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Abstract

Vehicle re-identification plays a crucial role in the man-

agement of transportation infrastructure and traffic flow.

However, this is a challenging task due to the large

view-point variations in appearance, environmental and

instance-related factors. Modern systems deploy CNNs to

produce unique representations from the images of each ve-

hicle instance. Most work focuses on leveraging new losses

and network architectures to improve the descriptiveness of

these representations. In contrast, our work concentrates

on re-ranking and embedding expansion techniques. We

propose an efficient approach for combining the outputs of

multiple models at various scales while exploiting tracklet

and neighbor information, called dual embedding expan-

sion (DEx). Additionally, a comparative study of several

common image retrieval techniques is presented in the con-

text of vehicle re-ID. Our system yields competitive perfor-

mance in the 2020 NVIDIA AI City Challenge with promis-

ing results. We demonstrate that DEx when combined with

other re-ranking techniques, can produce an even larger

gain without any additional attribute labels or manual su-

pervision.

1. Introduction

Large-scale traffic video analysis can enable efficient

management of transportation infrastructure and traffic

flow. With the availability of a large number of sensors, an

Intelligent Transportation System (ITS) can be developed

to facilitate AI-powered smart cities. It is beneficial to pe-

riodically recognize a vehicle across different locations and

cameras to estimate the traffic flow. This concept is known

as vehicle re-identification (re-ID), where the objective is

to match a specific vehicle irrespective of location, time or

camera view. In essence, vehicle re-ID is a constrained im-

age retrieval task. Given a query image, we rank all the

database images based on their similarity to the query. Im-

age retrieval systems perform two fundamental processes:

retrieval, and re-ranking. First, a feature extractor produces

Figure 1: Qualitative comparison of top-k ranks on the re-

trieved results (row 1, 3) and after applying the re-ranking

schemes (row 2, 4).

a compact representation of the image to facilitate retrieval.

Then a similarity score is computed for each representation.

Second, a re-ranking technique is applied to indicate the rel-

evance of the retrieved results.

Similar to other re-ID tasks such as person re-ID, vehicle

re-ID also suffers from occlusion and low-quality images.

However, vehicle re-ID is more challenging, since vehi-

cles have low intra-class variations. For example, the same

model may have only slight appearance changes (rims,

lights) depending on their make. More drastic appearance

variations such as glare can occur due to weather condi-

tions, surroundings or camera position. Furthermore, a hu-

man body can be separated into a few semantic parts, while

the outcome of separation of a vehicle into parts depends

on the point of view. The front is symmetric with eas-
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ily identifiable elements, such as the headlights, grille, and

bumper, whereas the side is asymmetric and contains other

parts like rims and doors. The combination of these fac-

tors makes the vehicle re-ID a more challenging task. For

vehicle re-ID, license plates can be exploited to improve

performance [36]. However, they are not always available

at both sides or not visible, due to poor lighting conditions

and occlusions. Apart from these issues, the usage could

raise privacy concerns [38]. Besides license plates, other

attributes can be generated to improve performance such as

color, brand and vehicle type [33, 5]. In this research, we

focus on improving performance by producing a descrip-

tive representation using nearest neighbors. Therefore, we

propose a novel dual embedding expansion method offering

promising results on the 2020 NVIDIA AI City Challenge.

Our contributions are summarized as follows.

• We propose an efficient embedding expansion strategy

across CNN models and image scales that improves

performance. The improved performance comes with-

out any additional overhead during online retrieval.

• We present an effective way to jointly use both track-

lets and k-nearest neighbors (k-NN) of a query to en-

rich the embedding representation.

• We provide a comparative study of popular re-ranking

techniques from landmark image retrieval on the

CityFlow vehicle re-identification dataset.

