
Robust and Fast Vehicle Turn-counts at Intersections via an Integrated Solution

from Detection, Tracking and Trajectory Modeling

Zhihui Wang1, Bing Bai1, Yujun Xie1, Tengfei Xing1,

Bineng Zhong2∗, Qinqin Zhou2, Yiping Meng1, Bin Xu1, Zhichao Song1,

Pengfei Xu1, Runbo Hu1, Hua Chai1

1.Didi Chuxing

2.Huaqiao University

jillianwangzhihui, xupengfeipf@didiglobal.com, bnzhong@hqu.edu.cn

Abstract

In this paper, we address the problem of vehicle turn-

counts by class at multiple intersections, which is greatly

challenged by inaccurate detection and tracking results

caused by heavy weather, occlusion, illumination varia-

tions, background clutter, etc. Therefore, the complexity of

the problem calls for an integrated solution that robustly ex-

tracts as much visual information as possible and efficiently

combines it through sequential feedback cycles. We pro-

pose such an algorithm, which effectively combines detec-

tion, background modeling, tracking, trajectory modeling

and matching in a sequential manner. Firstly, to improve

detection performances, we design a GMM like background

modeling method to detect moving objects. Then, the pro-

posed GMM like background modeling method is combined

with an effective yet efficient deep learning based detector

to achieve high-quality vehicle detection. Based on the de-

tection results, a simple yet effective multi-object tracking

method is proposed to generate each vehicle’s movement

trajectory. Conditioned on each vehicle’s trajectory, we

then propose a trajectory modeling and matching schema

which leverages the direction and speed of a local vehicle’s

trajectory to improve the robustness and accuracy of vehicle

turn-counts. Our method is validated on the AICity Track1

dataset A, and has achieved 91.40% in effectiveness, 95.4%
in efficiency, and 92.60% S1-score, respectively. The exper-

imental results show that our method is not only effective

and efficient, but also can achieve robust counting perfor-

mance in real-world scenes.

∗Corresponding Author.

1. Introduction

In recent years, there has been an interest in detailed

monitoring of road traffic, particularly in intersections, to

obtain a statistical model of the flow of vehicles through

them. These traffic monitoring systems regularly use com-

puter vision since the videos are high in information content

which enable smarter than conventional spot sensor. For ex-

ample, with vision techniques it is possible to provide flow,

speed, vehicle classification, and detection of abnormalities

at the same time.

To the best of our knowledge, even with increased pro-

cessing power and improved vision techniques, there are

very few works that explicitly address turn-counts at in-

tersections. Turn-counts plays an important role in inter-

section analyses, including traffic operations analyses, in-

tersection design, and transportation planning applications.

Besides, turn-counts are needed for developing optimized

traffic signal timings leading to various benefits such as fuel

consumption reduction, air pollution reduction, travel time

improvement and anticipated vehicle crash reduction.

In this paper, we focus on the challenging task of ve-

hicle turn-counts by class at multiple intersections using

a single floating camera. As shown in Figure??, the sce-

nario is greatly challenging due to various factors: frequent

occlusions between vehicles, heavy weather, background

clutter, illumination changes, and varying and large num-

bers of moving objects. To address the issues, we integrate

detection, background modeling, multi-object tracking, tra-

jectory modeling and matching in a sequential manner. Our

integrated method designs careful interplay between several

different vision components to effectively combine them.

Motion-based tracking is paired with an early prediction

of vehicle trajectories methods for accurate turn-counts of

an intersection using a single floating camera. This set-

up is interesting due to the possibility of tracking vehicles

and thus knowing how many vehicles go from a certain en-



trance to a certain exit. However, the camera perspective

produces the problems of occlusions, which makes the vehi-

cle detection and tracking process potentially inefficient. To

solve this problem, the turn-count accuracy is improved by

specifically handling broken trajectories through the coop-

eration of trajectory modeling module and trajectory match-

ing module. When tracking fails due to noise or occlusion,

incomplete trajectories also can be match to the most likely

turn movements with the help of the trajectory matching

module. The main contributions of this work are threefold.

• To the best our knowledge, this work is among the pi-

oneering work of vehicle turn-counts by class at mul-

tiple intersections.

