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Abstract

The effectiveness of an Intelligent transportation system

(ITS) relies on the understanding of the vehicles behaviour.

Different approaches are proposed to extract the attributes

of the vehicles as Re-Identification (ReID) or multi-target

single camera tracking (MTSC). The analysis of those at-

tributes leads to the behavioural tasks as multi-target multi-

camera tracking (MTMC) and Turn-counts (Count vehicles

that go through a predefined path). In this work, we propose

a novel approach to Turn-counts which uses a MTSC and a

proposed path classifier. The proposed method is evaluated

on CVPR AI City Challenge 2020. Our algorithm achieves

the second place in Turn-counts with a score of 0.9346.

1. Introduction

In modern cities, the abundance of data sources, if ex-

ploited well, allows for the improvement of the quality of

life. One of the most important sources of information is

video cameras that are present around the city. This data

could be used to solve many problems such as, but not

limited to, traffic estimation, prediction and management.

Therefore, different computer vision tasks have been de-

fined to address those problems. Between those tasks are:

Vehicle Re-Identification (ReID), multi-target single cam-

era tracking (MTSC), multi-target multi-camera tracking

(MTMC).

This paper deals with the one of tasks proposed by the

AI City Workshop at CVPR 2020. The task we decided to

tackle is:

• Challenge Track 1: Vehicle Counts by Class at Multi-

ple Intersections.

For the Challenge Track 1, the goal is to count vehicles

that go through a predefined path or movement ID, as exem-

plified in Figure 1. The algorithm should count four-wheel

vehicles and freight trucks. The vehicle should be counted

when it leaves the region of interest (ROI) of each cam-

era which is defined in advance. Moreover, the algorithm

Figure 1. Example of Vehicle Count in one intersection.

should be efficient in terms of program execution. The orga-

nizers of the AI City Workshop provided the dataset, which

contains 31 video clips captured from 20 unique cameras.

It should be noted that the organizers do not allow using

any external data for either training or validation if the par-

ticipant wants to be listed in the public leader board and win

the challenge. For further information about the data or the

challenges, refer to the organizers [9].

2. Challenge Track 1

In this section, we focus on developing a review of the

state-of-the art on vehicle counting followed by a descrip-

tion of our solution. For this work we decided to develop a

system based on vehicle tracking along with an algorithm of

line-crossing. Therefore, we present and explain the track-

ing and line-crossing algorithms. Afterwards we present the

classification of four-wheel vehicles and freight trucks. Fi-

nally, we present the results of our experimentation.

Contributions

The following are the main contributions of this paper re-

garding Vehicle Counts by Class at Multiple Intersections:

• We created an algorithm that effectively counts vehi-

cles and is efficient during inference. The efficiency

and the effectiveness were tested during the challenge,



our algorithm achieved second place in the ranking at

0.9346 with score (−0.43% from first place).

• The algorithm exploits a multi-target single camera

tracking (MTSC) which can be used for tracking and

counting vehicles.

• The algorithm uses a convolutional neural network

(CNN) that is trained using the COCO dataset. There-

fore, the algorithm can be easily implemented and ex-

ploited for other categories.

• We propose a line-crossing algorithm capable of dis-

tinguishing multiple movements of the objects by just

using the initial and final position of the vehicle.

2.1. Related Work

The most commonly implemented solution to count ve-

hicles is using special sensors that are placed directly on the

road. The main problem with this solution is that the sen-

sors are not designed to stay on the road. By using cameras,

the system can stay in place and will not be not damaged by

the vehicles. In this regard, the advantages of using cameras

instead of sensors could be significant.

First, we compare the given dataset called Track1 to

the state of the art data sources. There are many publicly

available datasets for vehicle counting or tracking such as

[23, 19, 16, 14, 6]. However, most of those datasets such as

[14, 6, 23] are based on the quantity of vehicles present in

the pictures and the scope is to detect the vehicle in crowed

situations. The datasets [19, 16] that were developed for ve-

hicle tracking and re-identification, still do not have the an-

notations to count the directions of the vehicles (the dataset

[16] is part of the challenge being the Track 3). There is no

other dataset to our knowledge that allows to test the same

tasks as this challenge.

Moving forwards we review the methods for counting

vehicles, that go through a predefined path. First we study

the surveys [4, 18, 2] in intelligent transportation systems

(ITSs). In [18], a general architecture is presented for video

surveillance systems. In this architecture, the vehicle count-

ing is part of ”Behavior Understanding” that sits on top of

”Extraction of Dynamic and Static Attributes”, that contains

the detection and tracking of vehicles. This classification

helps divide the current task in two depending tasks: Be-

havior Understanding and Attributes Extraction.

