (§ 5), and a brief discussion of insights and future

trends (§ 6).

2. Challenge setup

We have set up the 4th edition of the AI City Challenge

with similar rules as the previous ones, where teams are al-

lowed to participate in one or more of the four challenge

tracks. In terms of the time-frame, we made the training

and testing data available to participants in early January

2020. Due to the new publication rules of CVPR, the 4th

AI City Challenge was scheduled to finish on April 9, 2020

(a month earlier than the previous editions). In order to

be considered as prize contenders, teams were requested to

submit both training and testing code, additional labels, and

generated models for validation of their performance on the

leaderboards.

For all the data made available to the participating teams,

we have taken extra attention in redacting private informa-

tion such as human faces and license plates. The tasks in

the four challenge tracks are elaborated as follows.

Track 1: Multi-class multi-movement vehicle count-

ing. Participating teams were asked to count four-wheel

vehicles and freight trucks that follow pre-defined move-

ments from multiple camera scenes. Teams performed ve-

hicle counting separately for left-turning, right-turning and

through traffic at a given intersection approach. This helps

traffic engineers understand the traffic demand and freight

ratio on individual corridors. The developed capabilities

can be used to design better intersection signal timing plans

and improve traffic congestion mitigation. To maximize the

practical value of the outcome from this track, both the ve-

hicle counting effectiveness and the module running effi-

ciency were considered as a weighted sum toward the final

score for each team. The team with the highest final score

will be declared the winner of this track.

Track 2: Vehicle re-identification with real and syn-

thetic training data. Participating teams were challenged

for vehicle re-identification based on image crops from dif-

ferent camera perspectives. This task is critical for algo-

rithms to learn fine-grained appearance features that distin-

guish vehicles, even those of the same color, model, and

year. In this year’s challenge, the training set was composed

of both real-world data and synthetic data. The use of syn-

thetic data was encouraged as it can be simulated under var-

ious environments and can produce large-scale training sets.

The team with the highest accuracy in identifying vehicles

among the top K matches of each query will be selected as

the winner.

Track 3: City-scale multi-target multi-camera vehi-

cle tracking. The task for participating teams was to track

vehicles across multiple cameras both at a single intersec-

tion and across multiple intersections in a city. Results can

be used by traffic engineers to model journey times along

entire corridors. The team with the best accuracy in detect-

ing vehicles and recovering their trajectories across multiple

cameras/intersections will be declared as the winner.



Track 4: Traffic anomaly detection. Based on more

than 50 hours of videos collected from different camera

views at multiple freeways by the Iowa Department of

Transportation (DOT), each participating team was asked

to submit a list of at most 100 detected anomalies. The

anomalies include single and multiple vehicle crashes and

stalled vehicles. Regular congestion was not considered as

an anomaly. The team with the highest average precision

and the most accurate anomaly start time prediction in the

submitted events will be the winner of this track.

3. Datasets

Data for this challenge comes from multiple traffic cam-

eras from a city in the United States as well as from state

highways in Iowa. Specifically, we have time-synchronized

video feeds from several traffic cameras spanning major

travel arteries of the city. Most of these feeds are high res-

olution 1080p feeds at 10 frames per second. The vantage

point of these cameras is for traffic and transportation pur-

poses and the data have been redacted in terms of faces and

license plates to address data privacy issues. In addition to

the datasets used in the previous AI City Challenges, this

year we added a new vehicle counting dataset and a a syn-

thetic vehicle dataset.

Specifically, the datasets provided for the challenge this

year are CityFlow [37, 24] (Track 2 ReID and Track 3

MTMC), VehicleX [40, 36] (Track 2), Iowa DOT [23]

dataset (Track 4 anomaly event detection and Track 1 ve-

hicle counting).

3.1. The CityFlow dataset

Similar to the AI City Challenge in 2019, the CityFlow

benchmark [37, 24] is adopted for the tasks of ReID and

MTMC tracking. The dataset consists of nearly 3.5 hours of

synchronized videos captured from multiple vantage points

at various urban intersections and along highways. Videos

are 960p or better, and most have been captured at 10 frames

per second. To prevent teams from overfitting the test data

provided in the previous edition, we have made the origi-

nal test set into a validation set, and launched a new test set

for the challenge this year. Included in the new test set are

six simultaneously recorded videos all captured from differ-

ent intersections along a city highway with nearly 12,000

frames and over 200 annotated vehicle identities. The geo-

locations of the six cameras and example frames are pre-

sented in Fig. 1.