• We design an integrated solution from detection, back-

ground modeling, multi-object tracking, trajectory

modeling and matching in a sequential manner to ef-

fectively and efficiently the vehicle turn-counts task.

• Our method not only achieves robust counting results,

but also runs at 13 FPS on the AICity Track1 dataset

A.

The paper is organized as follows: Section 2 introduces

several related works about object detection, background

modeling, tracking and trajectory matching, Section 3 de-

scribes our whole pipeline, Section 4 shows our experimen-

tal results and we conclude our paper in Section 5.

(a) (b) (c)

Figure 1. Examples of vehicle counting scene. (a) Rainy (b) Com-

plex traffic scene (c) Objects occlusion.

2. Related Work

2.1. Object Detection

In recent years, object detection has made tremendous

progress and are widely used in various fields, such as secu-

rity, virtual reality, smart transportation, autonomous driv-

ing, etc. Object detection has two evaluation standards, ac-

curacy and efficiency. Two-stage object detection methods

represented by Faster R-CNN[17] have excellent accuracy

performance. FPN[9] exploits inherent multi-scale, pyrami-

dal hierarchy of deep convolution networks to construct fea-

ture pyramids, provides a rich feature representation. Mask

RCNN[7] adds an additional mask prediction branch to im-

prove detection accuracy through multi-task learning. But

these methods have a region proposal network that needs

tremendous computation cost and is less efficient. In order

to reduce the computational overhead, YOLO[16] equates

object detection as a regression problem, which directly pre-

dicts the bounding boxes and associated class probabilities

without proposal generation. SSD[12] uses feature maps of

different layers to predict bounding boxes of various sizes;

the above one-stage networks greatly improved the detec-

tion network efficiency but sacrificed accuracy.

In recent years, a lot of works have been devoted to

finding a better trade-off between effectiveness and effi-

ciency among detection methods. RetinaNet[10] uses FPN

and Focal Loss to alleviate the problem of unbalanced pos-

itive and negative samples in the one-stage detection al-

gorithm. At the same time, with the rise of Neural Ar-

chitecture Search(NAS), network automatic search gradu-

ally replaces the original handcraft-designed network struc-

ture. NAS-FPN[6] uses RetinaNet as the baseline and

adopts Neural Architecture Search to discover a new fea-

ture pyramid architecture. EfficientDet[20] uses the pow-

erful EfficientNet[19] as the backbone network, and uses

efficient BiFPN to improve the accuracy and speed of the

network.

2.2. Object Tracking

With the development of object detection methods,

tracking-by-detection is becoming the most popular strat-

egy for multi-object tracking. Base on detections on each

frame, the trajectories of targets can be obtained by data as-

sociation between adjacent frames, which is a crucial part

of multi-object tracking methods[3, 4, 5, 15]. Specifically,

the deterministic algorithm is often used to solve the data

association problem in online multi-object tracking. In [1],

Wojke et al. adopt a deterministic Hungarian algorithm [8]

in the proposed tracker with an association metric that mea-

sures bounding box overlap, which achieves overall good

performance in terms of tracking precision and accuracy.

[21] replaces the association metric with a more robust met-

ric that combines motion and appearance information to al-

leviate identity switches in [1]. Base on the tracking frame-

work of [21], we can get more accurate tracking results and

reduce the identity switches by refining and customizing the

parameters of Kalman filter under the traffic scene.

2.3. Background Modeling

Background modeling is a commonly used method of

moving target detection. Combined with the multi-frame

image information, the static background is extracted. Mov-

ing targets of the current frame are extracted through back-

ground difference. Commonly used background modeling

methods include average method, maximum value statis-

tical, single Gaussian modeling, weighted average, mix-

ture of Gaussia, etc. Zhong et al. [23] propose the stan-

dard variance of a set of pixels’ feature values, which cap-

tures mainly co-occurrence statistics of neighboring pixels



Figure 2. Framework of our system.

in an image patch to model the background and use mixture

of Gaussians models to model background. Zhong et al.

[22] propose a multi-resolution framework to model back-

ground. The Gaussian mixture model is implemented in

each level of the pyramid. Feature maps from different lev-

els are combined via AND operator to finally get a more

robust and accurate background subtraction map.