2.1.1 Attributes Extraction

This is normally composed of the detection, classification

and tracking of objects. Specifically for car counting, this

task must run as fast as possible (in order to be used in real

time). Therefore, many algorithms still use classical algo-

rithms such as background extraction (ex. [12, 10, 13, 21])

to detect the vehicles. Other authors such as [7, 11] use

deep learning detectors such as YOLO and tiny-YOLO that

are known for their fast inference. All theses approaches

also have a tracking algorithm that allows them to not count

the same car multiple times. Consequently, since most al-

gorithms have a tracking part, we decided to review multi-

target single camera tracking (MTSC). The review started

on the different benchmarks for MTSC such as [16, 8, 19].

The criteria is that the algorithm should be simple to imple-

ment in the short period of time available for this challenge,

to be fast at inference and have good performance. Some

options were DeepSORT [20], TC [17] and MOANA [15].

Those algorithms always have two stages: detection then

tracking. We chose to implement Tracktor from [3] (current

state of the art in the benchmark [8]) because this algorithm

uses the detector to do the tracking, which makes it faster at

inference stage.

2.1.2 Behavior Understanding

This task, behavior understanding, consists of using the ex-

tracted attributes to count vehicles that go through a pre-

defined path. Object counting can be divided in three cat-

egories. The first is to count how many objects are in the

image. This category enters into crowed object detection

(ex. [22]). The second is to count how many objects cross

a line. This is the most frequently implemented solution

[7, 11, 13]. The last category is to count how many objects

go through a predefined path. We did not find an imple-

mented solution for complex paths as the ones presented in

the challenge. Our solution is based on line crossing and

explained further in this paper.

2.2. Countor: Counting system

The system developed for this challenge is called Coun-

tor, because it is based on the ”Tracktor” from [3]. In the

”Tracktor” project, they present different trackers based on

the same tracking algorithm. The best tracker that they pre-

sented had two add-on modules: re-identification (reID) and

camera motion compensation (CMC). We chose not to use

the reID in order to reduce the inference time. Also, we do

not use the CMC as our cameras are not moving. A diagram

of our implementation is shown in Figure 2.

To explain the algorithm, we start by the following def-

initions: Each tracked object is identified with a number k.

The trajectory of the object k is defined as an ordered list

as T k = {bkt1 , b
k
t2
, · · · } where b is a bounding box and is

defined as bkt = (x, y, w, h, s). The elements of the bound-

ing box bkt are the coordinates in pixels of the top corner,

left corner, the width, the height and a score between 0 and

1 respectively. Also, t is the time of the frame where the

bounding box was detected or tracked. The list of active

trajectories is defined as Gt = {T k1 , T k2 , · · · }, this list
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Figure 2. Diagram of the counting algorithm

contains the trajectories of the objects that were not lost

up to the time t. The list of bounding boxes at time t is

defined as Bt = {bk1

t , bk2

t , · · · }. It should be noted that

the list Bt can be extracted from Gt. The list of bounding

boxes from the detections at one frame in time t is defined

as Dt = {b1t , b
2

t , · · · }. Each time that a track T k is lost

(no longer in from Gt) the algorithm generates the counter

element ck = (tf ,mid), tf is the time where the track is

lost and mid is the movement ID of that track (remainder

the movements ID are exemplified at Figure 1). The list of

counter elements is defined as Ct = {ck1 , ck2 , · · · }.

The input of the algorithm is the frame at time t and

the list of active trajectories Gt−1. At t = 0, the Gt is

empty. The output is the list of active trajectories Gt and

the counted vehicles Ct.

To have a better explanation, the algorithm is divided in

four parts (the indexes in the diagram 2): Motion model,

Tracktor, Filtering and Track generation, and Line crossing.

2.2.1 Motion model

For each track in the list Gt−1 the motion model is ap-

plied to estimate the current position at the time t of each

track. In this case, a simple linear movement is applied.

The estimated bounding box b′kt maintains the width and

height bkt−1
and the position changes by adding the dis-

tance between the center of the last two bounding boxes

bkt−1
and bkt−2

. This is exemplified in Figure 3. The out-

put of this model is the list of predicted bounding boxes

B′

t = {b′k1

t , b′k2

t , · · · }

𝑏’
!

"!

𝑏
!#$

"!