In total, the dataset contains 215.03 minutes of videos

collected from 46 cameras spanning 16 intersections in a

mid-sized U.S. city. The distance between the two furthest

simultaneous cameras is 4 km. The dataset is divided into

six scenarios. Of these, three are used for training, two

are used for validation, and the remaining one is used for

testing. The entire dataset contains nearly 300K bounding

Figure 1. The CityFlow benchmark [37] captured at multiple in-

tersections along a city highway. Here six new test camera views

are shown.

simulated data real data
simulated data w/

learned attributes

Figure 2. The VehicleX dataset contains synthetic training data

through domain adaptation that can effectively reduce the content

gap with the real data for vehicle ReID.

boxes for 880 distinct annotated vehicle identities. Only

vehicles passing through at least two cameras have been an-

notated. Additionally, in each scenario, the offset from the

start time is available for each video, which can be used

for synchronization. We also provided the teams the base-

line camera calibration and single-camera tracking results,

which can be leveraged for spatio-temporal association of

vehicle trajectories.

A subset of the CityFlow dataset, a.k.a. CityFlow-ReID,

is reserved for the ReID task in Track 2. There are 666 to-

tal vehicle identities, where half of them are used for train-

ing, and the other half for testing. The training and test

sets contain 36,935 and 18,290 vehicle crops, respectively.

And we have 1,052 image queries to be identified in the

test set. The evaluation and visualization tools are available

with the dataset package for teams to measure their perfor-

mance quantitatively and qualitatively.

3.2. The VehicleX dataset

The VehicleX dataset [40, 36] as shown in Fig. 2 is

a large-scale public 3D vehicle dataset containing high-



Figure 3. The vehicle counting dataset designed for multi-class,

multi-movement vehicle counting.

quality synthetic images rendered on real-world back-

grounds for vehicle re-identification use. It can be used

for the joint training with detection and tracking datasets

(i.e., Cityflow-ReID) to improve the real-world ReID perfor-

mance. VehicleX contains more than 190,000 images from

over 1,362 vehicle identities. Each vehicle identity corre-

sponds to a 3D model with editable attributes including the

viewpoint, lighting and rendering conditions.

In order to minimize the domain gap between synthetic

and real-world data, an attribute descent approach is used

to edit the synthetic dataset to make the appearance similar

to real-world datasets in terms of key attributes such as the

viewpoint [40]. The Unity engine draws random images

from the Cityflow dataset to be used as the backgrounds

in the attribute descent. Moreover, SPGAN [8] is used to

adapt the style of synthetic image to match the real world

style. The above methods can significantly reduce the con-

tent discrepancy between simulated and real data, thereby

making VehicleX look visually plausible and similar to the

real-world vehicles cropped from nature images. We also

provide the Unity engine which links the python API to par-

ticipant teams, so the teams can potentially create more syn-

thetic data if needed. The detailed annotations including car

types and color are provided in the VehicleX dataset. With

the large number of images, vehicle types, colors, and the

comprehensive attribute annotations, this dataset can benefit

large-scale ReID feature for the research community.

3.3. Vehicle counting dataset

The vehicle counting data set contains 31 video clips

(about 9 hours in total) captured from 20 unique camera

views. Some cameras provide multiple video clips to cover

different lighting and weather conditions. Videos are 960p

or better, and most have been captured at 10 FPS. Detailed

documents describing the Region of Interest (ROI) and the

Movements of Interest (MOI) that are relevant to the vehi-

cle counting task setup in each camera view are also pro-

vided. Fig. 3 provides an example view for vehicle count-

ing, where the ROI is marked in a green polygon and the

Figure 4. The traffic anomaly dataset containing traffic anoma-

lies caused by vehicle crashes and stalled vehicles. The left col-

umn shows detected anomalies in the original frames. The right

column presents background modeling results [25].