2. Related Work

Feature extraction. In recent years, vehicle re-ID has

received large interest from the research community due

to advances in deep learning. This has resulted in the

publication of larger and more challenging datasets, such

as CityFlow [35], VeRi-776 [22], VehicleID [20], and

VeRi-Wild [24]. Conventional feature extraction for im-

age retrieval has been performed using hand-engineered de-

scriptors e.g. SIFT [25], SURF [3] or HoG [6]. How-

ever, modern approaches deploy Convolutional Neural Net-

works (CNNs) as feature extractors. A major common fo-

cus has been on improving the descriptive capabilities of

CNNs. Liu et al. [20] propose to progressively refine the

retrieval results using a combination of hand-engineered

features (color, texture) together with global descriptors.

Similarly, in [34], features are aggregated with Bag-of-

Words [30] and are fused with CNN descriptors.

Popular choices for CNN-based architectures for re-ID

are generally part-based. Part-based models [23, 4, 2, 5]

split the output of the network into several regions that learn

part-specific features. These features are then merged into

a single representation that is used as a final embedding for

retrieval. Attentive models in [33, 13, 17, 16, 37, 46] train

specialized modules to detect salient regions and improve

retrieval performance. Attention modules are adapted for

saliency in the spatial, channel, or temporal domain. Typi-

cally, CNNs are trained with a classification loss. However,

metric learning methods such as triplet, contrastive, or cen-

ter losses are almost ubiquitous in re-ID literature [23, 42].

These are employed to improve performance by mini-

mizing the distance between embeddings directly. Other

angular losses, such as CosFace [40], ArcFace [7], and

SphereFace [21], are also applied for re-ID tasks.

Other approaches enrich the labels by adding additional

information. Yan et al. in [45] add brand, make and color

to dataset instances and train a network with these extra at-

tributes. This strategy is also adopted by in [33]. Fine-

grained labeling [9, 47] with individual semantic parts such

as ‘logo’ and ‘windshield’ are labeled and detected to im-

prove the re-identification performance. In [41], seman-

tically relevant key points are annotated, instead of fine-

grained attribute labels. A key disadvantage of these ap-

proaches is that this requires additional labeling. When ad-

ditional data from a different domain is available, few ap-

proaches also apply domain adaptation strategies that are

beneficial to improve performance[19].

Re-ranking. After obtaining the initial set of ranks from

retrieval, a re-ranking step is usually utilized to refine the

rankings. In vehicle re-ID [13, 29, 15, 5, 4, 48, 19], a com-

mon re-ranking technique is k-reciprocal [49]. It checks the

k nearest-neighbors of the query and their reciprocals in the

database. The query representation is expanded by selecting

top matches of the retrieved sets using the Jaccard distance.

A modification to k-reciprocal is presented in [12]. They

employ the Mahalanobis distance when computing the sim-

ilarity of the query and database images. Furthermore,

they propose to re-organize the ranked list according to the

vehicle tracklets. A similar technique is explored in [2],

with re-ranking by direct computation of the query similar-

ity against the averaged tracklet representation. Huang et

al. [13] presents a novel re-ranking technique based on in-

stance metadata. This technique trains a network to learn

specific attributes like vehicle type, brand, color and uses

the predictions to remove irrelevant matches. Afterwards,

k-reciprocal is employed to improve the ranking list. Sim-

ilarly, several other metadata-based constraints, such as

speed, time, and location are exploited to improve vehicle

re-ID performance [5, 33].

Most of the previously discussed work uses the k-

reciprocal encoding or metadata constraints for re-ranking.