2.4. TrajectoryMatching

Trajectory-Matching, also known as Map-Matching, is

the process of associating a series of ordered user or vehicle

positions to the road network of the map. Its main purpose

is to track vehicles, analyze traffic flow and find the driving

direction of each vehicle, which is a basic work in the field

of maps. The more famous method is based on the Hidden

Markov Model[14], and the accuracy rate is as high as 90%
under certain conditions; the nearest neighbor algorithm di-

rectly calculates the projection distance between the corre-

sponding GPS point and the candidate road, and matches

the GPS point to the nearest candidate road, because of a

high density of urban roads and drifts of GPS points, this

method is not effective usually;

2.5. Automatic Vehicle counting

Automatic vehicle counting is a fundamental technique

for intelligent transportation. But there are few works that

explicitly deal with vision-based automatic vehicle count-

ing [13]. Most algorithms combine background subtraction

and simple feature-based tracking to generate object posi-

tion during video [18]. Then entrance and exist zones based

methods are used for vehicle counting. [18] adopts a typi-

cal path to match non-regular sequence, but it is helpless in

dealing with short trajectories in complex traffic scenes.

3. Our Method

To achieve robust and fast vehicle turn-counts, we design

an integrated solution that contains five modules in a se-

quential manner. An overview of our proposed framework

is illustrated in Figure 2. In the vehicle perception module,

object detection and background modeling are combined to

detect and classify vehicles. Then the detection-based ob-

ject tracking model generates trajectories of different ob-

jects through the whole video. After matching these tra-

jectories with modeling lane level gallery tracks, all eligible

trajectories are counted into corresponding movements with

the consideration of its’ lifetime and the spatial-temporal

consistency. In this section, we will introduce every mod-

ule in detail.

3.1. Object Detection

We evaluate four efficient detection algorithms,

SSD[12], YOLOv3[16], EfficientDet[20] and NAS-

FPN[6], from two aspects, effectiveness and efficiency.

When comparing the efficiency of four algorithms, mean-

while, we put post processing time into account. The

final comparison is published as Tabe 1. Considering both

effectiveness and efficiency, we use NAS-FPN as the deep

detection model for vehicle detection, which is based on

RetinaNet[10]. RetinaNet is composed of backbone and

FPN modules. FPN uses a top-down cross-layer connection

to merge high-level semantic features and low-level detail

features, improving the detection effect of small-scale

targets. NAS-FPN has been further optimized on the basis

of FPN, drawing on the classification network architecture

search method NAS-Net. NAS-FPN uses as inputs features

in 5 scales C3, C4, C5, C6, C7 with corresponding feature

stride of 8, 16, 32, 64, 128 pixels. It also proposes merging

cells to merge any two input feature maps from different

layers into an output feature map with a desired scale. And

similar to NAS-Net, an RNN controller decides to use

which two candidate feature maps and a binary operation to

generate a new feature map. More details are available in

the official paper. In the framework, we choose NAS-FPN

based on mmdetection[2], which uses Res-Net50 as the



Table 1. Comparison of effectiveness and efficiency on differ-

ent detection algorithms on COCO2017 test set[11]. Inference

time means the total process of forward propagation and post-

processing.

Algorithm mAP Inference

SSD-300[12] 29.3 0.08s

YOLOv3-960[16] 33.0 0.40s

EfficientD0[20] 32.4 0.20s

NAS-FPN-640[6] 37.0 0.09s

backbone model and 640 as the input resolution.

3.2. GMM like Background Modeling

A deep learning-based detection model can perceive

most vehicle objects in normal scenes. But it leads to high

miss recall in extreme scenarios, such as rainy or illumina-

tion changes, in which the appearance information of ob-

jects are limited. Therefore, we introduce a background

modeling algorithm based on Hybrid Gaussian to extract

moving vehicle targets. In order to further reduce the influ-

ence of dynamic backgrounds, such as raindrops and light-

ness, we learn from [23], which introduces particle back-

ground modeling. Assuming that the size of input image is

M×N . An average pooling operation with kernel size k=10

is performed and generates a small pooled image. Then

mixed Gaussian modeling is performed to model the back-

ground of multi-frames (nearly 5 seconds images) to gen-

erated a robust background model. As for input image of

frame t, t
′

is the pooled images after average pooling. We

can get feature map t
′

b after background difference. Then, t
′

b

will be scale to the original image size. And the final feature

map is used to perform contour detection for moving object

detection after a serial of morphological operations, such as

erosion and dilation. An example of background difference

is shown in Figure 3.