MOIs are marked in the set of orange arrows. The ROIs

and MOIs are defined to remove the ambiguity that whether

a certain vehicle should be counted or not especially near

the start and end of a video segment. Any vehicle present

in the ROI becomes a candidate to be counted and a certain

candidate should be counted at the moment of fully exiting

the ROI if its movement is one of the pre-defined MOIs. By

following these predefined ROI and MOI rules, two people

manually counting the same video should yield the same

result. The ground truth counts for all videos were manu-

ally created following these rules. In this contest, cars and

trucks were counted separately for each MOI as shown in

Fig. 3. Sedan car, SUV, van, bus, and small trucks such as

pickup trucks and UPS mail trucks were counted as “cars”.

Medium trucks such as moving trucks, garbage trucks, and

large trucks such as tractor trailers and 18-wheelers were

counted as “trucks”. The ground truth counts were cross-

validated manually by multiple annotators.

3.4. Iowa DOT anomaly dataset

The Iowa DOT anomaly dataset consists of 100 video

clips each in the training and test datasets. The clips were

recorded at 30 FPS at a resolution of 800×410. Each video

clip is approximately 15 minutes in duration and may in-

clude a single or multiple anomalies. However, if a sec-

ond anomaly is reported while the first anomaly is still in

progress, it is counted as a single anomaly. The traffic

anomalies consist of single and/or multiple vehicle crashes

and stalled vehicles (see Fig. 4 [25]). A total of 21 such

anomalies were presented in the training dataset across 100

clips. Unlike previous editions of the AI City Challenge,

the participating teams were not allowed to use any external



dataset for training and validation except for ImageNet- or

COCO-based pre-trained object detection models.

4. Evaluation methodology

Similar to previous AI City Challenges [23, 24], we al-

lowed teams to submit multiple runs for each track to an

online evaluation system that automatically measured the

effectiveness of results upon submission, which encouraged

teams to continue to improve their results until the end of

the challenge. Teams were allowed a maximum of 5 sub-

missions per day and a maximum number of submissions

for each track (20 for Tracks 2 and 3, and 10 for Tracks

1 and 4). Submissions that lead to a format or evaluation

error did not count against a team’s daily or maximum sub-

mission totals.

To further encourage competition among the teams, the

evaluation system showed not only a team’s own perfor-

mance, but also the top-3 best scores on the leader board

(without revealing identifying information for those teams).

To discourage excessive fine-tuning to improve perfor-

mance, the results shown to the teams prior to the end of

the challenge were computed on a 50% subset of the test set

for each track. After the challenge submission deadline, the

evaluation system revealed the full leader board with scores

computed on the entire test set for each track.

Teams competing for the challenge prizes were not al-

lowed to use external data or manual labeling to fine-tune

their models’ performance, and their results were published

on the Public leader board. For the first time this year, we

allowed teams using additional external data or manual la-

beling to also submit results, which were published on a

separate General leader board.

4.1. Track 1 evaluation

The Track 1 evaluation score (S1) is a weighted combi-

nation between the Track 1 efficiency score (S1efficiency)

and the Track 1 effectiveness score (S1effectiveness).

S1 = αS1efficiency + βS1effectiveness,

where α = 0.7, β = 0.3.
(1)

The S1efficiency score is based on the total Execution

Time provided by the contestant, adjusted by an Efficiency

Base factor, and normalized within the range [0, 5x video

play-back time]. S1efficiency = 1− time×base factor
5×video total time

. The

Efficiency Base factor is computed as the ratio between the

execution time of a subset of the pyperformance 1 bench-

mark on the user’s system and on a baseline system.

The S1effectiveness score is computed as a weighted

average of normalized weighted root mean square error

scores (nwRMSE) across all videos, movements, and ve-

hicle classes in the test set, with proportional weights based

1https://pyperformance.readthedocs.io/

on the number of vehicles of the given class in the move-

ment. To reduce jitters due to labeling discrepancies, each

video is split into k segments and we consider the cumula-

tive vehicle counts from the start of the video to the end of

each segment. The small count errors that may be seen in

early buckets due to counting before or after the segment

breakpoint will diminish as we approach the final segment.