𝑏
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Figure 3. Motion model example for one object k1 to estimate the

bounding box b
k1

t

2.2.2 Tracktor

This module detects the objects in the image and predicts

the new positions of the previous tracks. As presented in

[3], Tracktor ”tackles multi-object tracking by exploiting

the regression head of a detector to perform temporal re-

alignment of object bounding boxes” i.e. a detector as the

Faster R-CNN can be divided in: backbone (feature extrac-

tor), region proposal network and ROI pooling. The outputs

of the region proposal network are bounding boxes that are

aligned and classified by the ROI pooling. The tracking is

done by using the tracks from the previous frame as box

proposals. The assumption is that the target has moved only

slightly between frames and/or the motion model has al-

ready corrected the box proposals. The outputs are the sets

of detections Dt and tracks Bt. All this is shown in Figure

4.

In our implementation, we use a Faster-RCNN pre-

trained in COCO (directly from torchvision). No further

training was done. That detector can detect 91 different

classes, therefore, the counting and tracking could be eas-

ily applied to people, or other COCO classes. In this case,

we use the detentions and classification for three COCO

classes: cars, trucks and busses.
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Figure 4. Input and output example for the Tracktor

2.2.3 Filtering and Track generation

As explained in the description of the challenge, the vehi-

cles should be counted when they exit the region of interest

(ROI). Therefore, any detected or tracked object outside of

this region is filtered out. To achieve this, a filter that com-

putes the percentage of the bounding box inside of the ROI

is created, if the percentage is inferior to a defined thresh-

old, the box is filtered out.

Append and filter tracks

The list of tracks Gt is created by updating the list of tracks

Gt−1 with the list of bounding boxes Bt. Then, the list is fil-

tered by: the ROI filter, minimum score, non max suppres-

sion (in the case of overlapping tracks) and minimum area

(the area is the height times width of the bounding box).

The group of tracks that did not pass the filter are listed as

G′

t = {T k1 , T k2 , · · · } and called inactive. The tracks that

pass the filter are called active and defined as Gt.

Filter detections

The detections Dt are filtered by: the ROI filter, mini-

mum score, non max suppression (because we have mul-

tiple classes that we suppose as one), minimum area and

maximum area.

Filter detections in tracks

The detections that are already in the tracked objects are fil-

tered. To achieve this, the list Bt is recreated from Gt the

last added bounding box. Then, the score of each bounding

box is temporally set to 2. This is set to 2 because the maxi-

mum value of the score in the detections is 1. Next, the lists

Dt and Bt are jointed and non max suppression is applied.

Finally, any bounding box with the score of 2 is removed

from the list. Any remaining detections are considered as

new tracks.

Generate new tracks

For each detection that passed all the filters, a new ID k is

created and the track is added to the list Gt.

The parameters in the presented filters impact directly

the behaviour of the system. In the experiments, we will

show how these parameters were chosen.

2.2.4 Check Line crossing

To classify the movement of the vehicle k, with the trajec-

tory T k, the center of the first and last bounding box are

computed and used as a vector ~Vk. As T k is an ordered list,

to generate the vector the first and last element of this list

are selected. This representation is shown in Figure 5.a.

The developed algorithm to classify the movements is

based on the intersection of vectors. The vector intersection

has been largely studied and the solution to this problem can

be found in the textbook [5]. The line-crossing algorithm as

presented in [5] is capable of differentiating the orientation

of the intersection of the vectors.

Line crossing: A brief explanation of the line cross-

ing algorithm from [5] is presented. First, The function

F (p, q, r) that is the orientation of an ordered triplet of

points in the plane is defined as:

z(p, q, r) = ((qy − py) ∗ (rx − qx))
−((qx − px) ∗ (ry − qy))

F (p, q, r) =











0 if z(p, q, r) > 0

1 if z(p, q, r) < 0

−1 if z(p, q, r) = 0

(1)

where p, q, r are a pair of coordinates in a plane

as (x, y). The output is interpreted as 0:clockwise,



2

8

12

1
6

7

3

4

9

10

5

11

a) All tracks represented as vectors b) Unclassified vectors c) Classified vectors in the movements 5 and 11

e) Classified vectors in the movements 2 and 8d) Classified vectors in the movements 1, 6, 7 and 12 d) Classified vectors in the movements 3, 4, 9 and 10

Figure 5. Vectors representing the paths of the vehicles across one camera. Each line represent a different vehicle k. The direction of the

vector is given by the red crosses. The zone that is not red is the ROI

1:counterclockwise and −1:co-linear. By [5]: in general

two vectors ~V1 = (p1, q1) and ~V2 = (p2, q2) intersect if

F (p1, q1, p2) and F (p1, q1, q2) have different orientations

and F (p2, q2, p1) and F (p2, q2, q1) have different orienta-

tions. There exist other cases of co-linear vectors, but in our

case we consider that they do not intersect. The intersection

function is defined as:

o1 = F (p1, q1, p2)
o2 = F (p1, q1, q2)
o3 = F (p2, q2, p1)
o4 = F (p2, q2, q1)

H( ~V1, ~V2) =

{

(1, o1) if o1 6= o2 ∧ o3 6= o4

(0, 0) otherwise

(2)

The output of the crossing line function is 1 if the vectors

intersect and o1 the orientation is 1 or 0. We define these

variables as bool (1:TRUE and 0:FALSE). We also define

the calibration vectors as explained in Figures 5.c to 5.f.