(a) (b)

Figure 3. Examples of background subtraction. (a) is related to

t
′

b, (b) is the final moving object detection results based on back-

ground modeling.

3.3. Object Tracking

Following the tracking-by-detection paradigm, we use

DeepSort [21] algorithm to perform data association on tar-

gets. The algorithm is mainly composed of three parts:

motion prediction, data association and trajectory manage-

ment. Furthermore, post-processing is adopted to improve

the quality of trajectories.

Motion Prediction The Kalman filter is used for motion

prediction and state updates. When initializing a new target,

it uses the unmatched detections to initialize the target state.

And the matched detections are applied to update the target

state.

Data association For the same targets between adjacent

frames, the distances are calculated to measure the similar-

ity. So we employ a greedy match algorithm to associate

predicted targets and detections on current frame based on

motion and position information. First, we use the Maha-

lanobis distance to calculate the motion similarity between

detections and predicted positions of Kalman filter. Then,

the intersection-over-union(IoU) distance is used to assign

the rest of detections to unmatched targets, which can re-

duce the identity switches of targets that have similar mo-

tions in the first step. In addition, we follow the idea of cas-

cading matching in DeepSort to assign matching priority to

more frequently occurring targets. Finally, the Hungarian

algorithm is used to solve the optimal solution of the cost

matrix.

(a) (b)

Figure 4. Comparison of tracking results before and after tracking

post-processing. (a) is the results before post-processing. (b) is the

integral trajectory after post-processing.

(a) (b) (c)

Figure 5. Schematic diagram of trajectory modeling. (a) is the

movement supplied by organizer. (b) is the satisfying trajectory

after filtering. The driving directions are represented by the color

of trajectories, where the deep blue represents the start of the tra-

jectories. (c) is the modeling trajectory, which is aggregated from

selected trajectories in (b).

Track management When a moving target enters or

leaves the RoI area in the video sequence, the target needs to

be initialized and terminated accordingly. The detection is



Algorithm 1 Trajectory Optimization and Trajectory Asso-

ciation

Input: Tracks of each target Ttarget and Tracks of targets

in each frame Tframe

Output: Trajectories after post-processing Tnew

1: for each track ∈ Ttarget do

2: if track length < 2 or track is static then

3: Delete

4: end if

5: Smooth track;

6: end for

7:

8: for each newtrack ∈ Tframe do

9: for each oldtrack ∈ Tprevframe
do

10: Skip oldtrack ∈ Tnextframe
;

11: Constraint motion angle between oldtrack and

newtrack

12: Constraint time between oldtrack and newtrack

13: Compute distance between oldtrack and

newtrack

14: Choose oldtrack of minimum distance to asso-

ciation

15: Add newtrack to Tnew

16: end for

17: end for

initialized as a new target if its IoU with all existing targets

on the current frame is less than IoUmin. In order to avoid

false targets caused by false-positive detections, the new tar-

get is only regarded as initialized successfully after accumu-

lating matched for ninit frames. If the target is not matched

with detections for accumulated maxage frames, the trajec-

tory of target is terminated to prevent the prediction error

after long-term tracking and the growth in the number of

disappeared targets.

Post-processing Due to the false detections and the insta-

bility of the tracker, the trajectory of target can be discrete,

and the identity switches problem between targets can be

more serious. Thus, we performed post-processing on the

tracking trajectories to optimize the trajectory information

and obtain the clean and consistent target trajectories for

better counting results. Post-processing of the trajectory

mainly includes two parts: trajectory optimization and tra-

jectory association. The process is defined as Algorithm 1
and the comparison of the results is shown in Figure 4.

3.4. Trajectory Modeling

After target detection and tracking, the driving trajec-

tory of each target can be generated, and the intersection

connections in all directions would be combined. With a

large number of driving trajectories for aggregation, we can

model the movement of vehicles at lane-level. We develop a

trajectory matching algorithm. By calculating the similarity

between the query and modeled trajectories in dimensions

of position and direction, the driving direction of each tra-

jectory can be verified precisely, and this will provide stable

characteristics for vehicle counting.