The nwRMSE score is the weighted RMSE (wRMSE) be-

tween the predicted and true cumulative vehicle counts, nor-

malized by the true count of vehicles of that type in that

movement. If the wRMSE score is greater than the true

vehicle count, the nwRMSE score is assigned 0, else it is

(1-wRMSE/vehicle count). To further reduce that impact

of errors on early segments, the wRMSE score weighs each

record incrementally in order to give more weight to recent

records.

wRMSE =

√

√

√

√

n
∑

i=1

wi(x̂i − xi)2,

where wi =
i

∑n

j=1
j
=

2i

n(n+ 1)
.

(2)

Since the contestants could have reported inaccurate ef-

ficiency scores, competition prizes will only be awarded

based on the scoring obtained when executing the teams’

codes on the held out Track 1 Dataset B. To ensure compar-

ison fairness, Dataset B experiments will be executed on the

same server. Additionally, teams with anomalous efficiency

scores on Dataset A will be disqualified.

4.2. Track 2 evaluation

In Track 2, given the large size of CityFlow-reID, we

used the rank-K mAP measure to measure performance,

which computes the mean of the average precision (the

area under the Precision-Recall curve) over all the queries

when considering only the top-K results for each query

(K = 100). In addition to the rank-K mAP results,

our evaluation server also computes the rank-K Cumu-

lative Matching Characteristics (CMC) scores for K ∈
{1, 5, 10, 15, 20, 30, 100}, which are popular metrics for

person ReID evaluation. While these scores were shared

with the teams for their own submissions, they were not

used in the overall team ranking and were not displayed in

the leader board.

4.3. Track 3 evaluation

The primary task of Track 3 was identifying and track-

ing vehicles that traveled through the viewpoints of at least

two of the 40 cameras in the CityFlow dataset. As in

2019, we adopted the IDF1 score [32] from the MOTChal-

lenge [4, 16] to rank the performance of each team. The

score measures the ratio of correctly identified detections



over the average number of ground-truth and computed de-

tections. In the multi-camera setting, the score is computed

in a video made up of the concatenated videos from all

cameras. The ground truth consists of the bounding boxes

of multi-camera vehicles labeled with a consistent global

ID. A high IDF1 score is obtained when the correct multi-

camera vehicles were discovered, accurately tracked within

each video, and labeled with a consistent ID across all

videos in the dataset. For each submission, the evaluation

server also computes several other performance measures,

including ID match precision (IDP), ID match recall (IDR),

and detection precision and recall. While these scores were

shared with the teams for their own submissions, they were

not used in the overall team ranking and were not displayed

in the leader board.

4.4. Track 4 evaluation

Track 4 performance is measured by combining the de-

tection performance and detection time error. Specifically,

the Track 4 score (S4), for each participating team, is com-

puted as

S4 = F1 × (1−NRMSEt), (3)

where the F1 score is the harmonic mean of the precision

and recall of anomaly prediction. For video clips contain-

ing multiple ground-truth anomalies, credit is given for de-

tecting each anomaly. Conversely, multiple false predic-

tions in a single video clip are counted as multiple false

alarms. If multiple anomalies are provided within the time

span of a single ground-truth anomaly, we only consider

the one with minimum detection time error and ignore the

rest. We expect all anomalies to be successfully detected

and penalize missed detection and spurious ones through

the F1 component in the S4 evaluation score. We compute

the detection time error as the RMSE between the ground-

truth anomaly start time and predicted start time for all true

positives. To obtain a normalized evaluation score, we cal-

culate NRMSEt as the normalized detection time RMSE

using min-max normalization between 0 and 300 frames

(for videos of 30 FPS, this corresponds to 10 seconds),

which represents a reasonable range of RMSE values for the

anomaly detection task. Specifically, NRMSEt of team i

is computed as

NRMSEt
i =

min(RMSEi, 300)

300
. (4)

5. Challenge results

Tables 1, 2, 3, and 4 summarize the leader boards for

Track 1 (turn-counts for signal timing planning), Track 2

(vehicle ReID), Track 3 (city-scale MTMC vehicle track-

ing), and Track 4 (traffic anomaly detection) challenges, re-

spectively.