However, techniques common in image retrieval literature,

such as query expansion and database augmentation, are

largely absent. In [27], re-ranking is performed using spa-

tial verification by handcrafted local descriptors and are

aggregated using Bag-of-Words [30]. Consistency across

matches is enforced using visual words, and the local



Figure 2: Overview of the feature extraction network and proposed re-ranking strategy. The features are extracted using a

CNN backbone with a part-based model, similar to the Partition and Reunion Network [4]. Each block represents partitions

across height, channel, and width. All the outputs after global max-pooling (GMP) and fully connected layers are fed to

triplet loss, whereas additional classification heads are applied with cross-entropy loss. Note that for simplicity, both losses

are shown in a single block in the figure. The final output representations are extracted for both query and database/gallery

images and then our dual embedding expansion is applied, followed by k-reciprocal re-ranking.

descriptors provide geometric constraints. Alternatively,

in [48], the average query expansion is applied to enhance

query representation, and database features are clustered in

groups to the closest clustered centroid. In our work, we

attempt to bridge the gap between vehicle re-ID and im-

age retrieval, by studying the impact of popular re-ranking

methods from image retrieval and proposing a novel dual

embedding expansion technique that is suited for vehicle

re-ID.

3. Methods

The proposed approach primarily consists of two parts,

a CNN-based feature extractor for retrieval and post-

processing using re-ranking techniques.

3.1. Feature extractor

Image embeddings are generated using a part-based

model similar to the Partition and Reunion Network [4]

(PRN). Our model is composed of a convolutional backbone

and three branches. Each branch encodes global informa-

tion and partitions the height, width, and channel to obtain

local information. Each branch does not share weights with

the others, and partitions are mutually exclusive. However,

there are minor differences with the PRN. We generate three

horizontal or vertical partitions across the spatial dimen-

sions and two partitions across the channel dimensions. The

output of each branch is pooled using global max pooling,

followed by a fully connected layer to reduce dimensional-

ity to 256. This is followed by a BNNeck [26] and a classi-

fication head for each branch. We use a part-based network,

due to its good performance for re-ID tasks. The number

of partitions are reduced to avoid the design of excessively

large descriptors. During test time, the outputs prior to the

last convolutional layers are concatenated to obtain a single

representation that encodes both global and local features.

The resulting descriptor dimensions are 256 × 17. For the

final submission, we use the ResNet50 [10], ResNet50 IBN-

a [28], SE-ResNeXt50 [44] and EfficientNet [32] architec-

tures as the CNN backbones. The backbone selection and

part-based model are motivated by their high performance



in other retrieval, re-ID and classification tasks [12, 4, 39].

Loss functions For training, we use a combination of the

cross-entropy loss with label smoothing regularization and

the triplet loss with batch-hard negative mining. Cross en-

tropy with label smoothing is given as

Lid =
N
∑

i

ti · log(yi), (1)

where yi is the output for identity i and label smoothing is

applied to produce ti

ti =

{

1− N−1

N · ǫ, if i = j
ǫ
N , otherwise,

(2)

where ǫ is the regularization term (set to 0.1) and N , the

number of classes. The triplet loss is given as

Ltriplet =
∑

a,p,n

max[Da,p −Da,n +m, 0], (3)

where Da,p, Da,n are the distance between anchor (a) with

positive (p) and negative (n), respectively. The triplet mar-

gin is m, the positive samples share the same class as the

anchor and negatives are elements from different classes. A

key difference compared to previous approaches is that we

apply triplet loss to each of the outputs of a fully connected

layer, instead of a few selected outputs. We observe faster

convergence and slightly improved performance with this

approach. An overview of the system is shown in Figure 2.

3.2. Reranking techniques

For re-ranking, a few techniques are considered. After

inference, each embedding from different networks has the

same size of 256 × 17 dimensions. For similarity between

the representations, cosine similarity is applied. We have

selected the re-ranking techniques by their prevalence in im-

age retrieval and re-ID literature.