Figure 5 (a) illustrates the trajectories of cam 6, the red

line indicates the driving directions of the intersection, and

green polygon is the RoI area. A large number of vehicle

trajectories are aggregated at each intersection to model the

vehicle trajectories at lane-level. Trajectory modeling can

be divided into three steps: trajectory selection, aggregation

and template fitting.

3.4.1 Trajectory Selection

Affected by illumination changes or occlusions, identity

switches and trajectory breaks may occur during the pro-

cess, leading to some low-confidence or short tracking tra-

jectories. To generate a high-quality trajectory model, we

select the trajectories by considering integrity, continuity,

and confidence.

Integrity Integrity is defined based on the entrance and

exit area of a specific driving movement. If the starting

point and endpoint falls in corresponding areas, and the en-

tire trajectory runs through the RoI area, then it’s an integral

trajectory. Integrity judgment can effectively filter out dis-

tracted trajectories.

Continuity If a trajectory of each frame has a correspond-

ing detection result, we defined the trajectory as a continu-

ous one. Normally, occluded targets with no detection re-

sults have a high risk of identity switches. By checking con-

tinuity, unreliable trajectories can be effectively removed.

Confidence In target tracking, every detection in the cur-

rent frame will match the corresponding tracking trajectory.

By defining the threshold of matching score, mismatched

trajectories will be eliminated, which ensures the reliability

of the trajectories.

A large number of distracted or low-quality trajectories

can be filtered out through the three dimensions mentioned

above.

Eventually, to make sure there are enough and balanced

trajectories for modeling, the number of trajectories con-

necting two intersections in each scene is guaranteed to be

[n,m]. The selection results is shown in Figure 5 (b).

3.4.2 Trajectory aggregation

After trajectory selection, we get a sufficient amount of

high-quality trajectories. Using aggregation algorithm, tra-



jectories in the same driving direction can be clustered

together. When there are multiple lanes in one driv-

ing direction, we can still obtain lane-level trajectory in-

formation. Let the complete trajectory set TrajM =
[Trajm1

, T rajm2
, . . . ], and mi = [pt1m, pt2m, . . . , ptnm ],

where ptim = (xti
m, ytim). That is, mi enters the RoI at the

t1 frame, leaves the RoI at the tn frame, and the target po-

sition at time ti is (xti
m, ytim). By calculating the Euclidean

distance between any two tracks, the similarity between the

tracks can be obtained. This paper uses K-means to cluster

the trajectories, K is the number of lane-level movements.

The aggregated trajectory is shown in Figure 5 (c).

3.4.3 Trajectory template fitting

After trajectory aggregation, the lane-level trajectory clus-

tering results can be obtained. Based on the evaluation of

the three dimensions mentioned above, top N trajectories

can be selected from each lane-level driving trajectory to

perform template fitting. The final model of the lane-level

trajectory can be expressed as a discrete sequence extracted

from the curve equation by trajectory fitting. Figure 5 is the

visualization result of trajectory modeling.

(a) (b)

Figure 6. Trajectory segmentation and matching. The blue curve

is the query trajectory, and the red one is the modeling trajectory.

(a) is trajectory segmentation, in which the modeling trajectory di-

vided adaptively according to the query. (b) is trajectory matching

scheme. The lifetime of query trajectory can be predicted accord-

ing to it’s matching position with modeling trajectory.

Inspired by map matching, which associates the orderly

GPS position to electronic maps by converting the GPS to

road network coordinate, we use the center point coordi-

nates of the target vehicle in the image coordinate system

as the GPS position of the current vehicle, and associate it

with the image coordinate system. Therefore, for each tra-

jectory in the tracking result, the nearest neighbor matching

algorithm can find the best movement of the current target

vehicle and remove the influence of the non-target trajectory

no matter whether the trajectory is complete.

3.4.4 Trajectory segmentation

Since the distance between the starting point and the end-

point of the target is far, only using the full amount of tra-

jectory information for matching will result in significant

errors. We divide the trajectory into several segments and

calculate the similarity in segments-wise. Finally, the entire

trajectory similarity is the sum of the segment-wise mea-

sure, normalized by segment number.