The black vectors should not be crossed by the vector Vk.

In the other hand, the green vectors should be crossed in

the right direction. For each movement and each camera we

then define a logical table as explained in table 1.

Finally, for every element in the inactive list of tracks G′

t

the vector Vk is generated. In order to filter noise tracks,

any vector Vk with norm inferior than 50 pixels is ignored.

Movement id Intersection function Intersection Orientation

Movement 1

H( ~V1, ~Vk) TRUE FALSE

H( ~V2, ~Vk) FALSE X

H( ~V3, ~Vk) FALSE X

Movement 2

H( ~V4, ~Vk) TRUE TRUE

H( ~V5, ~Vk) FALSE X

H( ~V6, ~Vk) FALSE X

Table 1. Example of the logical table about the intersection on the

vector Vk and the calibration vectors V1, V2, . . .

Next, the vector Vk is intersected with every calibration vec-

tor V1, V2, . . .. That result is compared with the logical table

of the camera to classify the object k. For each Vk a counter

element ck = (tf ,mid) is generated with the tf that is the

last frame the track was followed and mid is the movement

ID of that track. Finally The list of counter elements is gen-

erated as Ct = {ck1 , ck2 , · · · }.

2.3. Vehicle classification

The detector we used is not able to differentiate four-

wheel vehicles from freight trucks. Because we cannot train

in external data, we decided to detect every car, truck, bus or

freight trucks as vehicles. To classify the freight trucks, we

know that they are bigger than the most four-wheel vehicles

(except from buses). Then, we added a module that com-

putes the mean area of each tracked object k (the area of the



bounding box). As the size of the cars depends how far is

from the camera, we do the classification by movement ID.

Then, for each movement ID, we calculate the average area

of the 90% of the smallest vehicles. The assumption is that

the bounding box of freight trucks is at least 3 times bigger

than the average vehicle, so any vehicle with a mean area

bigger than 3 is considered as a freight truck.

2.4. Experiments

The experimentation is divided in 2 stages: Finding the

correct parameters of the tracker (the filter parameters) and

calibrating the cameras. All the experimentation was done

is a DGX-2, a computer with 16 GPUs tesla V100 with

32Gb each of memory and a Dual Intel Xeon Platinum

8168, 2.7 GHz, 24-cores.

The first set of parameters were selected from the orig-

inal tracktor [3]. However, the cameras that are far from

the objects as the cameras 1,2,3 and 7 had poor tracking

performance. Consequently, we made some exceptions and

manually tuned these cameras by visualising the results in

the videos. With those parameters, a first iteration of cam-

era calibration was made (by creating the vectors to classify

the movements). Once we were able to count the vehicles,

we implemented an optimization method. We created a loss

function defined by the number of not counted vehicles mi-

nus 5 times the number of counted vehicles. Our reasoning

was that we wanted more vehicles to be counted but we also

wanted to decrease the number of not counted vehicles. By

using the skopt library [1], we created a function that com-

puted the first 2000 frames of each video and returned the

loss. Then, we ran the optimization of the parameters for

100 iterations, which calibrated the cameras and improved

the tracking parameters.

2.5. Results

The evaluation for this challenge is defined by the or-

ganizers and is a weighted combination between the effi-

ciency score and the effectiveness score. The details could

be found in [9]. The results of the challenge are shown in

Table 2. We achieved second place. It should be noted that

the system without the classification of four-wheel vehicles

and freight trucks achieved a score of 0.9010, which means

that if placed in the final ranking, it would only be at fourth

place.

Rank Team ID Team Name Score

1 99 Everest 0.9389

2 110 CSAI 0.9346

3 92 INF 0.9292

4 26 Orange-Control 0.8936
Table 2. Score on Track 1. Our team is shown in bold

3. Conclusions

In this paper, we present our approache for the track 1 of

the AI City Workshop at CVPR 2020.

For the track 1, a novel approach for counting vehicles

that go through a predefined is presented. From our ex-

periments, the proposed method is efficient and effective.

We achieved second place with an score of 0.9346%. In

perspective the neural network will be trained in different

datasets in order to improve the performance. In the same

way most of the operation of the system will be integrated

to create end to end system.
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