Dual embedding expansion. The dual embedding expan-

sion (DEx) comprises of two parts. The first part combines

representations across models and image scales in an effi-

cient manner. Typically, most ensemble strategies in re-ID

or retrieval concatenate the representations, which results

in very large embeddings. Although this improves perfor-

mance, it is computationally expensive during the similarity

computation. Similar to different models capturing distinct

features of the same image, image scales also capture in-

tricate details of the same image. Given an image I and a

scale s ∈ S , we pass each image I at scale s to the model

m ∈ M. Therefore, we propose to expand the embedding

to produce features fms by computing

Figure 3: Dual embedding expansion: The input image is

processed at multiple scales and fed to all the models in a

fully connected manner. The output representations are ag-

gregated to produce an enriched embedding and are fed to

tracklet-based query expansion to enhance the representa-

tion.

fms =
∑

mi∈M

∑

sj∈S

mi(sj(I)). (4)

The final embedding fms is the L2 normalized after averag-

ing features from different models at multiple scales. The

second part leverages both tracklet information and the k-

NN to improve the representations. Given a query and the

gallery of images, we extract fms for each, denoted as Qms

and Gms, respectively. Since most re-ranking techniques

are sensitive to the initial set of rankings, we utilize the

tracklet information to construct a new aggregated gallery

Tms. The new tracklet gallery Tms is constructed by aver-

aging all the embeddings in a given tracklet. We compute

the cosine similarity between Qms and Tms to obtain the

top tracklets for each query. The original elements of the

tracklets are placed back at the tracklet ranks to obtain a

new set of ranks. Following this, we apply α query expan-

sion by utilizing the new ranks generated from the tracklet

information. Therefore, for a given track t, we compute the

newly sorted gallery gt and the renewed query q̂i by



gt = k-NNt(qi, gi), (5)

q̂i = qi +
∑

k

gt × cos(qi, gt)
α, (6)

where qi ∈ Qms and gi ∈ Gms. The k-NNt and “cos” refer

to the k-nearest neighbors obtained through the tracklet in-

formation and cosine similarity, respectively. The gt is the

sorted gallery based on the tracklets for a query qi. The pa-

rameters k and α denote the number of top-k matches and

power to weight the distance, respectively. A key advan-

tage of the method is that the new representation retains the

same size as the single-model, single-scale representation.

Compared to other ensemble strategies such as concatena-

tion, this reduces online computation costs while calculat-

ing similarity. The similarity computation cost is the same

as a single-model, single-scale representation.

Database-side feature augmentation. We also perform

database-side feature augmentation (DBA) by constructing

a k-NN graph of the database to aggregate features. Instead

of relying on tracklet information, only nearest neighbors

are utilized. This allows to control the number of aggre-

gated gallery images and ensures that all embeddings are

expanded using the same amount of data. DBA commonly

increases performance in landmark retrieval systems when

there are occlusions or visibility constraints [1].

Re-ranking with k-reciprocal encoding. In k-reciprocal

encoding, a robust set of matches is constructed given an

initial ranking. Given the k-NN neighbours of query qi, the

k-reciprocals of qi in R(qi, k) are defined in [49] as

R(qi, k) = {gi|(gi ∈ k-NN(qi))∧ (qi ∈ k-NN(gi))}. (7)

In order to include positive images that may have been left

out of the top-k ranks, the new set R∗(qi, k) is constructed

by iteratively adding the half of the k-reciprocal images.

These images are only added if the following condition

holds

|R(qi, k) ∩R(gi,
1

2
k)| ≥

2

3
|R(gi,

1

2
k)|, (8)

which avoids the addition of too many negative samples to

the re-ranked set. Afterwards, the Jaccard distance between

the query and gallery reciprocal sets is computed, based on

the assumption that images with similar reciprocal sets are

closely related. The final representation is a weighted linear

combination of the original distance and the Jaccard dis-

tance, using a weighting parameter λ.

Diffusion. In contrast to previous methods, diffusion con-

siders the complete dataset manifold and propagates image

similarities through the adjacency matrix [8, 14]. In diffu-

sion, random walks through the similarity graph are com-

puted, to spread the query similarity across the full adja-

cency graph. The results from the iterative computation of

these random walks is a ranking matrix that accounts for

the intrinsic structure of the dataset manifold. The affinity

matrix A is symmetrically normalized by

S = D−1/2AD−1/2 (9)

with D = diag(A1n) where 1n is the unity vector of size

n. We follow the iterative procedure in [14]. For a given

initial f0 vector, we use an iterative scheme for diffusion

given by,

f t = αS f t−1 + (1− α)y, (10)

where f t ∈ R
d, S is the transition matrix, y an ℓ1 vector.