For each trajectory, our experiment two different seg-

mentation methods: time and space. In time dimension, we

segment the trajectory according to the number of frames in

which the target appears. And in space, the trajectory is di-

vided according to the distance of target’s position in image

coordinate system.

Since the influence of traffic lights and other reasons

caused the vehicle to stop for a long time, the use of time-

division will introduce more useless trajectory segments,

which will have a negative impact on the final result. How-

ever, it can perform a certain smoothing process on the tra-

jectory position to eliminate the negative effects caused by

long-term parking and trajectory jitters. Therefore, in the

end, we chose to use spatial segmentation. The example of

trajectory segmentation is shown as Figure 6 (a).

About the definition of trajectory in this article, the

set of gallery trajectories for a certain scene is TrajG =
[Trajg1 , T rajg2 , . . . ], where Trajgi represents the ith
modeling trajectory in the scene, expressed as a set of dis-

crete points Trajgi = [p1g, p
2
g, . . . ], where pig = (xi

g, y
i
g).

For the query trajectory Trajqi , is divided into k small seg-

ments, that is, Trajgi = [p1q, p
2
q, . . . ]. In the subsequent

trajectory matching, the weighted average is calculated in

units of segments to calculate the overall matching degree.

3.4.5 Trajectory similarity measurement

In order to determine the exact driving direction of each

query trajectory, it is necessary to match the query trajec-

tory with lane-level gallery trajectories. For each endpoint

P i
q of the trajectory segment in query trajectory, we can find

the best-matched point P i
g in the gallery trajectory base on

the minimum Euclidean distance metric. The gallery trajec-

tory then is divided into k segments adaptively base on these

matched points, as shown in Figure 6 (a). The trajectory

similarity of each segment pair will be computed further.

Trajectory similarity includes two parts: distance similarity

and angle similarity. The distance similarity of one segment

pair is the sum of the distance between the corresponding

endpoints and then normalized by the length of the query

trajectory segment. The angle similarity of one segment

pair is the intersection angle of two vectors defined by the

segment endpoints. The final distance similarity is the av-

erage distance score of all trajectory segments between two

trajectories. So does angle similarity. The detailed equation

is listed as follows.



Figure 7. Case analysis of statistical learning. The blue one is the

bad case with average distance and angle. And the red one is the

results after parameter optimizer.

Dsegmentation =
D(P i

g, P
i
q) +D(P i+1

g , P i+1
q )

D(P i
q , P

i+1
q )

(1)

Dtrajectory =

∑N

n=1
Dsegmentation

n
(2)

3.4.6 Statistical learning

After obtaining the similarity measure between the query

trajectory Trajqi and all the gallery trajectories in TrajG,

we decide on the matched trajectory by setting the distance

and angle threshold. In this paper, we learn to set parame-

ters through statistical learning. We count the distance and

angle distribution between trajectories of the same move-

ment and take the average of trajectory distance and angle

as the threshold.

However, after analysis, there are some trajectory out-

lines in the scene, such as some vehicles turning left in the

straight lane, resulting in the average distance and angle can

not adapt to the trajectory, like the blue curve in Figure 7.

Therefore, taking the analytical results as the initial value,

we further optimize the parameters under different distance

measures and search for suitable distance and angle thresh-

olds.

3.5. Count numbers

Base on the tracking and trajectory matching algorithm,

each trajectory has been matched to an exact gallery trajec-

tory. Due to imperfect detection results or tracking results,

a whole trajectory may be divided into several short tracks.

In order to get an accurate counting result of all vehicles,

we design different counting methods for complete trajec-

tories and incomplete ones. A complete trajectory is defined

by the integrity criterion, as mentioned before. Base on the

Figure 8. Vehicle counting examples. Orange curves represent for

specific movements. Green polygon is an interesting region to do

vehicle counting. The table on the top left corner is the count-

ing results of two classes of vehicles counting results in different

movements.

entrance and exit zone of each road intersection and trajec-

tory matching results, we can easily confirm which galleries

these trajectories belong to.