Table 1. Summary of the Track 1 leader board.
Rank Team ID Team name (and paper) Score

1 99 Baidu [19] 0.9389

2 110 ENGIE [26] 0.9346

3 92 CMU [41] 0.9292

6 74 BUT [35] 0.8829

7 6 KISTI [5] 0.8540

9 80 HCMUS [38] 0.8064

13 75 UAlbany [6] 0.3116

N/A (General) 60 DiDi [2] 0.9260

N/A (General) 108 VT [1] 0.8138

5.1. Summary for the Track 1 challenge

All submitted teams follow a similar three-step strategy

in tackling the vehicle counting task: (1) vehicle detection,

(2) vehicle tracking, and (3) movement assignment from

trajectory modeling and classification.

For vehicle detection, most teams [5, 1, 35] selected

YOYOv3 pre-trained on COCO as the primary detector,

while some others [41, 6] selected Mask R-CNN. CenterNet

is used in [38], and a comprehensive comparison study is

performed in [2], in which NAS-FRP combined with GMM

background model is selected. Faster-RCNN are used by

both the top 2 teams [26, 19] and the winning team [19]

showed superior results using Faster-RNN over YOLOv3.

For vehicle tracking, DeepSort was most widely used

by teams [5, 1, 35, 2, 19]. The Albany team [6] adopted

Hungarian matching algorithm to associate detections into

tracklets, considering both spatial and appearance features.

HCMUS [38] showed that the IoU-based tracking is simple

yet very effective. CMU [41] used a newly proposed track-

ing algorithm named Toward Real-time MOT. ENGIE [26]

defined a final loss function based on vehicle counting re-

sults from their motion-based tracking that are optimized

for each camera.

For movement assignment, several strategies are devel-

oped, which can be organized into two categories: (1) Man-

ually defined movement ROIs, where some teams defined

the ROI using a single zone or a tripwire [38, 26, 6], and

other teams [5, 35] represented the movements with a pair

of enter/exit zones. (2) Data-driven movement ROI, based

on the similarity between query and modeled trajectories.

The CMU team [41] manually created the modeled trajec-

tories, while the others [1, 41, 2, 19] created the modeled

trajectories by clustering a set of selected trajectories. In all

cases, teams developed effective techniques that can merge

broken trajectories and reduce identity switches using vari-

ous filtering and smoothing methods.

5.2. Summary for the Track 2 challenge

Most leading approaches utilized the provided synthetic

data to enhance ReID performance through domain adap-

tation. Some of the methods trained real data with syn-

thetic data by applying style transformation and content ma-

nipulation [42, 12]. Other methods [43, 10, 7, 15, 6], in-



Table 2. Summary of the Track 2 leader board.
Rank Team ID Team name (and paper) Score

1 73 Baidu-UTS [42] 0.8413

2 42 RuiyanAI [43] 0.7810

3 39 ZJU [12] 0.7322

4 36 Fraunhofer [10] 0.6899

7 72 UMD [28] 0.6668

15 38 NTU [7] 0.5781

19 9 BUPT [18] 0.5354

20 35 TUE [33] 0.5166

26 80 HCMUS [38] 0.3882

27 85 Modulabs [15] 0.3835

30 66 UAM [21] 0.3623

N/A (General) 87 CUMT [11] 0.6656

N/A (General) 68 BUAA [27] 0.6522

N/A (General) 75 UAlbany [6] 0.0368

Table 3. Summary of the Track 3 leader board.
Rank Team ID Team name (and paper) Score

1 92 CMU [29] 0.4585

2 11 XJTU [13] 0.4400

5 72 UMD [28] 0.1245

6 75 UAlbany [6] 0.0620

stead, trained classifiers for vehicle type, color, and view-

point/orientation using the labels on synthetic data and em-

ployed them on real-world data. Some teams [43, 11] also

made use of identity clustering to generate pseudo-labels

on the test data to expand the training set. Inspired by

the state-of-the-art in person ReID, the methods with top

performance in Track 2 [42, 43, 12] all used ResNet with

IBN structure as the backbone and applied pooling schemes

including GMP, GAP, AAP, and AMP. Most teams com-

bined identity classification (cross-entropy loss) and met-

ric learning (triplet loss, circle loss, center loss, etc.) in

their training setup, e.g., [42, 12, 7, 18, 33, 38, 15, 11, 27].