The parameter α regulates the spread of the manifold struc-

ture of the affinity matrix to the query points. Parameter t is

the iteration count of the solver. Besides α and t, diffusion

employs two additional parameters. The parameters k, kq ,

are the local constraints of the affinity and similarity matri-

ces to remove noise. A monomial kernel is used as in [14]

4. Experiments

4.1. Dataset and metrics

The CityFlow-ReID dataset consists of 56,277 images

of 666 different vehicle classes. The dataset is divided into

two parts, a training set of 36,935 images of 333 vehicle

classes from 1,897 video tracks, and a test set of 18,920 im-

ages of 333 vehicle classes from 798 video tracks. The re-

maining 1,052 images of the test split are used as the query

or probe set. For validation, we leverage the training set

by holding back a 100 identities as a validation set, while

training on the 233 classes. For reporting, the mean Aver-

age Precision (mAP) and the Top-1 and Top-5 accuracy of

the cumulative match curve (CMC@1, CMC@5) are used.

4.2. Implementation details

We have trained eight different CNN backbones,

ResNet50 (+CBAM [43]), ResNet50-IBN-a (+CBAM), SE-

ResNeXt50 and EfficientNet-B1, B2, B3 with the Adam

optimizer [18]. In our experiments, we have found that

larger EfficientNet and ResNet-based models are lowering

the performance. Hence, the experiments are restricted to

the smaller variants. The learning rate is set to 2 × 10−4

and decays at an exponential rate with exponent 0.01 at each

epoch. Triplet and cross-entropy losses are employed and

the models are trained for 500 epochs. Cross-entropy and

triplet losses are weighted by a factor of 2 and 1, respec-

tively. Label smoothing [31] is utilized for the classification

loss with ǫ = 0.1. Image triplets are obtained using a batch-

hard mining strategy as in [11]. Per batch, 8 classes are



sampled containing between 4 to 8 images each, depending

on the CNN backbone. The images are resized to 288×288
pixels, and augmentations such as horizontal flipping, con-

trast, and random erasing [50], are applied.

We deploy both dual embedding expansion and database

augmentation and use the closest 20 and 10 neighbors, re-

spectively. The value of α = 2. This is followed by k-

reciprocal encoding and its parameters are set to λ = 0.5,

k1 = 60 and k2 = 30.

4.3. Ablation studies

The ablations studies are provided over the baseline net-

work (ResNet50-IBN-a). First, the benefits of adding addi-

tional synthetic data during training are explored. A total of

193 synthetic vehicle IDs are randomly chosen and added

to the training set. The IDs are added such that a relatively

balanced ratio between synthetic and real images is main-

tained. Second, the impact of different re-ranking schemes

are studied which involves query expansion, database side

augmentation, diffusion and the k-reciprocal encoding.

Impact of additional synthetic data. The fourth edition

of the AI City Challenge includes, in addition to the train,

test and query image sets, a collection of synthetic vehicle

images. We study how the addition of synthetic data im-

pacts the performance of our baseline network ResNet50-

IBN-a. Three distinct scenarios are considered. First, train-

ing with real images only. Second, learning using a bal-

anced number of synthetic and real images. Third, we train

by merging both image sets. Note that to ensure a fair com-

parison, the test set in our split is composed only by real

images. The results from these experiments are shown in

Table 1.

For the second scenario, there is a data imbalance issue.