For incomplete trajectories, we have to know which

unique vehicles they belong to, which is important for ac-

curate vehicle counting. As shown in Figure 6 (b), for each

short trajectory, we can confirm how long the journey re-

mains left or already past base on it’s matched gallery tra-

jectory, we also can calculate the approximate speed base

on the short trajectory length and its time interval. Then the

approximate appear timestamp and disappear timestamp of

the vehicle are confirmed. We name the appear and disap-

pear timestamp of one vehicle as its survival time. If two

short trajectories have the same survival time and have no

conflict in location and driving velocity, they will be treated

as two trajectory fragments of one vehicle.

The above operation will be repeated until all short tra-

jectories matched to the corresponding vehicle.

4. Experiment

Our experiments are based on the public dataset of

Track1 in AI City 2020, which has 20 different scenes

and 31 videos. The detailed information about the

dataset and evaluation is mentioned on the official website:

https://www.aicitychallenge.org/.

All our experiments are tested on Tesla P40 with 12G

and two-thread Xeon CPU with 2.20GHz. As mentioned in

the official effectiveness evaluation, our base factor is 0.39.

Meanwhile, in our framework, only the detection module

relies on GPU, which is based on mmdetection [2]. The in-

ference time of the whole procedure, which includes video

parsing, detection, tracking and vehicle counting, on more

than 180,000 images is 12361.744 seconds. And we get

95.40% points on final efficiency evaluation.

To be clear, we cite the example of vehicle counting pub-

lished on the official website as Figure 8.



Modules V1 V2 V3 V4 V5

Traj-PostProc X X X X

I-Det X X X

Traj-M X X X

Param-Opt X X

Bg-Modeling X

Effectiveness 82.03 88.87 90.39 91.30 91.40

Efficiency 80.32 80.32 94.00 94.62 95.40

Score 81.52 86.30 91.48 92.30 92.60
Table 2. Ablation experiments. Traj-PostProc is trajectory post

process. I-Det is interval frame detection. Traj-M is trajectory

modeling. Param-Opt is parameter optimization. Bg-Modeling is

background modeling.

4.1. Ablation experiments

Based on the NAS-FPN and DeepSort trackers, we ob-

tained the V1 version of the baseline model and carried out

four improvement experiments to steadily improve the re-

sults. In the baseline model, the tracking trajectory break-

ing caused a large number of counting errors. In V2, we

propose trajectory post-processing to associate short-term

broken trajectory, which improves the quality of trajectory

a lot and increase the effectiveness score by 6.87%; In V3,

we add trajectory modeling to increase the trajectory match-

ing efficiency by 1.52%. At the same time, detection is per-

formed every two frames to reduce time-consuming of de-

tection and efficiency score increased by 13.68%; In order

to further improve the effectiveness, we optimize the pa-

rameters of trajectory modeling and get 0.91% increasing;

In V5, we introduce background modeling, and relief the

framework from low recall rate caused by bad scenes, such

as rainy days (such as cam 2 rain). At this point, our al-

gorithm’s total performance in accuracy and efficiency has

increased from 81.52% to 92.60%, an increase of 10.08%.

Details are shown in Table 2.

4.2. Results Analysis

After several model refinements, our algorithm has

achieved significant improvements in effectiveness and ef-

ficiency, but there are still many shortcomings and deficien-

cies. First, due to the limitation of the competition rules,

only public detection models can be used, so the detection

performance cannot be refined on our specific scene, for ex-

ample, Figure 9(a). Second, background occlusion or inter-

object occlusion leads to obviously id fractures and identity

switches in multi-object tracking, like Figure 9(b) and (c).

Third, the algorithm doesn’t take advantage of apparent fea-

tures of trajectory for short-track matching, which causes

part of the loss ineffectiveness.

(a) (b) (c)

Figure 9. Bad case analysis. (a) is an example in cam 7 rain,

which has many miss recall cased by occlusion and illumination.

When vehicles park for traffic lights, id-switch is common in (b)

and (c).

5. Conclusion

This paper has proposed an integrated system for vehicle

turn-counts by class at multiple intersections from a single

floating camera. The different components (i.e., NAS-FPN

based vehicle detection, GMM like background modeling,

Deep-sort multi-target tracking framework, and trajectory

modeling and matching schema) were integrated in a se-

quential yet complementary manner. Vehicle detection re-

call was greatly improved by effectively combing the NAS-

FPN based object detection and GMM like background

modeling. Deep-sort multi-target tracking framework was

used to obtain target movement trajectories. Moreover, we

used the vehicles’ direction and speed information for tra-

jectory modeling, trajectory matching, etc. Furthermore, in-

terval detection and multi-threading was applied to improve

overall efficiency. Our algorithm has realized robust and

fast vehicle turn-counts by class at multiple intersections.