We have also seen various spatial, temporal and channel-

wise attention mechanisms being utilized in methods such

as [10, 28, 7, 18, 6]. Finally, it was shown in many algo-

rithms [42, 43, 12, 10, 11, 27] that re-ranking and other

post-processing strategies were effective in improving the

robustness of ReID.

5.3. Summary for the Track 3 challenge

All the teams followed the processing pipeline of ob-

ject detection, multi-target single-camera (MTSC) track-

ing, ReID for appearance feature extraction, and spatio-

temporal association to assign identities to tracklets across

multiple cameras. The two best performing teams, i.e.,

Carnegie Mellon University [29] and Xi’an Jiao Tong Uni-

versity [13], both exploited metric learning and identity

classification to train their feature extractors. Instead of ex-

plicitly associating targets in spatio-temporal domain, the

team from Xi’an Jiao Tong University [13] embedded the

information in an attention module and performed graph

clustering based on pre-defined traffic topology. Similarly,

the team from U. Maryland [28] built distance matrix us-

Table 4. Summary of the Track 4 leader board.
Rank Team ID Team name (and paper) Score

1 113 Baidu-SYSU [17] 0.9695

2 51 USF [9] 0.5763

3 106 CET [34] 0.5438

4 72 UMD [28] 0.2952

N/A (General) 75 UAlbany [6] 0.9494

N/A (General) 80 HCMUS [38] 0.9059

ing appearance and temporal cues to cluster tracks in mul-

tiple cameras. The other team [6] proposed a multi-camera

tracking network that jointly learned appearance and physi-

cal features.

5.4. Summary for the Track 4 challenge

The best performing Track 4 teams (i.e., Baidu-Sun Yat-

sen University [17] and U. South Florida [9]) used a sim-

ilar procedure: first pre-process and detect vehicles, then

identify the anomalies, and finally perform a backtrack-

ing optimization to refine the anomaly prediction. Baidu-

Sun Yat-sen University achieved an impressive prediction

score of 0.9695. In their approach, they proposed a multi-

granularity strategy, consisting of a box-level and a pixel-

level tracking branch. The latter is inspired by the winning

solution in AI City Challenge 2019 [3]. A fusion of the two

strategies offers complementary views in anomaly refine-

ment. The runner up proposed a fast, unsupervised system,

where the anomaly prediction module used K-means clus-

tering to identify potential anomalous regions. The solution

of the third place team (CET [34]) was also based on two

complementary predictors: one works on the normal scale

of videos, while the other works on a magnified scale on

videos missed by the first predictor.

6. Discussion

The 4th edition of the AI City Challenge has shown

growing impact to the research communities, as the number

of participants stayed strong and the quality of submissions

was also highly improved. We summarize here several ob-

servations from the challenge results this year.

The accuracy of vehicle counting depends highly on the

quality of vehicle trajectory data. Challenges in this re-

gards include the variety in camera views, image quality,

lighting and weather conditions. Participant teams have

adopted state-of-art objection detection and tracking mod-

els to obtain vehicle trajectories. Among them, YOLOv3

and DeepSort were most widely used, and Faster-RCNN

and Mask-RCNN were also popular. Since most vehi-

cles are traveling along the fixed traffic lanes, their mo-

tion pattern is predictable, and thus simple trackers based

on IoU or linear motion-based tracker are effective. In the

crowded and occluded scenarios, broken trajectories and

identity switches can directly impact the counting accu-

racy. To this end, various post-processing methods were



adopted To determine the movement-specific vehicle count-

ing, teams have used both ROI-based or data-driven based

MOI classification. Both approaches require some level of

camera-specific manual efforts, and fully automatic meth-

ods are potentially research topics in the future. The win-

ning team [19] has achieve over 0.95 counting accuracy.

Lastly, for computational speed, [41] utilized frame-level

parallelism and out-of-order-execution mechanisms for the

bottle-neck detection stage with support for up to 8 GPUs.