We try to balance the number of real to synthetic images in a

1:1 ratio. However, in our experiments, this ratio is only an

approximate due to the variable number of images per track-

let. In total, we consider 426 unique IDs, out of which 233

are from the real dataset. For the final submission, we con-

sider a total of 526 classes (including 333 real) for training

the models. It can be observed that balancing the number

of real and synthetic samples provides better performance

than using only real data. The balanced inclusion of syn-

thetic images increases the baseline mAP by roughly 4.3%,

whereas training with all the synthetic samples only yields a

minor gain. However, the CMC metric reduces slightly with

the inclusion of synthetic data. We conjecture that the addi-

tion of the synthetic images acts as a form of regularization

and prevents the network from overfitting. Nevertheless, the

addition of too many samples from the synthetic domain

may be changing the underlying dataset statistics, thereby

reducing the quality of the learned embeddings. Therefore,

further experiments are using the ‘Balanced’ training set.

Training set mAP CMC@1 CMC@5

Real only 68.0 89.7 92.3

Balanced 72.4 87.9 91.4

Full 68.1 87.7 91.6

Table 1: Performance of ResNet50-IBN-a with different

real to synthetic data ratios. Balanced refers to a 1:1 ratio.

Impact of dual embedding expansion. The dual embed-

ding expansion has two components, a model and scale

component and a tracklet-based query expansion. For a

single model, we provide the impact of different scales in

Table 2. Complementary features from different scales im-

prove the performance without additional online similarity

computation costs. As expected, the scale that is used to

train offers the best performance. Any other scale reduces

the performance. However, the aggregation of all the scales

results in the highest gains.

Scale mAP CMC@1 CMC@5

0.9 69.3 87.2 90.4

1 72.4 87.9 91.4

1.1 71.6 87.7 91.5

1.2 70.8 88.2 91.4

All 73.8 89.0 92.0

Table 2: Impact of the image scale on re-ID performance.

When combined with α-weighted tracklet query expan-

sion, the performance improves further. We compare the

proposed DEx with other popular query expansion methods

in 3. For fair comparisons, single-scale DEx is also com-

pared. DEx consistently outperforms other query expansion

techniques. As shown in Table 3, higher values for k yields

higher performance. In the final submission, we have set

k=20 for DEx to prevent over-tuning on the validation set.

k AQE αQE DEx-ss DEx-ms

5 74.6 74.5 76.6 77.7

10 75.4 75.3 77.1 78.0

20 76.6 76.6 77.6 78.4

40 77.1 77.2 77.9 78.5

Table 3: Comparison of retrieval performance (mAP) with

different query expansion techniques. DEx-ss and DEx-ms

are dual embedding expansion with single and multi-scale

features.

Impact of diffusion. Table. 4 contains the results from

our experiments with diffusion. We observe that large val-

ues of k or kq have a detrimental effect on retrieval perfor-



mance. We set α = 0.95 and run for up to 25 iterations.

Diffusion provides a gain of 8-10 mAP over baselines de-

pending on the choice of k and kq .

k kq mAP CMC@1 CMC@5

25 25 80.1 90.5 92.0

50 25 82.2 92.2 93.6

100 25 81.4 91.4 93.8

25 50 80.6 90.7 91.9

50 50 82.6 92.1 93.7

100 50 81.4 91.4 93.8

Table 4: Retrieval performance with diffusion for various

parameter settings.

Impact of database augmentation. Previous work [4]

has also explored a similar technique by encoding the en-

tire database tracklets as the average representation of its

images. Whereas this limits the possibility of polluting the

database representations with those of negative IDs, it pre-

vents the expansion with images belonging to other track-

lets. In our work, we compute the k-NN of each database

descriptor and aggregate the top-k matches as the new

image representation. This provides additional flexibility

k mAP CMC@1 CMC@5

5 76.0 86.7 91.2

10 76.9 86.1 91.9

20 78.1 87.0 92.0

40 79.2 86.7 91.7

Table 5: Retrieval performance with DBA for various val-

ues of k.
when re-ranking, since the value of k can be tuned for the

best performance. These results are presented in Table 5.