In future work, we will try to improve each component

further, both with respect to speed and robustness. For

example, we will address typical detection failures, e.g.,

false positives due to dynamic backgrounds or reflections

and missing detections at too large or small vehicles. On

the other hand, instead of using the sequential combina-

tion manner, how to further fuse each component with other

components in an effective feedback cyclic is an interesting

direction.

6. Acknowledgments

This work was supported by the National Natural Sci-

ence Foundation of China (No. 61972167 and No.

61802135), and the Open Project Program of the Na-

tional Laboratory of Pattern Recognition (NLPR) (No.

202000012).

References

[1] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and

Ben Upcroft. Simple online and realtime tracking. In 2016

IEEE International Conference on Image Processing (ICIP),

pages 3464–3468. IEEE, 2016.



[2] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu

Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,

Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-

box and benchmark. arXiv preprint arXiv:1906.07155, 2019.

[3] Wongun Choi. Near-online multi-target tracking with ag-

gregated local flow descriptor. In Proceedings of the IEEE

international conference on computer vision, pages 3029–

3037, 2015.

[4] Caglayan Dicle, Octavia I Camps, and Mario Sznaier. The

way they move: Tracking multiple targets with similar ap-

pearance. In Proceedings of the IEEE international confer-

ence on computer vision, pages 2304–2311, 2013.

[5] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 3354–3361. IEEE, 2012.

[6] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn:

Learning scalable feature pyramid architecture for object de-

tection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 7036–7045, 2019.

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017.

[8] Harold W Kuhn. The hungarian method for the assignment

problem. Naval research logistics quarterly, 2(1-2):83–97,

1955.

[9] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyra-

mid networks for object detection. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 2117–2125, 2017.

[10] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 2980–2988, 2017.

[11] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014.

[12] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European con-

ference on computer vision, pages 21–37. Springer, 2016.

[13] Stefano Messelodi, Carla Maria Modena, and Michele

Zanin. A computer vision system for the detection and classi-

fication of vehicles at urban road intersections. Pattern anal-

ysis and applications, 8(1-2):17–31, 2005.

[14] Paul Newson and John Krumm. Hidden markov map match-

ing through noise and sparseness. In Proceedings of the 17th

ACM SIGSPATIAL international conference on advances in

geographic information systems, pages 336–343, 2009.

[15] Aljoša Osep, Wolfgang Mehner, Markus Mathias, and Bas-

tian Leibe. Combined image-and world-space tracking in

traffic scenes. In 2017 IEEE International Conference on

Robotics and Automation (ICRA), pages 1988–1995. IEEE,

2017.

[16] Joseph Redmon and Ali Farhadi. Yolov3: An incremental

improvement. arXiv preprint arXiv:1804.02767, 2018.

[17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015.

[18] Mohammad Shokrolah Shirazi and Brendan Morris. Vision-

based turning movement counting at intersections by coop-

erating zone and trajectory comparison modules. In 17th In-

ternational IEEE Conference on Intelligent Transportation

Systems (ITSC), pages 3100–3105. IEEE, 2014.

[19] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019.

[20] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficient-

det: Scalable and efficient object detection. arXiv preprint

arXiv:1911.09070, 2019.

[21] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple

online and realtime tracking with a deep association metric.

In 2017 IEEE international conference on image processing

(ICIP), pages 3645–3649. IEEE, 2017.

[22] Bineng Zhong, Shaohui Liu, Hongxun Yao, and Baochang

Zhang. Multl-resolution background subtraction for dynamic

scenes. In 2009 16th IEEE International Conference on Im-

age Processing (ICIP), pages 3193–3196. IEEE, 2009.

[23] Bineng Zhong, Hongxun Yao, and Shaohui Liu. Robust

background modeling via standard variance feature. In 2010

IEEE International Conference on Acoustics, Speech and

Signal Processing, pages 1182–1185. IEEE, 2010.