Many teams [41, 2, 42, 1] have reported superior real-time

processing speed.

Track 2 (vehicle ReID) is challenging due to two factors.

First, vehicles present high intra-class variability caused by

the dependency of shape and appearance on viewpoint. Sec-

ond, vehicles also show small inter-class variability caused

by the similar shape and appearance among vehicles pro-

duced by different manufacturers. The top performing

teams in this task [42, 43, 12] built their algorithms based

on state-of-the-art person ReID frameworks. Many models

were trained on both identity classification loss and metric-

learning-based loss that encouraged the network to maxi-

mally distinguish on fine-grained appearance features. Var-

ious attention mechanisms were also integrated to their pro-

posed architectures to help the networks focus on repre-

sentative information. Additionally, as we introduced aug-

mented synthetic data in the challenge this year, many teams

proposed to expand the training set with style-transformed

simulated data, and learned models for classifying vehicle

attributes and viewpoints using the automatically generated

labels on these data. Another way teams used to gain addi-

tional data was to assign pseudo-labels to the test set based

on clustering approaches. We anticipate that these types of

methods will be used widely for real deployed systems, as

manual annotation is costly and time-consuming.

Track 3 can be considered as a sub-task for the third chal-

lenge track on city-scale MTMC vehicle tracking, where the

algorithms not only need to learn discriminative appearance

features for different identities, but also make use of spatio-

temporal cues to associate targets across cameras at multi-

ple intersections. The team from Xi’an Jiao Tong Univer-

sity [13] proposed a spatio-temporal attention module that

learned the traveling time across adjacent cameras. They

also introduced graph clustering in a distance matrix for

grouping vehicle instances into continuous trajectories. The

U. Maryland team [28] also utilized a similar approach for

clustering tracks. In addition, teams applied state-of-the-art

object detectors and MTSC tracking methods to generate

reliable tracklets from each single camera. For instance, the

top performing team from Carnegie Mellon University [29]

used Mask R-CNN [30] and DeepSORT [39] for object de-

tection and tracking, respectively. Compared to the ReID

problem, MTMC tracking has more room for improvement

before deployment in real world, especially as methods may

not easily scale as the camera network grows.

Traffic anomaly detection in Track 4 is challenging due

to environmental factors, the complexity of the anomaly

pattern, and insufficient anomaly training data. Since the

use of external datasets were not allowed, teams thus mostly

resorted to the provided training data for detector fine-

tuning. The winning team (Baidu) achieved very impres-

sive prediction scores [17]. Their success is due to several

notable reasons: (1) Instead of relying on a single-stage de-

tector, they use two-stage Faster R-CNN [31] model with

SENet [14] as the backbone. (2) They leveraged the ex-

perience from last year’s winning model based on a pixel-

level tracking branch in concert with a proposed box-level

branch. This strategy can effectively improve the prediction

accuracy. The runner up team’s solution was also interest-

ing, offering competitive effectiveness with increased effi-

ciency. More effective solutions are yet to be explored in

future research.

7. Conclusion

Through the AI City Challenge platform, we solicited

original contributions in ITS and related areas where com-

puter vision, and specifically deep learning, show promise

in achieving large-scale practical deployment that will help

make cities smarter. To accelerate the research and develop-

ment of techniques, the 4th edition of this challenge pushed

the research and development in three new ways: (1) The

challenge introduced a track that not only measured effec-

tiveness on tasks that were relevant to DOTs but also mea-

sured the efficiency of completing these tasks and the ability

of systems to operate in real-time. (2) Augmented synthetic

data are introduced to substantially increase the number of

training set samples for the ReID task, which could also

be utilized in other tracks (3) Two leader boards are intro-

duced in evaluation system, where the Public leader board

were obtained without the use of external data, which en-

courage contests close to the real-world use scenarios. The

4th AI City Challenge has seen strong participation in all

the four challenge tracks, where 76 out of 315 participating

teams submitted their results and significantly improved the

baselines on these challenging tasks.

In the future, we will continue to push the state-of-the-

art methods on real-world problems, by providing access to

high-quality data and improving the evaluation platform.
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