In general, increasing the number of neighbors aggregated

into the database representation has a beneficial effect on

the mAP metric. However, the CMC metric shows a slight

deterioration. This indicates that some erroneous matches

are being placed at the top-1 and top-5 ranks with DBA re-

ranking, but correct matches are being ranked at adjacent

positions. It can be observed that the highest overall mAP

is obtained when k = 40. Nevertheless, setting k to this

value lowers the performance on the private test set. This

may occur if the test database has many visually similar in-

stances of different vehicles. In this case, using too large

values of k reduces the discriminating power of the descrip-

tors, so that k = 10 is adopted in the final submission.

Impact of re-ranking schemes. We also present a com-

parison of the studied re-ranking techniques in Table 6.

Among these, the single best performing one is Diffusion,

yielding an increase in mAP over the baseline of roughly

Re-ranking scheme mAP CMC@1 CMC@5

Baseline 72.4 87.9 91.4

+DEx 78.4 93.3 94.7

+DBA 76.9 86.1 91.9

+k-reciprocal 80.4 91.8 93.9

+ Diffusion 82.2 92.2 93.6

+Tracklet 76.7 87.9 88.0

+DEx+DBA 81.8 89.6 94.1

+DEx+k-reciprocal 82.5 94.4 95.2

+DEx+Diffusion 84.3 94.4 95.4

+DEx+DBA+k-reciprocal 83.7 88.6 94.0

+DEx+DBA+Diffusion 85.0 92.6 94.7

Table 6: Retrieval performance of different re-ranking tech-

niques on the validation set.

10 mAP points, outperforming other singleton methods.

Nonetheless, DEx obtains CMC scores higher than others

by roughly 1.1 and 0.8 points. The addition of tracklet in-

formation along with the combination of post-processing

steps did not yield gains on the validation set. However,

we observe up to 2% improvement on the private test set.

Figure 4 shows a few examples of retrieved vehicles in the

test set using the baseline network and after re-ranking with

our approach. The gain from diffusion similarly translates

when combined with embedding enhancing techniques such

as DEx and DBA.

4.4. Results on 2020 AI City Challenge

The results when using the proposed methods are sub-

mitted to the re-ID track of 2020 AI City Challenge. We

have obtained an mAP at top-100 ranks (mAP@100) of

51.66 without any additional labeling or supervision. This

is a large improvement over the baseline mAP@100 of

26.3 [35]. The results are obtained with the DEx+DBA+k-

reciprocal combination, followed by pulling in the track-

lets. The DEx+DBA+Diffusion yields slightly lower perfor-

mance with 50.78 mAP. This is possibly due to overfitting

of the diffusion parameters on the validation set.

5. Conclusions

In this paper, we propose a dual embedding expansion

strategy that leverages multiple networks, scales along with

weighted tracklet information to improve the re-ID perfor-

mance. Our embedding expansion yields competitive per-

formance to the de-facto standard in re-ID, outperforming

conventional query expansion methods. We have performed

ablations to study the impact of synthetic data during train-

ing and discovered that a balanced addition of synthetic data

is beneficial. Furthermore, a detailed study is presented of

several re-ranking techniques in image retrieval for vehi-

cle re-ID. Although k-reciprocal is the common choice for



(a) Top-10 retrieval results of the ResNet50-IBN-a network.

(b) Top-10 retrieval results after re-ranking using DEx+DBA+k-reciprocal scheme.

Figure 4: Retrieval results of the baseline ResNet50-IBN-a network (top) and re-ranking (bottom). Re-ranking removes

possible mismatches (second row) and increases the homogeneity of the top ranks. The query is the leftmost image.

re-ranking, diffusion offers competitive results with simi-

lar computational costs. Our evaluation of the different re-

ranking techniques shows that k-reciprocal or diffusion is

the best for re-ID, which can be further enhanced by com-

bining it with other embedding expansion techniques with-

out any additional annotations or manual supervision.
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